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Summary. We define the trivial left module, morphism of left
modules and the field Z3. We proof some elementary facts.

MML Identifier: MOD 2.

The terminology and notation used in this paper are introduced in the following
articles: [14], [13], [4], [5], [6], [2], [3], [1], [7], [9], [11], [12], [10], and [8]. For
simplicity we adopt the following convention: x, y, z are arbitrary, D is a non-
empty set, R, R1, R2, R3 are associative rings, G is a left module structure
over R, H is a left module structure over R, S is a left module structure over
R, G1 is a left module structure over R1, G2 is a left module structure over
R2, G3 is a left module structure over R3, and U1 is a universal class. Let us
consider x. Then {x} is a non-empty set.

Let us consider R. lop(R) is a function from [: the carrier of R, the carrier
of the trivial group :] into the carrier of the trivial group.

Let us consider R. The functor RΘ yields a left module over R and is defined
by:

(Def.1) RΘ = 〈the trivial group, lop(R)〉.

Next we state the proposition

(1) For every vector x of RΘ holds x = Θ
RΘ.

Let us consider R1, R2, G1, G2. A map from G1 into G2 is a map from the
carrier of G1 into the carrier of G2.

Let us consider R1, R2, R3, G1, G2, G3, and let f be a map from G1 into
G2, and let g be a map from G2 into G3. Then g · f is a map from G1 into G3.

Let us consider R, G. The functor idG yielding a map from G into G is
defined as follows:

(Def.2) idG = id(the carrier of G).
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The following propositions are true:

(2) For every vector x of G holds idG(x) = x.

(3) For every map f from G1 into G2 holds f · idG1
= f and idG2

·f = f .

Let us consider R1, R2, G1, G2. The functor zero(G1, G2) yields a map from
G1 into G2 and is defined as follows:

(Def.3) zero(G1, G2) = zero( the carrier of G1, the carrier of G2).

Let us consider R, and let G, H be left module structures over R, and let f

be a map from G into H. We say that f is linear if and only if:

(Def.4) for all vectors x, y of G holds f(x + y) = f(x) + f(y) and for every
scalar a of R and for every vector x of G holds f(a · x) = a · f(x).

The following propositions are true:

(4) For every map f from G into H such that f is linear holds f is additive.

(5) For every map f from G1 into G2 and for every map g from G2 into G3

and for every vector x of G1 holds (g · f)(x) = g(f(x)).

(6) For every map f from G into H and for every map g from H into S

such that f is linear and g is linear holds g · f is linear.

For simplicity we adopt the following rules: R, R1, R2 denote associative
rings, G denotes a left module over R, H denotes a left module over R, G1

denotes a left module over R1, and G2 denotes a left module over R2. The
following propositions are true:

(7) For every vector x of G1 holds (zero(G1, G2))(x) = ΘG2
.

(8) zero(G,H) is linear.

In the sequel G1 will denote a left module over R, G2 will denote a left
module over R, and G3 will denote a left module over R. Let us consider R.
We consider left module morphism structures over R which are systems

〈a dom-map, a cod-map, a Fun〉,
where the dom-map, the cod-map are a left module over R and the Fun is a map
from the dom-map into the cod-map.

In the sequel f will be a left module morphism structure over R. We now
define two new functors. Let us consider R, f . The functor dom f yields a left
module over R and is defined as follows:

(Def.5) dom f = the dom-map of f .

The functor cod f yields a left module over R and is defined as follows:

(Def.6) cod f = the cod-map of f .

Let us consider R, f . The functor fun f yields a map from dom f into cod f

and is defined by:

(Def.7) fun f = the Fun of f .

One can prove the following proposition

(9) For every map f0 from G1 into G2 such that f = 〈G1, G2, f0〉 holds
dom f = G1 and cod f = G2 and funf = f0.
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Let us consider R, G, H. The functor ZEROG yielding a left module mor-
phism structure over R is defined as follows:

(Def.8) ZEROG = 〈G,H, zero(G,H)〉.

Let us consider R. A left module morphism structure over R is said to be a
left module morphism of R if:

(Def.9) fun it is linear.

