Commutator and Center of a Group

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. We introduce the notions of commutators of element, subgroups of a group, commutator of a group and center of a group. We prove P.Hall identity. The article is based on [6].

MML Identifier: GROUP_5.

The terminology and notation used in this paper are introduced in the following articles: [9], [4], [1], [3], [5], [10], [7], [14], [16], [2], [12], [8], [15], [11], and [13].

Preliminaries

The scheme SubsetFD3 concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a ternary functor \mathcal{F} yielding an element of \mathcal{B}, and a ternary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(c, d, e): \mathcal{P}[c, d, e]\}$, where c ranges over elements of \mathcal{A}, and d ranges over elements of \mathcal{B}, and e ranges over elements of \mathcal{C}, is a subset of \mathcal{B} for all values of the parameters.

For simplicity we adopt the following rules: x will be arbitrary, k, n will denote natural numbers, i will denote an integer, G will denote a group, a, b, c, d will denote elements of G, A, B, C, D will denote subsets of G, H, H_{1}, H_{2}, H_{3}, H_{4} will denote subgroups of $G, N, N_{1}, N_{2}, N_{3}$ will denote normal subgroups of G, F, F_{1}, F_{2} will denote finite sequences of elements of the carrier of G, and I will denote a finite sequence of elements of \mathbb{Z}. Next we state several propositions:
(1) $x \in\{\mathbf{1}\}_{G}$ if and only if $x=1_{G}$.
(2) If $a \in H$ and $b \in H$, then $a^{b} \in H$.
(3) If $a \in N$, then $a^{b} \in N$.
(4) $\quad x \in H_{1} \cdot H_{2}$ if and only if there exist a, b such that $x=a \cdot b$ and $a \in H_{1}$ and $b \in H_{2}$.
(5) If $H_{1} \cdot H_{2}=H_{2} \cdot H_{1}$, then $x \in H_{1} \sqcup H_{2}$ if and only if there exist a, b such that $x=a \cdot b$ and $a \in H_{1}$ and $b \in H_{2}$.
(6) If G is an Abelian group, then $x \in H_{1} \sqcup H_{2}$ if and only if there exist a, b such that $x=a \cdot b$ and $a \in H_{1}$ and $b \in H_{2}$.
(7) $\quad x \in N_{1} \sqcup N_{2}$ if and only if there exist a, b such that $x=a \cdot b$ and $a \in N_{1}$ and $b \in N_{2}$.
(8) $H \cdot N=N \cdot H$.

Let us consider G, F, a. The functor F^{a} yielding a finite sequence of elements of the carrier of G is defined by:
(Def.1) $\operatorname{len}\left(F^{a}\right)=\operatorname{len} F$ and for every k such that $k \in \operatorname{Seg} \operatorname{len} F$ holds $F^{a}(k)=$ $\left(\pi_{k} F\right)^{a}$.
One can prove the following propositions:
(9) If len $F_{1}=$ len F_{2} and for every k such that $k \in \operatorname{Seg}$ len F_{2} holds $F_{1}(k)=$ $\left(\pi_{k} F_{2}\right)^{a}$, then $F_{1}=F_{2}^{a}$.
(10) $\operatorname{len}\left(F^{a}\right)=\operatorname{len} F$.
(11) For every k such that $k \in \operatorname{Seg}$ len F holds $F^{a}(k)=\left(\pi_{k} F\right)^{a}$.
(12) $\quad\left(F_{1}^{a}\right)^{\wedge} F_{2}^{a}=\left(F_{1}{ }^{\wedge} F_{2}\right)^{a}$.
(13) $\varepsilon_{(\text {the carrier of } G)}^{a}=\varepsilon$.
(14) $\langle a\rangle^{b}=\left\langle a^{b}\right\rangle$.
(15) $\langle a, b\rangle^{c}=\left\langle a^{c}, b^{c}\right\rangle$.
(16) $\langle a, b, c\rangle^{d}=\left\langle a^{d}, b^{d}, c^{d}\right\rangle$.
(17) $\quad \Pi\left(F^{a}\right)=\left(\prod F\right)^{a}$.
(18) If len $F=\operatorname{len} I$, then $\left(F^{a}\right)^{I}=\left(F^{I}\right)^{a}$.

