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Summary. Quotient group, homomorphisms and isomorphisms of
groups are introduced. The so called isomorphism theorems are proved
following [7].

MML Identifier: GROUP_6.

The articles [10], [8], [4], [5], [1], [6], [3], [9], [11], [2], [14], [16], [12], [15], and [13]
provide the terminology and notation for this paper. The following proposition
is true

(1)  For all non-empty sets A, B and for every function f from A into B
holds f is one-to-one if and only if for all elements a, b of A such that
f(a) = f(b) holds a = b.
Let G be a group, and let A be a subgroup of G. We see that the subgroup
of A is a subgroup of G.

Let G be a group, and let A be a subgroup of G. We see that the normal
subgroup of A is a subgroup of A.

Let G be a group. Then {1}¢ is a normal subgroup of G. Then Qg is a
normal subgroup of G.

For simplicity we adopt the following rules: n is a natural number, ¢ is an
integer, G, H, I are groups, A, B are subgroups of G, N, M are normal
subgroups of G, a, a1, as, ag, b are elements of G, ¢ is an element of H, f is a
function from the carrier of G into the carrier of H, x is arbitrary, and A, A
are subsets of G. One can prove the following propositions:

(2)  For every subgroup X of A and for every element z of A such that x = a
holds - X = a - X quaa subgroup of G and X -z = (X qua a subgroup
of G) - a.

(3)  For all subgroups X, Y of A holds (X qua a subgroup of G) NY quaa
subgroup of G =X NY.
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(4 ab-at=b"anda-(b-at)=0b""

(5) Ifbe N, then db* € N.

6) a-A-A=a-Aanda-(A-A) =a-Aand A-A-a = A-a and
A-(A-a)=A"a.

(7))  If Ay ={[a,b]}, then G = gr(A).

(8) G€is a subgroup of B if and only if for all a, b holds [a,b] € B.

(9) If N is a subgroup of B, then N is a normal subgroup of B.

Let us consider GG, B, M. Let us assume that M is a subgroup of B. The
functor (M)p yielding a normal subgroup of B is defined as follows:

(Def.l) (M) = M.
One can prove the following proposition

(10) BN N is a normal subgroup of B and N N B is a normal subgroup of
B.

Let us consider G, B, N. Then BN N is a normal subgroup of B.
Let us consider G, N, B. Then N N B is a normal subgroup of B.
A group is trivial if:

(Def.2)  there exists = such that the carrier of it = {x}.
One can prove the following propositions:

(11)  {1}¢ is trivial.

(12) G is trivial if and only if ord(G) = 1 and G is finite.

(13) If G is trivial, then {1}¢ = G.

Let us consider G, N. The functor Cosets N yielding a non-empty set is
defined by:
(Def.3)  Cosets N = the left cosets of N.
In the sequel W1, Wy denote elements of Cosets N. One can prove the fol-
lowing propositions:

(14)  Cosets N = the left cosets of N and Cosets N = the right cosets of V.
15)  If € Cosets N, then there exists a such that t =a- N and x = N - a.
16) a-N € Cosets N and N - a € Cosets N.

17)  If z € Cosets N, then z is a subset of G.
18) If A; € Cosets N and Ay € Cosets N, then A; - Ay € Cosets N.

Let us consider G, N. The functor CosOp N yields a binary operation on
Cosets N and is defined by:

(Def.4)  for all Wy, Ws, Aj, As such that W; = A; and Wy = As holds
(COSOp N)(Wl, Wg) = Al . AQ.
In the sequel O is a binary operation on Cosets N. One can prove the fol-
lowing two propositions:
(19)  If for all Wy, Wo, Ay, As such that W7 = Ay and Wy = As holds O(W7,
W5) = Ay - A, then O = CosOp N.
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(20)  For all Wy, Wy, Ay, Ay such that W3 = A; and Wy = As holds
(COSOp N)(Wl, Wg) = A1 . Ag.
Let us consider G, N. The functor ¢/ yields a half group structure and is
defined as follows:
(Def.5) ¢ /n = (Cosets N, CosOp N).
One can prove the following propositions:
(21)  ¢/n = (Cosets N, CosOp N).
(22)  The carrier of ¢/5 = Cosets N.
(23)  The operation of /5 = CosOp N.

In the sequel S, Ty, Ty denote elements of @/y. Let us consider G, N, S.
The functor @S yields a subset of G and is defined by:

(Def.6) ©S=38.
One can prove the following two propositions:
(24) (°T) - (°Ty) =T - Tn.
(25) 9Ty -Tp = (°Ty) - (°Ty).
Let us consider G, N. Then ¢ /N is a group.
In the sequel S will denote an element of ¢/x. The following propositions
are true:
(26)  There exists a such that S =a-N and S = N - a.
(27) N -ais an element of @/ and a - N is an element of /5 and N is an
element of & /.

(28) x € @/ if and only if there exists a such that z = a- N and z = N - a.
(29) 1, =N.

(30) IfS=a-N,then S~ '=a"1-N.

(31)  If the left cosets of N is finite, then ¢/ is finite.

(32)  Ord(%/n)=|e: N]|.

(33)  If the left cosets of N is finite, then ord(%/y) = e : Ny .

(34) If M is a subgroup of B, then B/(M)B is a subgroup of ¢ /.

(35) If M is a subgroup of N, then N/(M)N is a normal subgroup of & /.
(36) ¢/ is an Abelian group if and only if G is a subgroup of N.

