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Summary. Heine–Borel’s covering theorem, also known as Borel–
Lebesgue theorem [3], is proved. Some useful theorems on real inequali-
ties, intervals, sequences and notion of power sequence which are neces-
sary for the theorem are also proved.

MML Identifier: HEINE.

The terminology and notation used in this paper have been introduced in the
following articles: [23], [11], [1], [5], [6], [12], [9], [4], [24], [18], [19], [8], [7], [2],
[20], [16], [13], [15], [14], [21], [22], [17], and [10]. We follow a convention: a, b,
x, y, z denote real numbers and k, n denote natural numbers. We now state
several propositions:

(1) For every subspace A of the metric space of real numbers and for all
points p, q of A and for all x, y such that x = p and y = q holds
ρ(p, q) = |x − y|.

(2) If x ≤ y and y ≤ z, then [x, y] ∪ [y, z] = [x, z].

(3) If x ≥ 0 and a + x ≤ b, then a ≤ b.

(4) If x ≥ 0 and a − x ≥ b, then a ≥ b.

(5) If x > 0, then xk > 0.

In the sequel s1 will be a sequence of real numbers. Next we state the
proposition

(6) If s1 is increasing and rng s1 ⊆ � , then n ≤ s1(n).

Let us consider s1, k. The functor ks1 yielding a sequence of real numbers is
defined by:

(Def.1) for every n holds ks1(n) = ks1(n).

We now state several propositions:

1The article was written during my work at Shinshu University, 1991.
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(7) 2n ≥ n + 1.

(8) 2n > n.

(9) If s1 is divergent to +∞, then 2s1 is divergent to +∞.

(10) For every topological space T such that the carrier of T is finite holds
T is compact.

(11) If a ≤ b, then [a, b]T is compact.
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