Free Modules

Michał Muzalewski
Warsaw University
Białystok

Summary. We define free modules and prove that every left module over Skew-Field is free.

MML Identifier: MOD_3.

The papers [20], [5], [3], [2], [4], [19], [16], [14], [15], [1], [18], [6], [7], [8], [12], [11], [9], [10], [13], and [17] provide the terminology and notation for this paper. One can prove the following propositions:
(1) For every ring R and for every scalar a of R such that $-a=0_{R}$ holds $a=0_{R}$.
(2) For every integral domain R holds $0_{R} \neq-1_{R}$.

For simplicity we follow the rules: x is arbitrary, R is an associative ring, V is a left module over R, L, L_{1}, L_{2} are linear combinations of V, a is a scalar of R, v, w are vectors of V, F is a finite sequence of elements of the carrier of the carrier of V, and C is a finite subset of V. We now state several propositions:
(3) If $-v=w$, then $v=-w$.
(4) $\sum\left(\mathbf{0}_{\mathrm{LC}}^{V}\right.$ $)=\Theta_{V}$.
(5) $L_{1}+L_{2}=L_{2}+L_{1}$.
(6) If support $L \subseteq C$, then there exists F such that F is one-to-one and $\operatorname{rng} F=C$ and $\sum L=\sum(L F)$.
(7) $\quad \sum(a \cdot L)=a \cdot \sum L$.
(8) $\sum(-L)=-\sum L$.
(9) $\sum\left(L_{1}-L_{2}\right)=\sum L_{1}-\sum L_{2}$.
(10) $\quad L+\mathbf{0}_{\mathrm{LC}_{V}}=L$ and $\mathbf{0}_{\mathrm{LC}_{V}}+L=L$.

In the sequel W denotes a submodule of V, A, B denote subsets of V, and l denotes a linear combination of A. Let us consider R, V, A. The functor $\operatorname{Lin}(A)$ yielding a submodule of V is defined as follows:
(Def.1) the carrier of the carrier of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
The following propositions are true:
(11) $\quad x \in \operatorname{Lin}(A)$ if and only if there exists l such that $x=\sum l$.
(12) If $x \in A$, then $x \in \operatorname{Lin}(A)$.
(13) $\operatorname{Lin}\left(\emptyset_{\text {the carrier of the carrier of } V}\right)=\mathbf{0}_{V}$.
(14) If $\operatorname{Lin}(A)=\mathbf{0}_{V}$, then $A=\emptyset$ or $A=\left\{\Theta_{V}\right\}$.
(15) If $0_{R} \neq 1_{R}$ and $A=$ the carrier of the carrier of W, then $\operatorname{Lin}(A)=W$.
(16) If $0_{R} \neq 1_{R}$ and $A=$ the carrier of the carrier of V, then $\operatorname{Lin}(A)=V$.
(17) If $A \subseteq B$, then $\operatorname{Lin}(A)$ is a submodule of $\operatorname{Lin}(B)$.
(18) If $\operatorname{Lin}(A)=V$ and $A \subseteq B$, then $\operatorname{Lin}(B)=V$.
(19) $\quad \operatorname{Lin}(A \cup B)=\operatorname{Lin}(A)+\operatorname{Lin}(B)$.
(20) $\operatorname{Lin}(A \cap B)$ is a submodule of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.

Let us consider R, V. A subset of V is base if:
(Def.2) it is linearly independent and $\operatorname{Lin}(\mathrm{it})=V$.
Let us consider R. A left module over R is free if:
(Def.3) there exists a subset B of it such that B is base.
We now state the proposition
(21) $\mathbf{0}_{V}$ is free.

Let us consider R. A left module over R is called a free left R-module if:
(Def.4) it is free.
For simplicity we adopt the following convention: R will denote a skew field, a, b will denote scalars of R, V will denote a left module over R, v, v_{1}, v_{2} will denote vectors of V, and A, B will denote subsets of V. The following propositions are true:
(22) $\quad 0_{R} \neq-1_{R}$.
(23) $\{v\}$ is linearly independent if and only if $v \neq \Theta_{V}$.
(24) $\quad v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if $v_{2} \neq \Theta_{V}$ and for every a holds $v_{1} \neq a \cdot v_{2}$.
(25) $\quad v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if for all a, b such that $a \cdot v_{1}+b \cdot v_{2}=\Theta_{V}$ holds $a=0_{R}$ and $b=0_{R}$.
(26) If A is linearly independent, then there exists B such that $A \subseteq B$ and B is base.
(27) If $\operatorname{Lin}(A)=V$, then there exists B such that $B \subseteq A$ and B is base.
(28) V is free.

Let us consider R, V. A subset of V is called a basis of V if:
(Def.5) it is base.
In the sequel I is a basis of V. The following two propositions are true:
(29) If A is linearly independent, then there exists I such that $A \subseteq I$.
(30) If $\operatorname{Lin}(A)=V$, then there exists I such that $I \subseteq A$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[8] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279-282, 1991.
[9] Michał Muzalewski and Wojciech Skaba. Linear combinations in left module over associative ring. Formalized Mathematics, 2(2):295-300, 1991.
[10] Michał Muzalewski and Wojciech Skaba. Linear independence in left module over domain. Formalized Mathematics, 2(2):301-303, 1991.
[11] Michał Muzalewski and Wojciech Skaba. Operations on submodules in left module over associative ring. Formalized Mathematics, 2(2):289-293, 1991.
[12] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. Formalized Mathematics, 2(2):283-287, 1991.
[13] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received October 18, 1991