Let us consider G, H. A function from the carrier of GG into the carrier of H
is called a homomorphism from G to H if:

(Def.7)  it(a-b) =it(a) - it(b).
One can prove the following proposition
(37)  If for all a, b holds f(a-b) = f(a) - f(b), then f is a homomorphism
from G to H.
In the sequel g, A will be homomorphisms from G to H, g1 will be a homo-

morphism from H to G, and hi will be a homomorphism from H to I. One can
prove the following propositions:
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dom g = the carrier of G and rng g C the carrier of H.
g(a-b) =g(a) - g(b).
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hy - h is a homomorphism from G to I.
Let us consider G, H, I, h, hy. Then hq - h is a homomorphism from G to I.
Let us consider G, H, g. Then rngg is a subset of H.

Let us consider G, H. The functor G — {1}y yields a homomorphism from
G to H and is defined by:

(Def.8)  for every a holds (G — {1}y)(a) = 1g.
The following proposition is true
(49) h1-(G—{1}y)=G — {1}y and (H — {1};)-h=G — {1};.
Let us consider G, N. The canonical homomorphism onto cosets of N yield-
ing a homomorphism from G to ¢/ is defined as follows:
(Def.9)  for every a holds (the canonical homomorphism onto cosets of N)(a) =
a-N.
Let us consider GG, H, g. The functor Ker g yields a normal subgroup of G
and is defined by:
(Def.10)  the carrier of Kerg = {a : g(a) = 15}.
The following three propositions are true:
(50) a € Kerh if and only if h(a) = 1.
(51) Ker(G —{1}y) =G.
(52)  Ker(the canonical homomorphism onto cosets of N) = N.

Let us consider G, H, g. The functor Im g yields a subgroup of H and is
defined as follows:

(Def.11)  the carrier of Im g = ¢° (the carrier of G).
Next we state a number of propositions:

53
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rng g = the carrier of Im g.

=

x € Im g if and only if there exists a such that z = g(a).
Im g = gr(rngg).
Im(G — {1}g) = {1}4.

Im(the canonical homomorphism onto cosets of N) = &/ .
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h is a homomorphism from G to Im h.
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59)  If G is finite, then Im g is finite.

60) If G is an Abelian group, then Im g is an Abelian group.
61) Ord(Img) < Ord(G).

62) If G is finite, then ord(Img) < ord(G).

We now define two new predicates. Let us consider G, H, h. We say that h
is a monomorphism if and only if:

(Def.12)  h is one-to-one.
We say that h is an epimorphism if and only if:
(Def.13)  rngh = the carrier of H.

We now state several propositions:
63) If h is a monomorphism and ¢ € Im h, then h(h~!(c)) = c.
6
6
6
6
68
69

Let us consider G, H, h. We say that h is an isomorphism if and only if:

g

3
LrJesese s

If h is a monomorphism, then A~ (h(a)) = a.

ot

If h is a monomorphism, then A~! is a homomorphism from Im A to G.

(=)

h is a monomorphism if and only if Kerh = {1}4.

h is an epimorphism if and only if Imh = H.

If h is an epimorphism, then for every ¢ there exists a such that h(a) = c.
The canonical homomorphism onto cosets of N is an epimorphism.

o~~~ o~ o~ o~ o~

(Def.14)  h is an epimorphism and h is a monomorphism.

One can prove the following propositions:

(70)  h is an isomorphism if and only if rngh = the carrier of H and h is
one-to-one.

(71) If h is an isomorphism, then dom h = the carrier of G and rngh = the
carrier of H.

(72)  If h is an isomorphism, then h~! is a homomorphism from H to G.
(73)  If h is an isomorphism and g; = h~!, then g; is an isomorphism.

(74) If h is an isomorphism and hj is an isomorphism, then h; - h is an
isomorphism.

(75)  The canonical homomorphism onto cosets of {1}« is an isomorphism.
Let us consider G, H. We say that G and H are isomorphic if and only if:
(Def.15)  there exists h such that h is an isomorphism.

We now state a number of propositions:
(76) G and G are isomorphic.
(77) If G and H are isomorphic, then H and G are isomorphic.

(78) If G and H are isomorphic and H and I are isomorphic, then G and I
are isomorphic.

(79)  If h is a monomorphism, then G and Im A are isomorphic.
(80) If G is trivial and H is trivial, then G and H are isomorphic.
(81) {1}g and {1}y are isomorphic.
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G and ¢/ {1}¢ are isomorphic and G/ (1} and G are isomorphic.
G/ is trivial.
If G and H are isomorphic, then Ord(G) = Ord(H).

If G and H are isomorphic but G is finite or H is finite, then G is finite
and H is finite.

If G and H are isomorphic but G is finite or H is finite, then ord(G) =
ord(H).

If G and H are isomorphic but G is trivial or H is trivial, then G is
trivial and H is trivial.

If G and H are isomorphic but G is an Abelian group or H is an Abelian
group, then G is an Abelian group and H is an Abelian group.

G /Kerg and Im g are isomorphic and Im g and G/ Ker g are isomorphic.

There exists a homomorphism A from G/ Kerg to Img such that h is
an isomorphism and g = h- the canonical homomorphism onto cosets of
Kerg.

For every normal subgroup J of ¢/, such that J =~/ (M)y and M is

a subgroup of NV holds (“/n) /7 and ¢/ are isomorphic.

(BuN)/(N)BuN and B/(BQN) are isomorphic.
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