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Summary. The basic conceptions of matrix algebra are intro-
duced. The matrix is introduced as the finite sequence of sequences with
the same length, i.e. as a sequence of lines. There are considered matri-
ces over a field, and the fact that these matrices with addition form an
Abelian group is proved.

MML Identifier: MATRIX_1.

The notation and terminology used here have been introduced in the following
papers: [9], [5], [6], [1], [8], [4], [2], [3], and [7]. For simplicity we adopt the
following rules: x will be arbitrary, 4, j, n, m will be natural numbers, D will
be a non-empty set, K will be a field structure, s will be a finite sequence,
a, ai, az, b1, ba, d will be elements of D, p, p1, pe will be finite sequences of
elements of D, and F will be a field. A finite sequence is tabular if:

(Def.1)  there exists a natural number n such that for every x such that = € rngit
there exists s such that s = z and len s = n.
The following propositions are true:
(1)  ({d)) is tabular.
(2) m+— (n+— z) is tabular.
(3)  For every s holds (s) is tabular.
(4)

4 For all finite sequences s1, so such that len s; = n and len sy = n holds

(s1,s2) is tabular.
(5) € is tabular.
(6) (e, e) is tabular.
(7)  {{a1), {a2)) is tabular.
(8)  ((a1,as2), (b1,b2)) is tabular.
A tabular finite sequence is non-trivial if:
(Def.2)  there exists s such that s € rngit and lens > 0.
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Let D be a non-empty set.
Let D be a non-empty set. A matrix over D is a tabular finite sequence of
elements of D*.
We now state the proposition
(9) s is a matrix over D if and only if there exists n such that for every x
such that z € rng s there exists p such that x = p and lenp = n.
Let us consider D, m, n. A matrix over D is said to be a matrix over D of
dimension m x n if:
(Def.3)  lenit = m and for every p such that p € rngit holds lenp = n.
Let us consider D, n. A matrix over D of dimension n is a matrix over D of
dimension n X n.
We now define three new modes. Let us consider K. A matrix over K is a
matrix over the carrier of K.
Let us consider n. A matrix over K of dimension n is a matrix over the
carrier of K of dimension n x n.
Let us consider m. A matrix over K of dimension n x m is a matrix over the
carrier of K of dimension n x m.
We now state a number of propositions:
(10)  m+— (n+— a) is a matrix over D of dimension m X n.
(11)  For every finite sequence p of elements of D holds (p) is a matrix over
D of dimension 1 x len p.
(12)  For all p1, p2 such that lenp; = n and lenps = n holds (p1,p2) is a
matrix over D of dimension 2 X n.

(13) e is a matrix over D of dimension 0 x m.

(14)  (e) is a matrix over D of dimension 1 x 0.

(15)  ({(a)) is a matrix over D of dimension 1.

(16)  (g,¢e) is a matrix over D of dimension 2 x 0.

(17)  ({a1,a9)) is a matrix over D of dimension 1 X 2.
(18)  ({a1), (a2)) is a matrix over D of dimension 2 x 1.
(19)  ({a1,a2), (b1,be)) is a matrix over D of dimension 2.

In the sequel M, My, My will be matrices over D. Let M be a tabular
finite sequence. The functor width M yields a natural number and is defined as
follows:

(Def.4) (i) there exists s such that s € rng M and len s = width M if len M > 0,
(ii)  width M = 0, otherwise.
Next we state the proposition

(20) Iflen M > 0, then for every n holds M is a matrix over D of dimension
len M x n if and only if n = width M.
Let M be a tabular finite sequence. The indices of M yielding a set is defined
by:
(Def.5)  the indices of M = [ Seglen M, Seg width M ].
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Let us consider D, and let M be a matrix over D, and let us consider i,
j. Let us assume that (i, j) € the indices of M. The functor M; ; yielding an
element of D is defined as follows:

(Def.6)  there exists p such that p = M (i) and M; ; = p(j).

The following proposition is true

(21)  If len M; = len My and width My = width M and for all ¢, j such that
(i, j) € the indices of My holds My; ; = Ma; ;, then My = My.

In this article we present several logical schemes. The scheme MatrizLambda
deals with a non-empty set A, a natural number B, a natural number C, and a
binary functor F yielding an element of A and states that:

there exists a matrix M over A of dimension B x C such that for all i, j such
that (i, j) € the indices of M holds M; ; = F (3, j)
for all values of the parameters.

The scheme MatrizEr concerns a non-empty set A, a natural number B, a
natural number C, and a ternary predicate P, and states that:

there exists a matrix M over A of dimension B x C such that for all i, j such
that (i, j) € the indices of M holds P[i, j, M; ;]
provided the parameters have the following properties:

e for all 4, j such that (i, j) € [ Seg B, SegC ] for all elements z1, zo

of A such that PJi, j,z1] and P[i, j, z2] holds z1 = x,
e for all 4, j such that (i, j) € [ Seg B, SegC { there exists an element
x of A such that PJi, j, z].

