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Summary. Heine-Borel’s covering theorem, also known as Borel—
Lebesgue theorem [3], is proved. Some useful theorems on real inequali-
ties, intervals, sequences and notion of power sequence which are neces-
sary for the theorem are also proved.

MML Identifier: HEINE.

The terminology and notation used in this paper have been introduced in the
following articles: [23], [11], [1], [5], [6], [12], [9], [4], [24], [18], [19], [8], [7], [2],
[20], [16], [13], [15], [14], [21], [22], [17], and [10]. We follow a convention: a, b,
x, y, z denote real numbers and k, n denote natural numbers. We now state
several propositions:

(1)  For every subspace A of the metric space of real numbers and for all
points p, g of A and for all x, y such that x+ = p and y = ¢ holds

p(p,q) = |z —yl.
(2) Ifzxz<yandy<z then [x,y|U ][y, 2] = [z, z].
(3) Ifzx>0and a+x<b, then a <b.
(4) Ifx>0anda—x>b, then a>b.
(5) If 2 >0, then 2¥ > 0.
In the sequel s; will be a sequence of real numbers. Next we state the
proposition
(6) If s is increasing and rng s; C N, then n < s1(n).

Let us consider sy, k. The functor £°! yielding a sequence of real numbers is
defined by:

(Def.1)  for every n holds k*!(n) = k51("),

We now state several propositions:

!The article was written during my work at Shinshu University, 1991.
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2" >n + 1.
2" > n.
If 51 is divergent to +o0, then 2% is divergent to 4oc.

For every topological space T such that the carrier of T is finite holds
T is compact.

If a < b, then [a, b1 is compact.
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