Atlas of Midpoint Algebra

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. This article is a continuation of [4]. We have established a one-to-one correspondence between midpoint algebras and groups with the operator $\frac{1}{2}$. In general we shall say that a given midpoint algebra M and a group V are w-assotiated iff w is an atlas from M to V. At the beginning of the paper a few facts which rather belong to [3], [5] are proved.

MML Identifier: MIDSP_2.

The terminology and notation used here have been introduced in the following articles: [2], [1], [3], [4], and [5]. In the sequel G is a group structure and x is an element of G. Let us consider G, x. The functor $2 x$ yielding an element of G is defined by:
(Def.1) $2 x=x+x$.
In the sequel M is a midpoint algebra structure. Let us consider M. A point of M is an element of the points of M.

In the sequel p, q, r will be points of M and w will be a function from: the points of M, the points of M : into the carrier of G. Let us consider M, G, w. We say that M, G are associated w.r.t. w if and only if:
(Def.2) $\quad p \oplus q=r$ if and only if $w(p, r)=w(r, q)$.
The following proposition is true
(1) If M, G are associated w.r.t. w, then $p \oplus p=p$.

We follow the rules: S will be a non-empty set, $a, b, b^{\prime}, c, c^{\prime}, d$ will be elements of S, and w will be a function from : S, S : into the carrier of G. Let us consider S, G, w. We say that w is an atlas of S, G if and only if:
(Def.3) for every a, x there exists b such that $w(a, b)=x$ and for all a, b, c such that $w(a, b)=w(a, c)$ holds $b=c$ and for all a, b, c holds $w(a, b)+w(b$, $c)=w(a, c)$.

Let us consider S, G, w, a, x. Let us assume that w is an atlas of S, G. The functor $(a, x) . w$ yielding an element of S is defined by:
(Def.4)

$$
w(a,(a, x) \cdot w)=x .
$$

In the sequel G denotes a group, x, y denote elements of G, and w denotes a function from $: S, S:$ into the carrier of G. One can prove the following propositions:
(2) $2\left(0_{G}\right)=0_{G}$.
(3) If $x+y=x$, then $y=0_{G}$.
(4) If w is an atlas of S, G, then $w(a, a)=0_{G}$.
(5) If w is an atlas of S, G and $w(a, b)=0_{G}$, then $a=b$.
(6) If w is an atlas of S, G, then $w(a, b)=-w(b, a)$.
(7) If w is an atlas of S, G and $w(a, b)=w(c, d)$, then $w(b, a)=w(d, c)$.
(8) If w is an atlas of S, G, then for every b, x there exists a such that $w(a$, b) $=x$.
(9) If w is an atlas of S, G and $w(b, a)=w(c, a)$, then $b=c$.
(10) For every function w from : the points of M, the points of M : into the carrier of G such that w is an atlas of the points of M, G and M, G are associated w.r.t. w holds $p \oplus q=q \oplus p$.
(11) For every function w from: the points of M, the points of M : into the carrier of G such that w is an atlas of the points of M, G and M, G are associated w.r.t. w there exists r such that $r \oplus p=q$.
We adopt the following rules: G will denote an Abelian group and x, y, z, t will denote elements of G. The following propositions are true:
(16) For every function w from : the points of M, the points of M : into the carrier of G such that w is an atlas of the points of M, G and M, G are associated w.r.t. w for all points a, b, c, d of M holds $a \oplus b=c \oplus d$ if and only if $w(a, d)=w(c, b)$.
In the sequel w denotes a function from $[S, S:]$ into the carrier of G. Next we state the proposition
(17) If w is an atlas of S, G, then for all $a, b, b^{\prime}, c, c^{\prime}$ such that $w(a, b)=w(b$, $c)$ and $w\left(a, b^{\prime}\right)=w\left(b^{\prime}, c^{\prime}\right)$ holds $w\left(c, c^{\prime}\right)=2 w\left(b, b^{\prime}\right)$.
We follow the rules: M denotes a midpoint algebra and p, q, r, s denote points of M. Let us consider M. Then vectgroup M is an Abelian group.

