Matrices. Abelian Group of Matrices

Katarzyna Jankowska
Warsaw University
Białystok

Abstract

Summary. The basic conceptions of matrix algebra are introduced. The matrix is introduced as the finite sequence of sequences with the same length, i.e. as a sequence of lines. There are considered matrices over a field, and the fact that these matrices with addition form an Abelian group is proved.

MML Identifier: MATRIX_1.

The notation and terminology used here have been introduced in the following papers: [9], [5], [6], [1], [8], [4], [2], [3], and [7]. For simplicity we adopt the following rules: x will be arbitrary, i, j, n, m will be natural numbers, D will be a non-empty set, K will be a field structure, s will be a finite sequence, $a, a_{1}, a_{2}, b_{1}, b_{2}, d$ will be elements of D, p, p_{1}, p_{2} will be finite sequences of elements of D, and F will be a field. A finite sequence is tabular if:
(Def.1) there exists a natural number n such that for every x such that $x \in \operatorname{rng}$ it there exists s such that $s=x$ and len $s=n$.
The following propositions are true:
(1) $\langle\langle d\rangle\rangle$ is tabular.
(2) $\quad m \longmapsto(n \longmapsto x)$ is tabular.
(3) For every s holds $\langle s\rangle$ is tabular.
(4) For all finite sequences s_{1}, s_{2} such that len $s_{1}=n$ and len $s_{2}=n$ holds $\left\langle s_{1}, s_{2}\right\rangle$ is tabular.
(5) ε is tabular.
(6) $\langle\varepsilon, \varepsilon\rangle$ is tabular.
(7) $\left\langle\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle\right\rangle$ is tabular.
(8) $\left\langle\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle\right\rangle$ is tabular.

A tabular finite sequence is non-trivial if:
(Def.2) there exists s such that $s \in \operatorname{rng}$ it and len $s>0$.

Let D be a non-empty set.
Let D be a non-empty set. A matrix over D is a tabular finite sequence of elements of D^{*}.

We now state the proposition
(9) $\quad s$ is a matrix over D if and only if there exists n such that for every x such that $x \in \operatorname{rng} s$ there exists p such that $x=p$ and len $p=n$.
Let us consider D, m, n. A matrix over D is said to be a matrix over D of dimension $m \times n$ if:
(Def.3) len it $=m$ and for every p such that $p \in \operatorname{rng}$ it holds len $p=n$.
Let us consider D, n. A matrix over D of dimension n is a matrix over D of dimension $n \times n$.

We now define three new modes. Let us consider K. A matrix over K is a matrix over the carrier of K.

Let us consider n. A matrix over K of dimension n is a matrix over the carrier of K of dimension $n \times n$.

Let us consider m. A matrix over K of dimension $n \times m$ is a matrix over the carrier of K of dimension $n \times m$.

We now state a number of propositions:
(10) $\quad m \longmapsto(n \longmapsto a)$ is a matrix over D of dimension $m \times n$.
(11) For every finite sequence p of elements of D holds $\langle p\rangle$ is a matrix over D of dimension $1 \times$ len p.
(12) For all p_{1}, p_{2} such that len $p_{1}=n$ and len $p_{2}=n$ holds $\left\langle p_{1}, p_{2}\right\rangle$ is a matrix over D of dimension $2 \times n$.
(13) ε is a matrix over D of dimension $0 \times m$.
(14) $\langle\varepsilon\rangle$ is a matrix over D of dimension 1×0.
(15) $\quad\langle\langle a\rangle\rangle$ is a matrix over D of dimension 1.
(16) $\langle\varepsilon, \varepsilon\rangle$ is a matrix over D of dimension 2×0.
(17) $\left\langle\left\langle a_{1}, a_{2}\right\rangle\right\rangle$ is a matrix over D of dimension 1×2.
(18) $\quad\left\langle\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle\right\rangle$ is a matrix over D of dimension 2×1.
(19) $\left\langle\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle\right\rangle$ is a matrix over D of dimension 2 .

In the sequel M, M_{1}, M_{2} will be matrices over D. Let M be a tabular finite sequence. The functor width M yields a natural number and is defined as follows:
(Def.4) (i) there exists s such that $s \in \operatorname{rng} M$ and len $s=$ width M if len $M>0$, (ii) width $M=0$, otherwise.

