Several Properties of the σ-additive Measure

Józef Białas
University of Łódź

Abstract

Summary. A continuation of [5]. The paper contains the definition and basic properties of a σ-additive, nonnegative measure, with values in $\overline{\mathbb{R}}$, the enlarged set of real numbers, where $\overline{\mathbb{R}}$ denotes set $\overline{\mathbb{R}}=$ $\mathbb{R} \cup\{-\infty,+\infty\}$ - by R.Sikorski [12]. Some simple theorems concerning basic properties of a σ-additive measure, measurable sets, measure zero sets are proved. The work is the fourth part of the series of articles concerning the Lebesgue measure theory.

MML Identifier: MEASURE2.

The terminology and notation used here have been introduced in the following papers: [14], [13], [8], [9], [6], [7], [1], [11], [2], [10], [3], [4], and [5]. The following proposition is true
(1) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every function F from \mathbb{N} into S holds $M \cdot F$ is non-negative.
The scheme RecExFun concerns a set \mathcal{A}, a σ-field \mathcal{B} of subsets of \mathcal{A}, an element \mathcal{C} of \mathcal{B}, and a ternary predicate \mathcal{P}, and states that:
there exists a function f from \mathbb{N} into \mathcal{B} such that $f(0)=\mathcal{C}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$
provided the following conditions are satisfied:

- for every natural number n and for every element x of \mathcal{B} there exists an element y of \mathcal{B} such that $\mathcal{P}[n, x, y]$,
- for every natural number n and for all elements x, y_{1}, y_{2} of \mathcal{B} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
Let X be a set, and let S be a σ-field of subsets of X. A denumerable family of subsets of X is called a family of measureable sets of S if:
(Def.1) it $\subseteq S$.
One can prove the following propositions:
(2) For every set X and for every σ-field S of subsets of X and for every denumerable family T of subsets of X holds T is a family of measureable sets of S if and only if $T \subseteq S$.
(3) For every set X and for every σ-field S of subsets of X and for every family T of measureable sets of S holds $\bigcap T \in S$ and $\cup T \in S$.
Let X be a set, and let S be a σ-field of subsets of X, and let T be a family of measureable sets of S. Then $\bigcap T$ is an element of S.

Let X be a set, and let S be a σ-field of subsets of X, and let T be a family of measureable sets of S. Then $\bigcup T$ is an element of S.

Let X be a set, and let S be a σ-field of subsets of X, and let F be a function from \mathbb{N} into S, and let n be an element of \mathbb{N}. Then $F(n)$ is an element of S.

One can prove the following propositions:
(4) For every set X and for every σ-field S of subsets of X and for every function N from \mathbb{N} into S there exists a function F from \mathbb{N} into S such that $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+$ 1) $\backslash N(n)$.
(5) For every set X and for every σ-field S of subsets of X and for every function N from \mathbb{N} into S there exists a function F from \mathbb{N} into S such that $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+$ 1) $\cup F(n)$.
(6) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \cup F(n)$. Then for an arbitrary r and for every natural number n holds $r \in F(n)$ if and only if there exists a natural number k such that $k \leq n$ and $r \in N(k)$.

Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Then for every function F from \mathbb{N} into S such that $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \cup F(n)$ for all natural numbers n, m such that $n<m$ holds $F(n) \subseteq F(m)$.
(8) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose that
(i) $\quad G(0)=N(0)$,
(ii) for every element n of \mathbb{N} holds $G(n+1)=N(n+1) \cup G(n)$,
(iii) $\quad F(0)=N(0)$,
(iv) for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \backslash G(n)$.

Then for all natural numbers n, m such that $n \leq m$ holds $F(n) \subseteq G(m)$.
(9) For every set X and for every σ-field S of subsets of X and for every function N from \mathbb{N} into S and for every function G from \mathbb{N} into S there exists a function F from \mathbb{N} into S such that $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \backslash G(n)$.
(10) For every set X and for every σ-field S of subsets of X and for every function N from \mathbb{N} into S there exists a function F from \mathbb{N} into S such
that $F(0)=\emptyset$ and for every element n of \mathbb{N} holds $F(n+1)=N(0) \backslash N(n)$.
Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose that
(i) $G(0)=N(0)$,
(ii) for every element n of \mathbb{N} holds $G(n+1)=N(n+1) \cup G(n)$,
(iii) $F(0)=N(0)$,
(iv) for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \backslash G(n)$.

