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Summary. The basic conceptions of matrix algebra are intro-
duced. The matrix is introduced as the finite sequence of sequences with
the same length, i.e. as a sequence of lines. There are considered matri-
ces over a field, and the fact that these matrices with addition form an
Abelian group is proved.

MML Identifier: MATRIX 1.

The notation and terminology used here have been introduced in the following
papers: [9], [5], [6], [1], [8], [4], [2], [3], and [7]. For simplicity we adopt the
following rules: x will be arbitrary, i, j, n, m will be natural numbers, D will
be a non-empty set, K will be a field structure, s will be a finite sequence,
a, a1, a2, b1, b2, d will be elements of D, p, p1, p2 will be finite sequences of
elements of D, and F will be a field. A finite sequence is tabular if:

(Def.1) there exists a natural number n such that for every x such that x ∈ rng it
there exists s such that s = x and len s = n.

The following propositions are true:

(1) 〈〈d〉〉 is tabular.

(2) m 7−→ (n 7−→ x) is tabular.

(3) For every s holds 〈s〉 is tabular.

(4) For all finite sequences s1, s2 such that len s1 = n and len s2 = n holds
〈s1, s2〉 is tabular.

(5) ε is tabular.

(6) 〈ε, ε〉 is tabular.

(7) 〈〈a1〉, 〈a2〉〉 is tabular.

(8) 〈〈a1, a2〉, 〈b1, b2〉〉 is tabular.

A tabular finite sequence is non-trivial if:

(Def.2) there exists s such that s ∈ rng it and len s > 0.

475
c© 1991 Fondation Philippe le Hodey

ISSN 0777–4028



476 katarzyna jankowska

Let D be a non-empty set.

Let D be a non-empty set. A matrix over D is a tabular finite sequence of
elements of D∗.

We now state the proposition

(9) s is a matrix over D if and only if there exists n such that for every x

such that x ∈ rng s there exists p such that x = p and len p = n.

Let us consider D, m, n. A matrix over D is said to be a matrix over D of
dimension m × n if:

(Def.3) len it = m and for every p such that p ∈ rng it holds len p = n.

Let us consider D, n. A matrix over D of dimension n is a matrix over D of
dimension n × n.

We now define three new modes. Let us consider K. A matrix over K is a
matrix over the carrier of K.

Let us consider n. A matrix over K of dimension n is a matrix over the
carrier of K of dimension n × n.

Let us consider m. A matrix over K of dimension n×m is a matrix over the
carrier of K of dimension n × m.

We now state a number of propositions:

(10) m 7−→ (n 7−→ a) is a matrix over D of dimension m × n.

(11) For every finite sequence p of elements of D holds 〈p〉 is a matrix over
D of dimension 1 × len p.

(12) For all p1, p2 such that len p1 = n and len p2 = n holds 〈p1, p2〉 is a
matrix over D of dimension 2 × n.

(13) ε is a matrix over D of dimension 0 × m.

(14) 〈ε〉 is a matrix over D of dimension 1 × 0.

(15) 〈〈a〉〉 is a matrix over D of dimension 1.

(16) 〈ε, ε〉 is a matrix over D of dimension 2 × 0.

(17) 〈〈a1, a2〉〉 is a matrix over D of dimension 1 × 2.

(18) 〈〈a1〉, 〈a2〉〉 is a matrix over D of dimension 2 × 1.

(19) 〈〈a1, a2〉, 〈b1, b2〉〉 is a matrix over D of dimension 2.

In the sequel M , M1, M2 will be matrices over D. Let M be a tabular
finite sequence. The functor widthM yields a natural number and is defined as
follows:

(Def.4) (i) there exists s such that s ∈ rng M and len s = width M if len M > 0,
(ii) widthM = 0, otherwise.

Next we state the proposition

(20) If len M > 0, then for every n holds M is a matrix over D of dimension
len M × n if and only if n = widthM .

Let M be a tabular finite sequence. The indices of M yielding a set is defined
by:

(Def.5) the indices of M = [: Seg len M, Seg widthM :].
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Let us consider D, and let M be a matrix over D, and let us consider i,
j. Let us assume that 〈〈i, j〉〉 ∈ the indices of M . The functor Mi,j yielding an
element of D is defined as follows:

(Def.6) there exists p such that p = M(i) and Mi,j = p(j).

The following proposition is true

(21) If len M1 = len M2 and widthM1 = width M2 and for all i, j such that
〈〈i, j〉〉 ∈ the indices of M1 holds M1i,j = M2i,j, then M1 = M2.

In this article we present several logical schemes. The scheme MatrixLambda

deals with a non-empty set A, a natural number B, a natural number C, and a
binary functor F yielding an element of A and states that:

there exists a matrix M over A of dimension B×C such that for all i, j such
that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = F(i, j)

for all values of the parameters.
The scheme MatrixEx concerns a non-empty set A, a natural number B, a

natural number C, and a ternary predicate P, and states that:
there exists a matrix M over A of dimension B×C such that for all i, j such

that 〈〈i, j〉〉 ∈ the indices of M holds P[i, j,Mi,j ]

provided the parameters have the following properties:
• for all i, j such that 〈〈i, j〉〉 ∈ [: SegB, Seg C :] for all elements x1, x2

of A such that P[i, j, x1] and P[i, j, x2] holds x1 = x2,
• for all i, j such that 〈〈i, j〉〉 ∈ [: SegB, Seg C :] there exists an element

x of A such that P[i, j, x].