Next we state the proposition
(20) If len $M>0$, then for every n holds M is a matrix over D of dimension len $M \times n$ if and only if $n=$ width M.
Let M be a tabular finite sequence. The indices of M yielding a set is defined by:
(Def.5) the indices of $M=$: Seg len M, Seg width $M:$.

Let us consider D, and let M be a matrix over D, and let us consider i, j. Let us assume that $\langle i, j\rangle \in$ the indices of M. The functor $M_{i, j}$ yielding an element of D is defined as follows:
(Def.6) there exists p such that $p=M(i)$ and $M_{i, j}=p(j)$.
The following proposition is true
(21) If len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and for all i, j such that $\langle i, j\rangle \in$ the indices of M_{1} holds $M_{1 i, j}=M_{2 i, j}$, then $M_{1}=M_{2}$.
In this article we present several logical schemes. The scheme MatrixLambda deals with a non-empty set \mathcal{A}, a natural number \mathcal{B}, a natural number \mathcal{C}, and a binary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
there exists a matrix M over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{C}$ such that for all i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}=\mathcal{F}(i, j)$
for all values of the parameters.
The scheme MatrixEx concerns a non-empty set \mathcal{A}, a natural number \mathcal{B}, a natural number \mathcal{C}, and a ternary predicate \mathcal{P}, and states that:
there exists a matrix M over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{C}$ such that for all i, j such that $\langle i, j\rangle \in$ the indices of M holds $\mathcal{P}\left[i, j, M_{i, j}\right]$
provided the parameters have the following properties:

- for all i, j such that $\langle i, j\rangle \in[: \operatorname{Seg} \mathcal{B}, \operatorname{Seg} \mathcal{C}:]$ for all elements x_{1}, x_{2} of \mathcal{A} such that $\mathcal{P}\left[i, j, x_{1}\right]$ and $\mathcal{P}\left[i, j, x_{2}\right]$ holds $x_{1}=x_{2}$,
- for all i, j such that $\langle i, j\rangle \in: \operatorname{Seg} \mathcal{B}, \operatorname{Seg} \mathcal{C}:$ there exists an element x of \mathcal{A} such that $\mathcal{P}[i, j, x]$.
The scheme SeqDLambda concerns a non-empty set \mathcal{A}, a natural number \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
there exists a finite sequence p of elements of \mathcal{A} such that len $p=\mathcal{B}$ and for every i such that $i \in \operatorname{Seg} \mathcal{B}$ holds $p(i)=\mathcal{F}(i)$
for all values of the parameters.
We now state several propositions:
(22) For every matrix M over D of dimension $n \times m$ such that len $M=0$ holds width $M=0$.
(23) For every matrix M over D of dimension $0 \times m$ holds len $M=0$ and width $M=0$ and the indices of $M=\emptyset$.
(24) If $n>0$, then for every matrix M over D of dimension $n \times m$ holds len $M=n$ and width $M=m$ and the indices of $M=\{\operatorname{Seg} n$, $\operatorname{Seg} m:]$.
(25) For every matrix M over D of dimension n holds len $M=n$ and width $M=n$ and the indices of $M=\{\operatorname{Seg} n, \operatorname{Seg} n \ddagger$.
(26) For every matrix M over D of dimension $n \times m$ holds len $M=n$ and the indices of $M=[\operatorname{Seg} n$, Seg width $M:$.
(27) For all matrices M_{1}, M_{2} over D of dimension $n \times m$ holds the indices of $M_{1}=$ the indices of M_{2}.
(28) For all matrices M_{1}, M_{2} over D of dimension $n \times m$ such that for all i, j such that $\langle i, j\rangle \in$ the indices of M_{1} holds $M_{1 i, j}=M_{2 i, j}$ holds $M_{1}=M_{2}$.
(29) For every matrix M_{1} over D of dimension n and for all i, j such that $\langle i, j\rangle \in$ the indices of M_{1} holds $\langle j, i\rangle \in$ the indices of M_{1}.
Let us consider D, and let M be a matrix over D. The functor M^{T} yielding a matrix over D is defined as follows:
(Def.7) $\quad \operatorname{len}\left(M^{\mathrm{T}}\right)=$ width M and for all i, j holds $\langle i, j\rangle \in$ the indices of M^{T} if and only if $\langle j, i\rangle \in$ the indices of M and for all i, j such that $\langle j, i\rangle \in$ the indices of M holds $M_{i, j}^{\mathrm{T}}=M_{j, i}$.
We now define two new functors. Let us consider D, M, i. The functor Line (M, i) yields a finite sequence of elements of D and is defined by:
(Def.8) len Line $(M, i)=\operatorname{width} M$ and for every j such that $j \in \operatorname{Seg}$ width M holds Line $(M, i)(j)=M_{i, j}$.
The functor $M_{\square, i}$ yields a finite sequence of elements of D and is defined as follows:
(Def.9) $\operatorname{len}\left(M_{\square, i}\right)=\operatorname{len} M$ and for every j such that $j \in \operatorname{Seg}$ len M holds $M_{\square, i}(j)=M_{j, i}$.
Let us consider D, and let M be a matrix over D, and let us consider i. Then $\operatorname{Line}(M, i)$ is an element of $D^{\text {width } M}$. Then $M_{\square, i}$ is an element of $D^{\operatorname{len} M}$.