The scheme SeqDLambda concerns a non-empty set A, a natural number B,
and a unary functor F yielding an element of 4 and states that:

there exists a finite sequence p of elements of A such that lenp = B and for
every i such that ¢ € Seg B holds p(i) = F (i)
for all values of the parameters.

We now state several propositions:

(22)  For every matrix M over D of dimension n x m such that len M = 0
holds width M = 0.

(23)  For every matrix M over D of dimension 0 x m holds len M = 0 and
width M = 0 and the indices of M = .

(24) If n > 0, then for every matrix M over D of dimension n x m holds
len M = n and width M = m and the indices of M = [ Segn, Segm {.

(25)  For every matrix M over D of dimension n holds len M = n and
width M = n and the indices of M = [ Segn, Segn {.

(26)  For every matrix M over D of dimension n x m holds len M = n and
the indices of M = [ Segn, Segwidth M ].

(27)  For all matrices My, My over D of dimension n x m holds the indices
of My = the indices of M.

(28)  For all matrices My, My over D of dimension n x m such that for all ¢, j
such that (i, j) € the indices of My holds My, j = My, ; holds My = M>.
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(29)  For every matrix M; over D of dimension n and for all 4, j such that
(i, j) € the indices of Mj holds (j, i) € the indices of Mj.

Let us consider D, and let M be a matrix over D. The functor M T yielding
a matrix over D is defined as follows:

(Def.7)  len(M7T) = width M and for all 4, j holds (i, j) € the indices of M 7T if
and only if (j, 7) € the indices of M and for all 4, j such that (j, i) € the
indices of M holds M;'; = M;,;.

We now define two new functors. Let us consider D, M, i. The functor
Line(M, i) yields a finite sequence of elements of D and is defined by:

(Def.8)  lenLine(M,i) = width M and for every j such that j € Segwidth M
holds Line(M,)(j) = M; ;.
The functor Mp; yields a finite sequence of elements of D and is defined as
follows:
(Def.9) len(Mp;) = lenM and for every j such that j € Seglen M holds
Mp(j) = Mj.i.
Let us consider D, and let M be a matrix over D, and let us consider i. Then
Line(M, i) is an element of DM M Then Mp; is an element of D'n .

In the sequel A, B are matrices over K of dimension n. We now define five
new functors. Let us consider K, n. The functor K™*" yields a non-empty set
and is defined as follows:

(Def.10)  K™*™ = ( (the carrier of K)™)".

O O nxn
The functor | : . yielding a matrix over K of dimension n is de-
0 ... 0/,
fined as follows:
0 0 nxn
(Def.11) Do, =n+— (n+—0g).
0 ... 0/,
1 0 nxn
The functor yielding a matrix over K of dimension n is de-
0 Iy
fined as follows:
1 O nxn
(Def.12)  for every i such that (i, i) € the indices of holds
0 1/
1 0 nxn
( )ii = 1 and for all 4, j such that (i, j) € the indices
0 1

K
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nxn nxn

1 0 1 0
of and 7 # j holds ( )i = Ok.
Let us consider A. The functor —A yielding a matrix over K of dimension n is

defined as follows:
(Def.13)  for all 4, j such that (i, j) € the indices of A holds (—A),; =

Let us consider B. The functor A 4+ B yielding a matrix over K of dimension n

is defined by:
for all ¢, j such that (i, j) € the indices of A holds (A+B); ; = A; j+B; ;.

—Aij.

(Def.14)
The following two propositions are true:
0 0 nxn
(30) For all i, 5 such that (i, j) € the indices of : holds

0 0/,

0 ... 0\""

(@ - )ij = Ok
0 ... 0 K

For every x holds z is an element of K™*™ if and only if z is a matrix

over K of dimension n.
Let us consider K, n. A matrix over K of dimension n is called a diagonal

(31)

n-dimensional matrix over K if:
(Def.15)  for all ¢, j such that (i, j) € the indices of it and it; ; # Ox holds i = j.
In the sequel A, B, C will denote matrices over F' of dimension n. One can
prove the following four propositions:
(32) A+B=B+A.
(33) A+B+C=A+(B+0).

0 ... 0\""
(34) A+ : .. = A.
0 0/,
0 ... 0\™"
(35) A4+ —-A=| : -.
0 ... 0/,

Let us consider F', n. The functor F5*" yielding an Abelian group is defined
by:

(Def.16)  the carrier of FG*" = F™*" and for all A, B holds (the addition

of F*")(A, B) = A+ B and for every A holds (the reverse-map of

nxn

0O ... 0
FE*™)(A) = —A and the zero of FE*" =
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