The scheme SeqDLambda concerns a non-empty set A, a natural number B,
and a unary functor F yielding an element of A and states that:

there exists a finite sequence p of elements of A such that len p = B and for
every i such that i ∈ SegB holds p(i) = F(i)
for all values of the parameters.

We now state several propositions:

(22) For every matrix M over D of dimension n × m such that len M = 0
holds widthM = 0.

(23) For every matrix M over D of dimension 0 × m holds len M = 0 and
widthM = 0 and the indices of M = ∅.

(24) If n > 0, then for every matrix M over D of dimension n × m holds
len M = n and width M = m and the indices of M = [: Seg n, Seg m :].

(25) For every matrix M over D of dimension n holds len M = n and
widthM = n and the indices of M = [: Seg n, Seg n :].

(26) For every matrix M over D of dimension n × m holds len M = n and
the indices of M = [: Seg n, Seg widthM :].

(27) For all matrices M1, M2 over D of dimension n × m holds the indices
of M1 = the indices of M2.

(28) For all matrices M1, M2 over D of dimension n×m such that for all i, j

such that 〈〈i, j〉〉 ∈ the indices of M1 holds M1i,j = M2i,j holds M1 = M2.
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(29) For every matrix M1 over D of dimension n and for all i, j such that
〈〈i, j〉〉 ∈ the indices of M1 holds 〈〈j, i〉〉 ∈ the indices of M1.

Let us consider D, and let M be a matrix over D. The functor M T yielding
a matrix over D is defined as follows:

(Def.7) len(MT) = width M and for all i, j holds 〈〈i, j〉〉 ∈ the indices of M T if
and only if 〈〈j, i〉〉 ∈ the indices of M and for all i, j such that 〈〈j, i〉〉 ∈ the
indices of M holds MT

i,j = Mj,i.

We now define two new functors. Let us consider D, M , i. The functor
Line(M, i) yields a finite sequence of elements of D and is defined by:

(Def.8) len Line(M, i) = widthM and for every j such that j ∈ Seg widthM

holds Line(M, i)(j) = Mi,j.

The functor M � ,i yields a finite sequence of elements of D and is defined as
follows:

(Def.9) len(M � ,i) = len M and for every j such that j ∈ Seg len M holds
M � ,i(j) = Mj,i.

Let us consider D, and let M be a matrix over D, and let us consider i. Then
Line(M, i) is an element of Dwidth M . Then M � ,i is an element of Dlen M .

In the sequel A, B are matrices over K of dimension n. We now define five
new functors. Let us consider K, n. The functor Kn×n yields a non-empty set
and is defined as follows:

(Def.10) Kn×n = ( (the carrier of K)n)n.

The functor







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

yielding a matrix over K of dimension n is de-

fined as follows:

(Def.11)







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

= n 7−→ (n 7−→ 0K).

The functor







1 0
. . .

0 1







n×n

K

yielding a matrix over K of dimension n is de-

fined as follows:

(Def.12) for every i such that 〈〈i, i〉〉 ∈ the indices of







1 0
. . .

0 1







n×n

K

holds

(







1 0
. . .

0 1







n×n

K

)i,i = 1K and for all i, j such that 〈〈i, j〉〉 ∈ the indices
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of







1 0
. . .

0 1







n×n

K

and i 6= j holds (







1 0
. . .

0 1







n×n

K

)i,j = 0K .

Let us consider A. The functor −A yielding a matrix over K of dimension n is
defined as follows:

(Def.13) for all i, j such that 〈〈i, j〉〉 ∈ the indices of A holds (−A)i,j = −Ai,j .

Let us consider B. The functor A + B yielding a matrix over K of dimension n

is defined by:

(Def.14) for all i, j such that 〈〈i, j〉〉 ∈ the indices of A holds (A+B)i,j = Ai,j+Bi,j.

The following two propositions are true:

(30) For all i, j such that 〈〈i, j〉〉 ∈ the indices of







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

holds

(







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

)i,j = 0K .

(31) For every x holds x is an element of Kn×n if and only if x is a matrix
over K of dimension n.

Let us consider K, n. A matrix over K of dimension n is called a diagonal
n-dimensional matrix over K if:

(Def.15) for all i, j such that 〈〈i, j〉〉 ∈ the indices of it and iti,j 6= 0K holds i = j.

In the sequel A, B, C will denote matrices over F of dimension n. One can
prove the following four propositions:

(32) A + B = B + A.

(33) A + B + C = A + (B + C).

(34) A +







0 . . . 0
...

. . .
...

0 . . . 0







n×n

F

= A.

(35) A + −A =







0 . . . 0
...

. . .
...

0 . . . 0







n×n

F

.

Let us consider F , n. The functor F n×n
G

yielding an Abelian group is defined
by:

(Def.16) the carrier of F n×n
G

= Fn×n and for all A, B holds (the addition
of Fn×n

G
)(A, B) = A + B and for every A holds (the reverse-map of

Fn×n
G

)(A) = −A and the zero of F n×n
G

=







0 . . . 0
...

. . .
...

0 . . . 0







n×n

F

.
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