The following proposition is true
(18) For an arbitrary a holds a is an element of vectgroup M if and only if a is a vector of M and $0_{\text {vectgroup } M}=\mathrm{I}_{M}$ and for all elements a, b of
vectgroup M and for all vectors x, y of M such that $a=x$ and $b=y$ holds $a+b=x+y$.
An Abelian group is called a group with the operator $\frac{1}{2}$ if:
(Def.5) for every element a of it there exists an element x of it such that $2 x=a$ and for every element a of it such that $2 a=0_{\mathrm{it}}$ holds $a=0_{\mathrm{it}}$.
In the sequel G is a group with the operator $\frac{1}{2}$ and x, y are elements of G. One can prove the following two propositions:
(19) If $x=-x$, then $x=0_{G}$.
(20) If $2 x=2 y$, then $x=y$.

Let us consider G, x. The functor $\frac{1}{2} x$ yielding an element of G is defined as follows:
(Def.6) $2 \frac{1}{2} x=x$.
The following three propositions are true:
(21) $\frac{1}{2}\left(0_{G}\right)=0_{G}$ and $\frac{1}{2}(x+y)=\frac{1}{2} x+\frac{1}{2} y$ but if $\frac{1}{2} x=\frac{1}{2} y$, then $x=y$ and $\frac{1}{2} 2 x=x$.
(22) For every M being a midpoint algebra structure and for every function w from : the points of M, the points of M : into the carrier of G such that w is an atlas of the points of M, G and M, G are associated w.r.t. w for all points a, b, c, d of M holds $a \oplus b \oplus(c \oplus d)=a \oplus c \oplus(b \oplus d)$.
(23) For every M being a midpoint algebra structure and for every function w from : the points of M, the points of M : into the carrier of G such that w is an atlas of the points of M, G and M, G are associated w.r.t. w holds M is a midpoint algebra.
Let us consider M. Then vectgroup M is a group with the operator $\frac{1}{2}$.
Let us consider M, p, q. The functor q^{p} yields an element of vectgroup M and is defined as follows:
(Def.7) $\quad q^{p}=\overrightarrow{[p, q]}$.
Let us consider M. The functor vect M yields a function from $:$ the points of M, the points of M : into the carrier of vectgroup M and is defined by:
(Def.8) $\quad(\operatorname{vect} M)(p, q)=\overrightarrow{[p, q]}$.
We now state four propositions:

$$
\begin{equation*}
\text { vect } M \text { is an atlas of the points of } M, \text { vectgroup } M . \tag{24}
\end{equation*}
$$

$\overrightarrow{[p, q]}=\overrightarrow{[r, s]}$ if and only if $p \oplus s=q \oplus r$.
$p \oplus q=r$ if and only if $\overrightarrow{[p, r]}=\overrightarrow{[r, q]}$.
M, vectgroup M are associated w.r.t. vect M.
In the sequel w will denote a function from $: S, S$: into the carrier of G. Let us consider S, G, w. Let us assume that w is an atlas of S, G. The functor ${ }^{@} w$ yielding a binary operation on S is defined as follows:
$\left(\right.$ Def.9) $\quad w\left(a,\left({ }^{@} w\right)(a, b)\right)=w\left(\left({ }^{@} w\right)(a, b), b\right)$.

We now state the proposition
（28）If w is an atlas of S, G ，then for all a, b, c holds $\left({ }^{@} w\right)(a, b)=c$ if and only if $w(a, c)=w(c, b)$ ．
In the sequel a, b, c are points of $\left\langle S,{ }^{@} w\right\rangle$ ．We now state two propositions：

$$
\begin{align*}
& \left({ }^{@} w\right)(a, b)=a \oplus b . \tag{29}\\
& a \oplus b=c \text { if and only if }\left({ }^{@} w\right)(a, b)=c . \tag{30}
\end{align*}
$$

