Rings and Modules - Part II

Michał Muzalewski
Warsaw University
Białystok

Summary. We define the trivial left module, morphism of left modules and the field Z_{3}. We proof some elementary facts.

MML Identifier: MOD_2.

The terminology and notation used in this paper are introduced in the following articles: [14], [13], [4], [5], [6], [2], [3], [1], [7], [9], [11], [12], [10], and [8]. For simplicity we adopt the following convention: x, y, z are arbitrary, D is a nonempty set, R, R_{1}, R_{2}, R_{3} are associative rings, G is a left module structure over R, H is a left module structure over R, S is a left module structure over R, G_{1} is a left module structure over R_{1}, G_{2} is a left module structure over R_{2}, G_{3} is a left module structure over R_{3}, and U_{1} is a universal class. Let us consider x. Then $\{x\}$ is a non-empty set.

Let us consider R. $\operatorname{lop}(R)$ is a function from $ः$ the carrier of R, the carrier of the trivial group:] into the carrier of the trivial group.

Let us consider R. The functor ${ }_{R} \Theta$ yields a left module over R and is defined by:
(Def.1) ${ }_{R} \Theta=\langle$ the trivial group, $\operatorname{lop}(R)\rangle$.
Next we state the proposition
(1) For every vector x of ${ }_{R} \Theta$ holds $x=\Theta_{R} \Theta$.

Let us consider $R_{1}, R_{2}, G_{1}, G_{2}$. A map from G_{1} into G_{2} is a map from the carrier of G_{1} into the carrier of G_{2}.

Let us consider $R_{1}, R_{2}, R_{3}, G_{1}, G_{2}, G_{3}$, and let f be a map from G_{1} into G_{2}, and let g be a map from G_{2} into G_{3}. Then $g \cdot f$ is a map from G_{1} into G_{3}.

Let us consider R, G. The functor id_{G} yielding a map from G into G is defined as follows:
(Def.2) $\quad \mathrm{id}_{G}=\mathrm{id}_{(\text {the carrier of } G)}$.

The following propositions are true：
（2）For every vector x of G holds $\operatorname{id}_{G}(x)=x$ ．
（3）For every map f from G_{1} into G_{2} holds $f \cdot \operatorname{id}_{G_{1}}=f$ and $\operatorname{id}_{G_{2}} \cdot f=f$ ．
Let us consider $R_{1}, R_{2}, G_{1}, G_{2}$ ．The functor $\operatorname{zero}\left(G_{1}, G_{2}\right)$ yields a map from G_{1} into G_{2} and is defined as follows：
（Def．3）$\quad \operatorname{zero}\left(G_{1}, G_{2}\right)=\operatorname{zero}\left(\right.$ the carrier of G_{1} ，the carrier of $\left.G_{2}\right)$ ．
Let us consider R ，and let G, H be left module structures over R ，and let f be a map from G into H ．We say that f is linear if and only if：
（Def．4）for all vectors x, y of G holds $f(x+y)=f(x)+f(y)$ and for every scalar a of R and for every vector x of G holds $f(a \cdot x)=a \cdot f(x)$ ．
The following propositions are true：
（4）For every map f from G into H such that f is linear holds f is additive．
（5）For every map f from G_{1} into G_{2} and for every map g from G_{2} into G_{3} and for every vector x of G_{1} holds $(g \cdot f)(x)=g(f(x))$ ．
（6）For every map f from G into H and for every map g from H into S such that f is linear and g is linear holds $g \cdot f$ is linear．
For simplicity we adopt the following rules：R, R_{1}, R_{2} denote associative rings，G denotes a left module over R, H denotes a left module over R, G_{1} denotes a left module over R_{1} ，and G_{2} denotes a left module over R_{2} ．The following propositions are true：
（7）For every vector x of G_{1} holds $\left(\operatorname{zero}\left(G_{1}, G_{2}\right)\right)(x)=\Theta_{G_{2}}$ ．
（8） $\operatorname{zero}(G, H)$ is linear．
In the sequel G_{1} will denote a left module over R, G_{2} will denote a left module over R ，and G_{3} will denote a left module over R ．Let us consider R ． We consider left module morphism structures over R which are systems

〈a dom－map，a cod－map，a Fun〉，
where the dom－map，the cod－map are a left module over R and the Fun is a map from the dom－map into the cod－map．