One can prove the following proposition

(10) For every left module morphism F of R holds the Fun of F is linear.

Let us consider R, G, H. Then ZEROG is a left module morphism of R.

Let us consider R, G, H. A left module morphism of R is said to be a
morphism from G to H if:

(Def.10) dom it = G and cod it = H.

One can prove the following three propositions:

(11) If dom f = G and cod f = H and fun f is linear, then f is a morphism
from G to H.

(12) For every map f from G into H such that f is linear holds 〈G,H, f〉 is
a morphism from G to H.

(13) idG is linear.

Let us consider R, G. The functor IG yields a morphism from G to G and is
defined by:

(Def.11) IG = 〈G,G, idG〉.

Let us consider R, G, H. Then ZEROG is a morphism from G to H.

The following propositions are true:

(14) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉 and f is linear.

(15) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉.

(16) For every left module morphism F of R there exist G, H such that F

is a morphism from G to H.

(17) For every left module morphism F of R there exist left modules G, H

over R and there exists a map f from G into H such that F is a morphism
from G to H and F = 〈G,H, f〉 and f is linear.

(18) For all left module morphisms g, f of R such that dom g = cod f there
exist G1, G2, G3 such that g is a morphism from G2 to G3 and f is a
morphism from G1 to G2.

(19) For every left module morphism F of R holds F is a morphism from
dom F to cod F .

Let us consider R, and let G, F be left module morphisms of R. Let us
assume that dom G = cod F . The functor G · F yields a left module morphism
of R and is defined as follows:
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(Def.12) for all left modules G1, G2, G3 over R and for every map g from G2

into G3 and for every map f from G1 into G2 such that G = 〈G2, G3, g〉
and F = 〈G1, G2, f〉 holds G · F = 〈G1, G3, g · f〉.

Next we state the proposition

(20) For every morphism G from G2 to G3 and for every morphism F from
G1 to G2 holds G · F is a morphism from G1 to G3.

Let us consider R, G1, G2, G3, and let G be a morphism from G2 to G3, and
let F be a morphism from G1 to G2. The functor F [G] yielding a morphism
from G1 to G3 is defined by:

(Def.13) F [G] = G · F .

We now state several propositions:

(21) Let G be a morphism from G2 to G3. Then for every morphism F

from G1 to G2 and for every map g from G2 into G3 and for every map
f from G1 into G2 such that G = 〈G2, G3, g〉 and F = 〈G1, G2, f〉 holds
F [G] = 〈G1, G3, g · f〉 and G · F = 〈G1, G3, g · f〉.

(22) Let f , g be left module morphisms of R. Then if dom g = cod f , then
there exist left modules G1, G2, G3 over R and there exists a map f0 from
G1 into G2 and there exists a map g0 from G2 into G3 such that f = 〈G1,

G2, f0〉 and g = 〈G2, G3, g0〉 and g · f = 〈G1, G3, g0 · f0〉.

(23) For all left module morphisms f , g of R such that dom g = cod f holds
dom(g · f) = dom f and cod(g · f) = cod g.

(24) For all left modules G1, G2, G3, G4 over R and for every morphism f

from G1 to G2 and for every morphism g from G2 to G3 and for every
morphism h from G3 to G4 holds h · (g · f) = h · g · f .

(25) For all left module morphisms f , g, h of R such that domh = cod g and
dom g = cod f holds h · (g · f) = h · g · f .

(26) dom(IG) = G and cod(IG) = G and for every left module morphism
f of R such that cod f = G holds IG · f = f and for every left module
morphism g of R such that dom g = G holds g · IG = g.

(27) {x, y, z} is a non-empty set.

Let us consider x, y, z. Then {x, y, z} is a non-empty set.

We now state four propositions:

(28) For all elements u, v, w of U1 holds {u, v,w} is an element of U1.

(29) For every element u of U1 holds succ u is an element of U1.

(30) 0 is an element of U1 and 1 is an element of U1 and 2 is an element of
U1.

(31) 0 6= 1 and 0 6= 2 and 1 6= 2.