Let us consider S, G, w ．The functor Atlas w yielding a function from ： the points of $\left\langle S,{ }^{@} w\right\rangle$ ，the points of $\left\langle S,{ }^{@} w\right\rangle$ ：into the carrier of G is defined as follows：
（Def．10）Atlas $w=w$ ．
Next we state two propositions：
（31）If w is an atlas of S, G ，then Atlas w is an atlas of the points of $\langle S$ ， $\left.{ }^{@} w\right\rangle, G$ ．
（32）If w is an atlas of S, G ，then $\left\langle S,{ }^{@} w\right\rangle, G$ are associated w．r．t．Atlas w ．
Let us consider S, G, w ．Let us assume that w is an atlas of S, G ．The functor $\operatorname{MidSp}(w)$ yielding a midpoint algebra is defined by：
（Def．11） $\operatorname{MidSp}(w)=\left\langle S,{ }^{@} w\right\rangle$ ．
We follow the rules：M is a midpoint algebra structure，w is a function from ［：the points of M ，the points of M ：into the carrier of G ，and a, b, b_{1}, b_{2}, c are points of M ．The following proposition is true
（33）M is a midpoint algebra if and only if there exists G and there exists w such that w is an atlas of the points of M, G and M, G are associated w．r．t．w．
Let us consider M ．We consider atlas structures over M which are systems〈an algebra，a function〉，
where the algebra is a group with the operator $\frac{1}{2}$ and the function is a function from ：：the points of M ，the points of M ；into the carrier of the algebra．

Let M be a midpoint algebra．An atlas structure over M is said to be an atlas of M if：
（Def．12）M ，the algebra of it are associated w．r．t．the function of it and the function of it is an atlas of the points of M ，the algebra of it．

Let M be a midpoint algebra，and let W be an atlas of M ．A vector of W is an element of the algebra of W ．

Let M be a midpoint algebra，and let W be an atlas of M ，and let a, b be points of M ．The functor $W(a, b)$ yields an element of the algebra of W and is defined as follows：
（Def．13）$\quad W(a, b)=($ the function of $W)(a, b)$ ．
Let M be a midpoint algebra，and let W be an atlas of M ，and let a be a point of M ，and let x be a vector of W ．The functor $(a, x) . W$ yielding a point of M is defined as follows：
（Def．14）$\quad(a, x) . W=(a, x)$ ．（the function of $W)$ ．

Let M be a midpoint algebra, and let W be an atlas of M. The functor 0_{W} yielding a vector of W is defined as follows:
(Def.15) $\quad 0_{W}=0_{\text {the algebra of } W}$.
We now state two propositions:
(34) If w is an atlas of the points of M, G and M, G are associated w.r.t. w, then $a \oplus c=b_{1} \oplus b_{2}$ if and only if $w(a, c)=w\left(a, b_{1}\right)+w\left(a, b_{2}\right)$.
(35) If w is an atlas of the points of M, G and M, G are associated w.r.t. w, then $a \oplus c=b$ if and only if $w(a, c)=2 w(a, b)$.
For simplicity we adopt the following convention: M will be a midpoint algebra, W will be an atlas of $M, a, b, b_{1}, b_{2}, c, d$ will be points of M, and x will be a vector of W. One can prove the following propositions:

$$
\begin{equation*}
a \oplus c=b_{1} \oplus b_{2} \text { if and only if } W(a, c)=W\left(a, b_{1}\right)+W\left(a, b_{2}\right) . \tag{36}
\end{equation*}
$$

$a \oplus c=b$ if and only if $W(a, c)=2 W(a, b)$.
For every a, x there exists b such that $W(a, b)=x$ and for all a, b, c such that $W(a, b)=W(a, c)$ holds $b=c$ and for all a, b, c holds $W(a$, $b)+W(b, c)=W(a, c)$.
(39) (i) $W(a, a)=0_{W}$,
(ii) if $W(a, b)=0_{W}$, then $a=b$,
(iii) $W(a, b)=-W(b, a)$,
(iv) if $W(a, b)=W(c, d)$, then $W(b, a)=W(d, c)$,
(v) for every b, x there exists a such that $W(a, b)=x$,
(vi) if $W(b, a)=W(c, a)$, then $b=c$,
(vii) $\quad a \oplus b=c$ if and only if $W(a, c)=W(c, b)$,
(viii) $a \oplus b=c \oplus d$ if and only if $W(a, d)=W(c, b)$,
(ix) $\quad W(a, b)=x$ if and only if $(a, x) \cdot W=b$.
(40) $\left(a, 0_{W}\right) \cdot W=a$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[4] Michał Muzalewski. Midpoint algebras. Formalized Mathematics, 1(3):483-488, 1990.
[5] Michał Muzalewski and Wojciech Skaba. Groups, rings, left- and right-modules. Formalized Mathematics, 2(2):275-278, 1991.

Received June 21, 1991

