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The articles [10], [8], [4], [5], [1], [6], [3], [9], [11], [2], [14], [16], [12], [15], and [13]
provide the terminology and notation for this paper. The following proposition
is true

(1) For all non-empty sets A, B and for every function f from A into B
holds f is one-to-one if and only if for all elements a, b of A such that
f(a) = f(b) holds a = b.

Let G be a group, and let A be a subgroup of G. We see that the subgroup
of A is a subgroup of G.

Let G be a group, and let A be a subgroup of G. We see that the normal
subgroup of A is a subgroup of A.

Let G be a group. Then {1}G is a normal subgroup of G. Then ΩG is a
normal subgroup of G.

For simplicity we adopt the following rules: n is a natural number, i is an
integer, G, H, I are groups, A, B are subgroups of G, N , M are normal
subgroups of G, a, a1, a2, a3, b are elements of G, c is an element of H, f is a
function from the carrier of G into the carrier of H, x is arbitrary, and A1, A2

are subsets of G. One can prove the following propositions:

(2) For every subgroup X of A and for every element x of A such that x = a
holds x · X = a · X qua a subgroup of G and X · x = (X qua a subgroup
of G) · a.

(3) For all subgroups X, Y of A holds (X qua a subgroup of G) ∩ Y qua a
subgroup of G = X ∩ Y .
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(4) a · b · a−1 = ba−1

and a · (b · a−1) = ba−1

.

(5) If b ∈ N , then ba ∈ N .

(6) a · A · A = a · A and a · (A · A) = a · A and A · A · a = A · a and
A · (A · a) = A · a.

(7) If A1 = {[a, b]}, then Gc = gr(A1).

(8) Gc is a subgroup of B if and only if for all a, b holds [a, b] ∈ B.

(9) If N is a subgroup of B, then N is a normal subgroup of B.

Let us consider G, B, M . Let us assume that M is a subgroup of B. The
functor (M)B yielding a normal subgroup of B is defined as follows:

(Def.1) (M)B = M .

One can prove the following proposition

(10) B ∩ N is a normal subgroup of B and N ∩ B is a normal subgroup of
B.

Let us consider G, B, N . Then B ∩ N is a normal subgroup of B.

Let us consider G, N , B. Then N ∩ B is a normal subgroup of B.

A group is trivial if:

(Def.2) there exists x such that the carrier of it = {x}.

One can prove the following propositions:

(11) {1}G is trivial.

(12) G is trivial if and only if ord(G) = 1 and G is finite.

(13) If G is trivial, then {1}G = G.

Let us consider G, N . The functor CosetsN yielding a non-empty set is
defined by:

(Def.3) CosetsN = the left cosets of N .

In the sequel W1, W2 denote elements of Cosets N . One can prove the fol-
lowing propositions:

(14) Cosets N = the left cosets of N and Cosets N = the right cosets of N .

(15) If x ∈ Cosets N , then there exists a such that x = a · N and x = N · a.

(16) a · N ∈ Cosets N and N · a ∈ Cosets N .

(17) If x ∈ Cosets N , then x is a subset of G.

(18) If A1 ∈ Cosets N and A2 ∈ Cosets N , then A1 · A2 ∈ Cosets N .

Let us consider G, N . The functor CosOpN yields a binary operation on
Cosets N and is defined by:

(Def.4) for all W1, W2, A1, A2 such that W1 = A1 and W2 = A2 holds
(CosOpN)(W1, W2) = A1 · A2.

In the sequel O is a binary operation on Cosets N . One can prove the fol-
lowing two propositions:

(19) If for all W1, W2, A1, A2 such that W1 = A1 and W2 = A2 holds O(W1,
W2) = A1 · A2, then O = CosOpN .
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(20) For all W1, W2, A1, A2 such that W1 = A1 and W2 = A2 holds
(CosOp N)(W1, W2) = A1 · A2.

Let us consider G, N . The functor G/N yields a half group structure and is
defined as follows:

(Def.5) G/N = 〈Cosets N,CosOp N〉.

One can prove the following propositions:

(21) G/N = 〈Cosets N,CosOp N〉.

(22) The carrier of G/N = Cosets N .

(23) The operation of G/N = CosOpN .

In the sequel S, T1, T2 denote elements of G/N . Let us consider G, N , S.
The functor @S yields a subset of G and is defined by:

(Def.6) @S = S.

One can prove the following two propositions:

(24) (@T1) · (
@T2) = T1 · T2.

(25) @T1 · T2 = (@T1) · (
@T2).

Let us consider G, N . Then G/N is a group.

In the sequel S will denote an element of G/N . The following propositions
are true:

(26) There exists a such that S = a · N and S = N · a.

(27) N · a is an element of G/N and a ·N is an element of G/N and N is an
element of G/N .

(28) x ∈ G/N if and only if there exists a such that x = a ·N and x = N · a.

(29) 1G/N
= N .

(30) If S = a · N , then S−1 = a−1 · N .

(31) If the left cosets of N is finite, then G/N is finite.

(32) Ord(G/N ) = |• : N |.

(33) If the left cosets of N is finite, then ord(G/N ) = |• : N | � .

(34) If M is a subgroup of B, then B/(M)B
is a subgroup of G/M .

(35) If M is a subgroup of N , then N/(M)N
is a normal subgroup of G/M .

(36) G/N is an Abelian group if and only if Gc is a subgroup of N .

Let us consider G, H. A function from the carrier of G into the carrier of H
is called a homomorphism from G to H if:

(Def.7) it(a · b) = it(a) · it(b).

One can prove the following proposition

(37) If for all a, b holds f(a · b) = f(a) · f(b), then f is a homomorphism
from G to H.