In the sequel f will be a left module morphism structure over R ．We now define two new functors．Let us consider R, f ．The functor $\operatorname{dom} f$ yields a left module over R and is defined as follows：
（Def．5）$\quad \operatorname{dom} f=$ the dom－map of f ．
The functor $\operatorname{cod} f$ yields a left module over R and is defined as follows：
（Def．6）$\quad \operatorname{cod} f=$ the cod－map of f ．
Let us consider R, f ．The functor fun f yields a map $\operatorname{from} \operatorname{dom} f$ into $\operatorname{cod} f$ and is defined by：
（Def．7）fun $f=$ the Fun of f ．
One can prove the following proposition
（9）For every map f_{0} from G_{1} into G_{2} such that $f=\left\langle G_{1}, G_{2}, f_{0}\right\rangle$ holds $\operatorname{dom} f=G_{1}$ and $\operatorname{cod} f=G_{2}$ and fun $f=f_{0}$ ．

Let us consider R, G, H. The functor ZERO G yielding a left module morphism structure over R is defined as follows:
(Def.8) ZERO $G=\langle G, H, \operatorname{zero}(G, H)\rangle$.
Let us consider R. A left module morphism structure over R is said to be a left module morphism of R if:
(Def.9) funit is linear.
One can prove the following proposition
(10) For every left module morphism F of R holds the Fun of F is linear.

Let us consider R, G, H. Then ZERO G is a left module morphism of R.
Let us consider R, G, H. A left module morphism of R is said to be a morphism from G to H if:
(Def.10) \quad dom it $=G$ and cod it $=H$.
One can prove the following three propositions:
(11) If $\operatorname{dom} f=G$ and $\operatorname{cod} f=H$ and fun f is linear, then f is a morphism from G to H.
(12) For every map f from G into H such that f is linear holds $\langle G, H, f\rangle$ is a morphism from G to H.
(13) id_{G} is linear.

Let us consider R, G. The functor I_{G} yields a morphism from G to G and is defined by:
(Def.11) $\mathrm{I}_{G}=\left\langle G, G, \mathrm{id}_{G}\right\rangle$.
Let us consider R, G, H. Then ZERO G is a morphism from G to H.
The following propositions are true:
(14) For every morphism F from G to H there exists a map f from G into H such that $F=\langle G, H, f\rangle$ and f is linear.
(15) For every morphism F from G to H there exists a map f from G into H such that $F=\langle G, H, f\rangle$.
(16) For every left module morphism F of R there exist G, H such that F is a morphism from G to H.
(17) For every left module morphism F of R there exist left modules G, H over R and there exists a map f from G into H such that F is a morphism from G to H and $F=\langle G, H, f\rangle$ and f is linear.
(18) For all left module morphisms g, f of R such that $\operatorname{dom} g=\operatorname{cod} f$ there exist G_{1}, G_{2}, G_{3} such that g is a morphism from G_{2} to G_{3} and f is a morphism from G_{1} to G_{2}.
(19) For every left module morphism F of R holds F is a morphism from $\operatorname{dom} F$ to $\operatorname{cod} F$.
Let us consider R, and let G, F be left module morphisms of R. Let us assume that $\operatorname{dom} G=\operatorname{cod} F$. The functor $G \cdot F$ yields a left module morphism of R and is defined as follows:
(Def.12) for all left modules G_{1}, G_{2}, G_{3} over R and for every map g from G_{2} into G_{3} and for every map f from G_{1} into G_{2} such that $G=\left\langle G_{2}, G_{3}, g\right\rangle$ and $F=\left\langle G_{1}, G_{2}, f\right\rangle$ holds $G \cdot F=\left\langle G_{1}, G_{3}, g \cdot f\right\rangle$.