Commutators

Let us consider G, a, b. The functor $[a, b]$ yields an element of G and is defined by:
(Def.2) $\quad[a, b]=a^{-1} \cdot b^{-1} \cdot a \cdot b$.
One can prove the following propositions:
(19) (i) $[a, b]=a^{-1} \cdot b^{-1} \cdot a \cdot b$,
(ii) $[a, b]=a^{-1} \cdot\left(b^{-1} \cdot a\right) \cdot b$,
(iii) $[a, b]=a^{-1} \cdot\left(b^{-1} \cdot a \cdot b\right)$,
(iv) $[a, b]=a^{-1} \cdot\left(b^{-1} \cdot(a \cdot b)\right)$,
(v) $\quad[a, b]=a^{-1} \cdot b^{-1} \cdot(a \cdot b)$.
(20) $\quad[a, b]=(b \cdot a)^{-1} \cdot(a \cdot b)$.
(21) $\quad[a, b]=\left(b^{-1}\right)^{a} \cdot b$ and $[a, b]=a^{-1} \cdot a^{b}$.
(22) $\quad\left[1_{G}, a\right]=1_{G}$ and $\left[a, 1_{G}\right]=1_{G}$.
(23) $[a, a]=1_{G}$.
(24) $\left[a, a^{-1}\right]=1_{G}$ and $\left[a^{-1}, a\right]=1_{G}$.
(25) $\quad[a, b]^{-1}=[b, a]$.
(26) $[a, b]^{c}=\left[a^{c}, b^{c}\right]$.
(40) G is an Abelian group if and only if for all a, b holds $[a, b]=1_{G}$.
(41) If $a \in H$ and $b \in H$, then $[a, b] \in H$.

Let us consider G, a, b, c. The functor $[a, b, c]$ yielding an element of G is defined by:
(Def.3) $\quad[a, b, c]=[[a, b], c]$.
One can prove the following propositions:

$$
\begin{array}{ll}
\text { (42) } & {[a, b, c]=[[a, b], c] .} \\
\text { (43) } & {\left[a, b, 1_{G}\right]=1_{G} \text { and }\left[a, 1_{G}, b\right]=1_{G} \text { and }\left[1_{G}, a, b\right]=1_{G} .} \\
\text { (44) } & {[a, a, b]=1_{G} .} \\
\text { (45) } & {[a, b, a]=\left[a^{b}, a\right] .} \\
\text { (46) } & {[b, a, a]=\left(\left[b, a^{-1}\right] \cdot[b, a]\right)^{a} .} \\
\text { (47) } & {\left[a, b, b^{a}\right]=[b,[b, a]] .} \\
\text { (48) } & {[a \cdot b, c]=[a, c] \cdot[a, c, b] \cdot[b, c] .} \\
\text { (49) } & {[a, b \cdot c]=[a, c] \cdot[a, b] \cdot[a, b, c] .} \tag{48}\\
\text { (50) } & {\left[a, b^{-1}, c\right]^{b} \cdot\left[b, c^{-1}, a\right]^{c} \cdot\left[c, a^{-1}, b\right]^{a}=1_{G} .}
\end{array}
$$

Let us consider G, A, B. The commutators of $A \& B$ yielding a subset of G is defined as follows:
(Def.4) the commutators of $A \& B=\{[a, b]: a \in A \wedge b \in B\}$.
We now state several propositions:
(51) The commutators of $A \& B=\{[a, b]: a \in A \wedge b \in B\}$.
(52) $x \in$ the commutators of $A \& B$ if and only if there exist a, b such that $x=[a, b]$ and $a \in A$ and $b \in B$.
(53) The commutators of $\emptyset_{\text {the }}$ carrier of $G \& A=\emptyset$ and the commutators of A $\& \emptyset_{\text {the }}$ carrier of $G=\emptyset$.
(54) The commutators of $\{a\} \&\{b\}=\{[a, b]\}$.
(55) If $A \subseteq B$ and $C \subseteq D$, then the commutators of $A \& C \subseteq$ the commutators of $B \& D$.
(56) $\quad G$ is an Abelian group if and only if for all A, B such that $A \neq \emptyset$ and $B \neq \emptyset$ holds the commutators of $A \& B=\left\{1_{G}\right\}$.
Let us consider G, H_{1}, H_{2}. The commutators of $H_{1} \& H_{2}$ yields a subset of G and is defined by:
(Def.5) the commutators of $H_{1} \& H_{2}=$ the commutators of $\overline{H_{1}} \& \overline{H_{2}}$.
Next we state several propositions:
(57) The commutators of $H_{1} \& H_{2}=$ the commutators of $\overline{H_{1}} \& \overline{H_{2}}$.
(58) $\quad x \in$ the commutators of $H_{1} \& H_{2}$ if and only if there exist a, b such that $x=[a, b]$ and $a \in H_{1}$ and $b \in H_{2}$.
(59) $1_{G} \in$ the commutators of $H_{1} \& H_{2}$.
(60) The commutators of $\{\mathbf{1}\}_{G} \& H=\left\{1_{G}\right\}$ and the commutators of $H \&$ $\{\mathbf{1}\}_{G}=\left\{1_{G}\right\}$.
(61) The commutators of $H \& N \subseteq \bar{N}$ and the commutators of $N \& H \subseteq \bar{N}$.
(62) If H_{1} is a subgroup of H_{2} and H_{3} is a subgroup of H_{4}, then the commutators of $H_{1} \& H_{3} \subseteq$ the commutators of $H_{2} \& H_{4}$.
(63) G is an Abelian group if and only if for all H_{1}, H_{2} holds the commutators of $H_{1} \& H_{2}=\left\{1_{G}\right\}$.
Let us consider G. The commutators of G yielding a subset of G is defined by:
(Def.6) the commutators of $G=$ the commutators of $\Omega_{G} \& \Omega_{G}$.
Next we state three propositions:
(64) The commutators of $G=$ the commutators of $\Omega_{G} \& \Omega_{G}$.
(65) $\quad x \in$ the commutators of G if and only if there exist a, b such that $x=[a, b]$.
(66) G is an Abelian group if and only if the commutators of $G=\left\{1_{G}\right\}$.