In the sequel a, b will be elements of {0,1,2}. We now define three new
functors. Let us consider a. The functor −a yields an element of {0,1,2} and
is defined as follows:
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(Def.14) (i) −a = 0 if a = 0,
(ii) −a = 2 if a = 1,
(iii) −a = 1 if a = 2.

Let us consider b. The functor a+ b yields an element of {0,1,2} and is defined
by:

(Def.15) (i) a + b = b if a = 0,
(ii) a + b = a if b = 0,
(iii) a + b = 2 if a = 1 and b = 1,
(iv) a + b = 0 if a = 1 and b = 2,
(v) a + b = 0 if a = 2 and b = 1,
(vi) a + b = 1 if a = 2 and b = 2.

The functor a · b yielding an element of {0,1,2} is defined by:

(Def.16) (i) a · b = 0 if b = 0,
(ii) a · b = 0 if a = 0,
(iii) a · b = a if b = 1,
(iv) a · b = b if a = 1,
(v) a · b = 1 if a = 2 and b = 2.

We now define five new functors. The binary operation add3 on {0,1,2} is
defined by:

(Def.17) add3(a, b) = a + b.

The binary operation mult3 on {0,1,2} is defined by:

(Def.18) mult3(a, b) = a · b.

The unary operation compl3 on {0,1,2} is defined as follows:

(Def.19) compl3(a) = −a.

The element unit3 of {0,1,2} is defined as follows:

(Def.20) unit3 = 1.

The element zero3 of {0,1,2} is defined as follows:

(Def.21) zero3 = 0.

The field structure Z3 is defined by:

(Def.22) Z3 = 〈{0,1,2},mult3, add3, compl3,unit3, zero3〉.

Next we state several propositions:

(32) 0Z3
= 0 and 1Z3

= 1 and 0Z3
is an element of {0,1,2} and 1Z3

is an
element of {0,1,2} and the addition of Z3 = add3 and the multiplication
of Z3 = mult3 and the reverse-map of Z3 = compl3.

(33) For all scalars x, y of Z3 and for all elements X, Y of {0,1,2} such that
X = x and Y = y holds x + y = X + Y and x · y = X · Y and −x = −X.

(34) Let x, y, z be scalars of Z3. Let X, Y , Z be elements of {0,1,2}.
Suppose X = x and Y = y and Z = z. Then x + y + z = X + Y + Z and
x+(y+z) = X +(Y +Z) and x ·y ·z = X ·Y ·Z and x ·(y ·z) = X ·(Y ·Z).
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(35) Let x, y, z, a, b be elements of {0,1,2}. Suppose a = 0 and b = 1.
Then

(i) x + y = y + x,
(ii) x + y + z = x + (y + z),
(iii) x + a = x,
(iv) x + −x = a,
(v) x · y = y · x,
(vi) x · y · z = x · (y · z),
(vii) x · b = x,
(viii) if x 6= a, then there exists an element y of {0,1,2} such that x · y = b,
(ix) a 6= b,
(x) x · (y + z) = x · y + x · z.

(36) Let F be a field structure. Suppose that
(i) for all scalars x, y, z of F holds x+y = y+x and x+y+z = x+(y+z)

and x + 0F = x and x +−x = 0F and x · y = y · x and x · y · z = x · (y · z)
and x · 1F = x but if x 6= 0F , then there exists a scalar y of F such that
x · y = 1F and 0F 6= 1F and x · (y + z) = x · y + x · z.
Then F is a field.

(37) Z3 is a Fano field.

Let us note that it makes sense to consider the following constant. Then Z3

is a Fano field.

In the sequel D′ is a non-empty set. One can prove the following propositions:

(38) For every function f from D into D′ such that D ∈ U1 and D′ ∈ U1

holds f ∈ U1.

(39) For every G being a field structure such that the carrier of G ∈ U1

holds the addition of G is an element of U1 and the reverse-map of G is an
element of U1 and the zero of G is an element of U1 and the multiplication
of G is an element of U1 and the unity of G is an element of U1.

(40) The carrier of Z3 ∈ U1 and the addition of Z3 is an element of U1 and
the reverse-map of Z3 is an element of U1 and the zero of Z3 is an element
of U1 and the multiplication of Z3 is an element of U1 and the unity of Z3

is an element of U1.
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