Then for all natural numbers n, m such that $n<m$ holds $F(n) \cap F(m)=$ \emptyset.
(12) For every set X and for every σ-field S of subsets of X and for every function N from \mathbb{N} into S and for every element n of \mathbb{N} holds $N(n) \in$ $\operatorname{rng} N$.
(13) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every family T of measureable sets of S and for every function F from \mathbb{N} into S such that $T=\operatorname{rng} F$ holds $M(\cup T) \leq$ $\sum(M \cdot F)$.
(14) For every set X and for every σ-field S of subsets of X and for every family T of measureable sets of S there exists a function F from \mathbb{N} into S such that $T=\operatorname{rng} F$.
(15) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Then if $F(0)=\emptyset$ and for every element n of \mathbb{N} holds $F(n+1)=N(0) \backslash N(n)$ and $N(n+1) \subseteq N(n)$, then for every element n of \mathbb{N} holds $F(n) \subseteq F(n+1)$.
(16) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every family T of measureable sets of S such that for every set A such that $A \in T$ holds A is a set of measure zero w.r.t. M holds $\cup T$ is a set of measure zero w.r.t. M.
(17) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every family T of measureable sets of S such that there exists a set A such that $A \in T$ and A is a set of measure zero w.r.t. M holds $\bigcap T$ is a set of measure zero w.r.t. M.
(18) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every family T of measureable sets of S such that for every set A such that $A \in T$ holds A is a set of measure zero w.r.t. M holds $\bigcap T$ is a set of measure zero w.r.t. M.

Let X be a set, and let S be a σ-field of subsets of X. A family of measureable sets of S is called a family of measureable non-decrement sets of S if:
(Def.2) there exists a function F from \mathbb{N} into S such that it $=\operatorname{rng} F$ and for every element n of \mathbb{N} holds $F(n) \subseteq F(n+1)$.
We now state the proposition
(19) For every set X and for every σ-field S of subsets of X and for every family T of measureable sets of S holds T is a family of measureable non-
decrement sets of S if and only if there exists a function F from \mathbb{N} into S such that $T=\operatorname{rng} F$ and for every element n of \mathbb{N} holds $F(n) \subseteq F(n+1)$.
Let X be a set, and let S be a σ-field of subsets of X. A family of measureable sets of S is called a family of measureable non-increment sets of S if:
(Def.3) there exists a function F from \mathbb{N} into S such that it $=\operatorname{rng} F$ and for every element n of \mathbb{N} holds $F(n+1) \subseteq F(n)$.

We now state several propositions:
(20) For every set X and for every σ-field S of subsets of X and for every family T of measureable sets of S holds T is a family of measureable nonincrement sets of S if and only if there exists a function F from \mathbb{N} into S such that $T=\operatorname{rng} F$ and for every element n of \mathbb{N} holds $F(n+1) \subseteq F(n)$.
Let X be a set. Let S be a σ-field of subsets of X. Then for every function N from \mathbb{N} into S and for every function F from \mathbb{N} into S such that $F(0)=\emptyset$ and for every element n of \mathbb{N} holds $F(n+1)=N(0) \backslash N(n)$ and $N(n+1) \subseteq N(n)$ holds $\operatorname{rng} F$ is a family of measureable non-decrement sets of S.
(22) For every set X and for every non-empty family S of subsets of X and for every function N from \mathbb{N} into S such that for every element n of \mathbb{N} holds $N(n) \subseteq N(n+1)$ for all natural numbers m, n such that $n<m$ holds $N(n) \subseteq N(m)$.
Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \backslash N(n)$ and $N(n) \subseteq N(n+1)$. Then for all natural numbers n, m such that $n<m$ holds $F(n) \cap F(m)=\emptyset$.
(24) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Then for every function F from \mathbb{N} into S such that $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \backslash N(n)$ and $N(n) \subseteq N(n+1)$ holds $\bigcup \operatorname{rng} F=\bigcup \operatorname{rng} N$.

Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Then for every function F from \mathbb{N} into S such that $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \backslash N(n)$ and $N(n) \subseteq N(n+1)$ holds F is a sequence of separated subsets of S.
Let X be a set. Let S be a σ-field of subsets of X. Let N be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $F(0)=N(0)$ and for every element n of \mathbb{N} holds $F(n+1)=N(n+1) \backslash N(n)$ and $N(n) \subseteq N(n+1)$. Then $N(0)=F(0)$ and for every element n of \mathbb{N} holds $N(n+1)=F(n+1) \cup N(n)$.
(27) For every set X and for every σ-field S of subsets of X and for every σ measure M on S and for every function F from \mathbb{N} into S such that for every element n of \mathbb{N} holds $F(n) \subseteq F(n+1)$ holds $M(\bigcup \operatorname{rng} F)=\sup \operatorname{rng}(M \cdot F)$.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[12] R. Sikorski. Rachunek różniczkowy i catkowy - funkcje wielu zmiennych. Biblioteka Matematyczna, PWN - Warszawa, 1968.
[13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received July 3, 1991