In the sequel g, h will be homomorphisms from G to H, g1 will be a homo-
morphism from H to G, and h1 will be a homomorphism from H to I. One can
prove the following propositions:
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(38) dom g = the carrier of G and rng g ⊆ the carrier of H.

(39) g(a · b) = g(a) · g(b).

(40) g(1G) = 1H .

(41) g(a−1) = g(a)−1.

(42) g(ab) = g(a)g(b).

(43) g([a, b]) = [g(a), g(b)].

(44) g([a1, a2, a3]) = [g(a1), g(a2), g(a3)].

(45) g(an) = g(a)n.

(46) g(ai) = g(a)i.

(47) id(the carrier of G) is a homomorphism from G to G.

(48) h1 · h is a homomorphism from G to I.

Let us consider G, H, I, h, h1. Then h1 ·h is a homomorphism from G to I.

Let us consider G, H, g. Then rng g is a subset of H.

Let us consider G, H. The functor G → {1}H yields a homomorphism from
G to H and is defined by:

(Def.8) for every a holds (G → {1}H )(a) = 1H .

The following proposition is true

(49) h1 · (G → {1}H ) = G → {1}I and (H → {1}I) · h = G → {1}I .

Let us consider G, N . The canonical homomorphism onto cosets of N yield-
ing a homomorphism from G to G/N is defined as follows:

(Def.9) for every a holds (the canonical homomorphism onto cosets of N)(a) =
a · N .

Let us consider G, H, g. The functor Ker g yields a normal subgroup of G
and is defined by:

(Def.10) the carrier of Ker g = {a : g(a) = 1H}.

The following three propositions are true:

(50) a ∈ Ker h if and only if h(a) = 1H .

(51) Ker(G → {1}H) = G.

(52) Ker(the canonical homomorphism onto cosets of N) = N .

Let us consider G, H, g. The functor Im g yields a subgroup of H and is
defined as follows:

(Def.11) the carrier of Im g = g◦ (the carrier of G).

Next we state a number of propositions:

(53) rng g = the carrier of Im g.

(54) x ∈ Im g if and only if there exists a such that x = g(a).

(55) Im g = gr(rng g).

(56) Im(G → {1}H ) = {1}H .

(57) Im(the canonical homomorphism onto cosets of N) = G/N .

(58) h is a homomorphism from G to Im h.
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(59) If G is finite, then Im g is finite.

(60) If G is an Abelian group, then Im g is an Abelian group.

(61) Ord(Im g) ≤ Ord(G).

(62) If G is finite, then ord(Im g) ≤ ord(G).

We now define two new predicates. Let us consider G, H, h. We say that h
is a monomorphism if and only if:

(Def.12) h is one-to-one.

We say that h is an epimorphism if and only if:

(Def.13) rng h = the carrier of H.

We now state several propositions:

(63) If h is a monomorphism and c ∈ Im h, then h(h−1(c)) = c.

(64) If h is a monomorphism, then h−1(h(a)) = a.

(65) If h is a monomorphism, then h−1 is a homomorphism from Imh to G.

(66) h is a monomorphism if and only if Kerh = {1}G.

(67) h is an epimorphism if and only if Imh = H.

(68) If h is an epimorphism, then for every c there exists a such that h(a) = c.

(69) The canonical homomorphism onto cosets of N is an epimorphism.

Let us consider G, H, h. We say that h is an isomorphism if and only if:

(Def.14) h is an epimorphism and h is a monomorphism.

One can prove the following propositions:

(70) h is an isomorphism if and only if rngh = the carrier of H and h is
one-to-one.

(71) If h is an isomorphism, then domh = the carrier of G and rng h = the
carrier of H.

(72) If h is an isomorphism, then h−1 is a homomorphism from H to G.

(73) If h is an isomorphism and g1 = h−1, then g1 is an isomorphism.

(74) If h is an isomorphism and h1 is an isomorphism, then h1 · h is an
isomorphism.

(75) The canonical homomorphism onto cosets of {1}G is an isomorphism.

Let us consider G, H. We say that G and H are isomorphic if and only if:

(Def.15) there exists h such that h is an isomorphism.

We now state a number of propositions:

(76) G and G are isomorphic.

(77) If G and H are isomorphic, then H and G are isomorphic.

(78) If G and H are isomorphic and H and I are isomorphic, then G and I
are isomorphic.

(79) If h is a monomorphism, then G and Imh are isomorphic.

(80) If G is trivial and H is trivial, then G and H are isomorphic.

(81) {1}G and {1}H are isomorphic.
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(82) G and G/{1}G
are isomorphic and G/{1}G

and G are isomorphic.

(83) G/ΩG
is trivial.

(84) If G and H are isomorphic, then Ord(G) = Ord(H).

(85) If G and H are isomorphic but G is finite or H is finite, then G is finite
and H is finite.

(86) If G and H are isomorphic but G is finite or H is finite, then ord(G) =
ord(H).

(87) If G and H are isomorphic but G is trivial or H is trivial, then G is
trivial and H is trivial.

(88) If G and H are isomorphic but G is an Abelian group or H is an Abelian
group, then G is an Abelian group and H is an Abelian group.

(89) G/Ker g and Im g are isomorphic and Im g and G/Ker g are isomorphic.

(90) There exists a homomorphism h from G/Ker g to Im g such that h is
an isomorphism and g = h· the canonical homomorphism onto cosets of
Ker g.

(91) For every normal subgroup J of G/M such that J = N/(M)N
and M is

a subgroup of N holds (G/M )/J and G/N are isomorphic.

(92) (B⊔N)/(N)B⊔N
and B/(B∩N) are isomorphic.
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