Next we state the proposition
(20) For every morphism G from G_{2} to G_{3} and for every morphism F from G_{1} to G_{2} holds $G \cdot F$ is a morphism from G_{1} to G_{3}.
Let us consider R, G_{1}, G_{2}, G_{3}, and let G be a morphism from G_{2} to G_{3}, and let F be a morphism from G_{1} to G_{2}. The functor $F[G]$ yielding a morphism from G_{1} to G_{3} is defined by:
(Def.13) $\quad F[G]=G \cdot F$.
We now state several propositions:
(21) Let G be a morphism from G_{2} to G_{3}. Then for every morphism F from G_{1} to G_{2} and for every map g from G_{2} into G_{3} and for every map f from G_{1} into G_{2} such that $G=\left\langle G_{2}, G_{3}, g\right\rangle$ and $F=\left\langle G_{1}, G_{2}, f\right\rangle$ holds $F[G]=\left\langle G_{1}, G_{3}, g \cdot f\right\rangle$ and $G \cdot F=\left\langle G_{1}, G_{3}, g \cdot f\right\rangle$.
(22) Let f, g be left module morphisms of R. Then if $\operatorname{dom} g=\operatorname{cod} f$, then there exist left modules G_{1}, G_{2}, G_{3} over R and there exists a map f_{0} from G_{1} into G_{2} and there exists a map g_{0} from G_{2} into G_{3} such that $f=\left\langle G_{1}\right.$, $\left.G_{2}, f_{0}\right\rangle$ and $g=\left\langle G_{2}, G_{3}, g_{0}\right\rangle$ and $g \cdot f=\left\langle G_{1}, G_{3}, g_{0} \cdot f_{0}\right\rangle$.
(23) For all left module morphisms f, g of R such that $\operatorname{dom} g=\operatorname{cod} f$ holds $\operatorname{dom}(g \cdot f)=\operatorname{dom} f$ and $\operatorname{cod}(g \cdot f)=\operatorname{cod} g$.
(24) For all left modules $G_{1}, G_{2}, G_{3}, G_{4}$ over R and for every morphism f from G_{1} to G_{2} and for every morphism g from G_{2} to G_{3} and for every morphism h from G_{3} to G_{4} holds $h \cdot(g \cdot f)=h \cdot g \cdot f$.
(25) For all left module morphisms f, g, h of R such that $\operatorname{dom} h=\operatorname{cod} g$ and $\operatorname{dom} g=\operatorname{cod} f$ holds $h \cdot(g \cdot f)=h \cdot g \cdot f$.
(26) $\operatorname{dom}\left(\mathrm{I}_{G}\right)=G$ and $\operatorname{cod}\left(\mathrm{I}_{G}\right)=G$ and for every left module morphism f of R such that $\operatorname{cod} f=G$ holds $\mathrm{I}_{G} \cdot f=f$ and for every left module morphism g of R such that dom $g=G$ holds $g \cdot \mathrm{I}_{G}=g$.
$\{x, y, z\}$ is a non-empty set.
Let us consider x, y, z. Then $\{x, y, z\}$ is a non-empty set.
We now state four propositions:
(28) For all elements u, v, w of U_{1} holds $\{u, v, w\}$ is an element of U_{1}.
(29) For every element u of U_{1} holds succ u is an element of U_{1}.
(30) $\overline{\mathbf{0}}$ is an element of U_{1} and $\overline{\mathbf{1}}$ is an element of U_{1} and $\overline{\mathbf{2}}$ is an element of U_{1}.
(31) $\overline{\mathbf{0}} \neq \overline{\mathbf{1}}$ and $\overline{\mathbf{0}} \neq \overline{\mathbf{2}}$ and $\overline{\mathbf{1}} \neq \overline{\mathbf{2}}$.

In the sequel a, b will be elements of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$. We now define three new functors. Let us consider a. The functor $-a$ yields an element of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ and is defined as follows:
(Def.14) (i) $-a=\overline{\mathbf{0}}$ if $a=\overline{\mathbf{0}}$,
(ii) $-a=\overline{\mathbf{2}}$ if $a=\overline{\mathbf{1}}$,
(iii) $\quad-a=\overline{\mathbf{1}}$ if $a=\overline{\mathbf{2}}$.

Let us consider b. The functor $a+b$ yields an element of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ and is defined by:
(Def.15) (i) $a+b=b$ if $a=\overline{\mathbf{0}}$,
(ii) $a+b=a$ if $b=\overline{\mathbf{0}}$,
(iii) $a+b=\overline{\mathbf{2}}$ if $a=\overline{\mathbf{1}}$ and $b=\overline{\mathbf{1}}$,
(iv) $a+b=\overline{\mathbf{0}}$ if $a=\overline{\mathbf{1}}$ and $b=\overline{\mathbf{2}}$,
(v) $a+b=\overline{\mathbf{0}}$ if $a=\overline{\mathbf{2}}$ and $b=\overline{\mathbf{1}}$,
(vi) $a+b=\overline{\mathbf{1}}$ if $a=\overline{\mathbf{2}}$ and $b=\overline{\mathbf{2}}$.

The functor $a \cdot b$ yielding an element of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ is defined by:
(Def.16) (i) $a \cdot b=\overline{\mathbf{0}}$ if $b=\overline{\mathbf{0}}$,
(ii) $a \cdot b=\overline{\mathbf{0}}$ if $a=\overline{\mathbf{0}}$,
(iii) $a \cdot b=a$ if $b=\overline{\mathbf{1}}$,
(iv) $a \cdot b=b$ if $a=\overline{\mathbf{1}}$,
(v) $a \cdot b=\overline{\mathbf{1}}$ if $a=\overline{\mathbf{2}}$ and $b=\overline{\mathbf{2}}$.