In the sequel A, B are matrices over K of dimension n. We now define five new functors. Let us consider K, n. The functor $K^{n \times n}$ yields a non-empty set and is defined as follows:

$$
\begin{equation*}
K^{n \times n}=\left((\text { the carrier of } K)^{n}\right)^{n} . \tag{Def.10}
\end{equation*}
$$

The functor $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$ yielding a matrix over K of dimension n is defined as follows:
(Def.11)

$$
\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right)_{K}^{n \times n}=n \longmapsto\left(n \longmapsto 0_{K}\right)
$$

The functor $\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ yielding a matrix over K of dimension n is defined as follows:
(Def.12) for every i such that $\langle i, i\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ holds

$$
\left(\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)_{K}^{n \times n}\right)_{i, i}=1_{K} \text { and for all } i, j \text { such that }\langle i, j\rangle \in \text { the indices }
$$

$$
\text { of }\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)_{K}^{n \times n} \text { and } i \neq j \text { holds }\left(\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)_{K}^{n \times n}\right)_{i, j}=0_{K} \text {. }
$$

Let us consider A. The functor $-A$ yielding a matrix over K of dimension n is defined as follows:
(Def.13) for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $(-A)_{i, j}=-A_{i, j}$.
Let us consider B. The functor $A+B$ yielding a matrix over K of dimension n is defined by:
(Def.14) for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $(A+B)_{i, j}=A_{i, j}+B_{i, j}$.
The following two propositions are true:
For all i, j such that $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$ holds $\left(\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}\right)_{i, j}=0_{K}$.
(31) For every x holds x is an element of $K^{n \times n}$ if and only if x is a matrix over K of dimension n.
Let us consider K, n. A matrix over K of dimension n is called a diagonal n-dimensional matrix over K if:
(Def.15) for all i, j such that $\langle i, j\rangle \in$ the indices of it and it $_{i, j} \neq 0_{K}$ holds $i=j$.
In the sequel A, B, C will denote matrices over F of dimension n. One can prove the following four propositions:

$$
\begin{align*}
& A+B=B+A . \tag{32}\\
& A+B+C=A+(B+C) . \tag{33}\\
& A+\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right)_{F}^{n \times n}=A . \tag{34}\\
& A+-A=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right)_{F}^{n \times n} . \tag{35}
\end{align*}
$$

Let us consider F, n. The functor $F_{\mathrm{G}}^{n \times n}$ yielding an Abelian group is defined by:
(Def.16) the carrier of $F_{\mathrm{G}}^{n \times n}=F^{n \times n}$ and for all A, B holds (the addition of $\left.F_{\mathrm{G}}^{n \times n}\right)(A, B)=A+B$ and for every A holds (the reverse-map of $\left.F_{\mathrm{G}}^{n \times n}\right)(A)=-A$ and the zero of $F_{\mathrm{G}}^{n \times n}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{F}^{n \times n}$.

Acknowledgements

I would like to thank Grzegorz Bancerek for his useful sugestions and valuable comments.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 8, 1990