We now define five new functors. The binary operation add_{3} on $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ is defined by:
(Def.17) $\operatorname{add}_{3}(a, b)=a+b$.
The binary operation mult 3 on $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ is defined by:
(Def.18) $\operatorname{mult}_{3}(a, b)=a \cdot b$.
The unary operation compl ${ }_{3}$ on $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ is defined as follows:
(Def.19) $\operatorname{compl}_{3}(a)=-a$.
The element unit ${ }_{3}$ of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ is defined as follows:
(Def.20) unit $_{3}=\overline{\mathbf{1}}$.
The element zero 3_{3} of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ is defined as follows:
(Def.21) \quad zero $_{3}=\overline{\mathbf{0}}$.
The field structure Z_{3} is defined by:
(Def.22) $\mathrm{Z}_{3}=\left\langle\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}\right.$, mult $_{3}$, add $_{3}$, compl $_{3}$, unit $_{3}$, zero $\left._{3}\right\rangle$.
Next we state several propositions:
(32) $0_{\mathrm{Z}_{3}}=\overline{\mathbf{0}}$ and $1_{\mathrm{Z}_{3}}=\overline{\mathbf{1}}$ and $0_{\mathrm{Z}_{3}}$ is an element of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ and $1_{\mathrm{Z}_{3}}$ is an element of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ and the addition of $\mathrm{Z}_{3}=\operatorname{add}_{3}$ and the multiplication of $Z_{3}=$ mult $_{3}$ and the reverse-map of $Z_{3}=$ compl $_{3}$.
(33) For all scalars x, y of Z_{3} and for all elements X, Y of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ such that $X=x$ and $Y=y$ holds $x+y=X+Y$ and $x \cdot y=X \cdot Y$ and $-x=-X$.
(34) Let x, y, z be scalars of Z_{3}. Let X, Y, Z be elements of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$. Suppose $X=x$ and $Y=y$ and $Z=z$. Then $x+y+z=X+Y+Z$ and $x+(y+z)=X+(Y+Z)$ and $x \cdot y \cdot z=X \cdot Y \cdot Z$ and $x \cdot(y \cdot z)=X \cdot(Y \cdot Z)$.
(35) Let x, y, z, a, b be elements of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$. Suppose $a=\overline{\mathbf{0}}$ and $b=\overline{\mathbf{1}}$. Then
(i) $x+y=y+x$,
(ii) $x+y+z=x+(y+z)$,
(iii) $x+a=x$,
(iv) $x+-x=a$,
(v) $x \cdot y=y \cdot x$,
(vi) $x \cdot y \cdot z=x \cdot(y \cdot z)$,
(vii) $x \cdot b=x$,
(viii) if $x \neq a$, then there exists an element y of $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}\}$ such that $x \cdot y=b$,
(ix) $a \neq b$,
(x) $\quad x \cdot(y+z)=x \cdot y+x \cdot z$.
(36) Let F be a field structure. Suppose that
(i) for all scalars x, y, z of F holds $x+y=y+x$ and $x+y+z=x+(y+z)$ and $x+0_{F}=x$ and $x+-x=0_{F}$ and $x \cdot y=y \cdot x$ and $x \cdot y \cdot z=x \cdot(y \cdot z)$ and $x \cdot 1_{F}=x$ but if $x \neq 0_{F}$, then there exists a scalar y of F such that $x \cdot y=1_{F}$ and $0_{F} \neq 1_{F}$ and $x \cdot(y+z)=x \cdot y+x \cdot z$. Then F is a field.
(37) Z_{3} is a Fano field.

Let us note that it makes sense to consider the following constant. Then Z_{3} is a Fano field.

In the sequel D^{\prime} is a non-empty set. One can prove the following propositions:
(38) For every function f from D into D^{\prime} such that $D \in U_{1}$ and $D^{\prime} \in U_{1}$ holds $f \in U_{1}$.
(39) For every G being a field structure such that the carrier of $G \in U_{1}$ holds the addition of G is an element of U_{1} and the reverse-map of G is an element of U_{1} and the zero of G is an element of U_{1} and the multiplication of G is an element of U_{1} and the unity of G is an element of U_{1}.
(40) The carrier of $\mathrm{Z}_{3} \in U_{1}$ and the addition of Z_{3} is an element of U_{1} and the reverse-map of Z_{3} is an element of U_{1} and the zero of Z_{3} is an element of U_{1} and the multiplication of Z_{3} is an element of U_{1} and the unity of Z_{3} is an element of U_{1}.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
[9] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[10] Michał Muzalewski and Wojciech Skaba. Groups, rings, left- and right-modules. Formalized Mathematics, 2(2):275-278, 1991.
[11] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[12] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595-600, 1990.
[13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received October 18, 1991