Let us consider G, A, B. The functor $[A, B]$ yielding a subgroup of G is defined as follows:
(Def.7) $\quad[A, B]=\operatorname{gr}($ the commutators of $A \& B)$.
Next we state four propositions:
$[A, B]=\operatorname{gr}($ the commutators of $A \& B)$.
(69) $\quad x \in[A, B]$ if and only if there exist F, I such that len $F=\operatorname{len} I$ and $\operatorname{rng} F \subseteq$ the commutators of $A \& B$ and $x=\prod\left(F^{I}\right)$.
(70) If $A \subseteq C$ and $B \subseteq D$, then $[A, B]$ is a subgroup of $[C, D]$.

Let us consider G, H_{1}, H_{2}. The functor $\left[H_{1}, H_{2}\right.$] yielding a subgroup of G is defined by:
(Def.8) $\quad\left[H_{1}, H_{2}\right]=\left[\overline{H_{1}}, \overline{H_{2}}\right]$.
Next we state a number of propositions:
(72) $\left[H_{1}, H_{2}\right]=\operatorname{gr}\left(\right.$ the commutators of $\left.H_{1} \& H_{2}\right)$.
(73) $x \in\left[H_{1}, H_{2}\right]$ if and only if there exist F, I such that len $F=$ len I and $\operatorname{rng} F \subseteq$ the commutators of $H_{1} \& H_{2}$ and $x=\Pi\left(F^{I}\right)$.
(74) If $a \in H_{1}$ and $b \in H_{2}$, then $[a, b] \in\left[H_{1}, H_{2}\right]$.
(75) If H_{1} is a subgroup of H_{2} and H_{3} is a subgroup of H_{4}, then $\left[H_{1}, H_{3}\right.$] is a subgroup of $\left[H_{2}, H_{4}\right]$.
(76) $[N, H]$ is a subgroup of N and $[H, N]$ is a subgroup of N.
(77) $\left[N_{1}, N_{2}\right]$ is a normal subgroup of G.
(78) $\left[N_{1}, N_{2}\right]=\left[N_{2}, N_{1}\right]$.
(79) $\left[N_{1} \sqcup N_{2}, N_{3}\right]=\left[N_{1}, N_{3}\right] \sqcup\left[N_{2}, N_{3}\right]$.
(80) $\left[N_{1}, N_{2} \sqcup N_{3}\right]=\left[N_{1}, N_{2}\right] \sqcup\left[N_{1}, N_{3}\right]$.

Let us consider G. The functor $G^{\text {c }}$ yields a normal subgroup of G and is defined by:
(Def.9) $\quad G^{\mathrm{c}}=\left[\Omega_{G}, \Omega_{G}\right]$.
Next we state several propositions:
(81) $G^{\mathrm{c}}=\left[\Omega_{G}, \Omega_{G}\right]$.
(82) $\quad G^{\mathrm{c}}=\operatorname{gr}($ the commutators of $G)$.
(83) $x \in G^{c}$ if and only if there exist F, I such that len $F=\operatorname{len} I$ and $\operatorname{rng} F \subseteq$ the commutators of G and $x=\Pi\left(F^{I}\right)$.
(84) $[a, b] \in G^{\mathrm{c}}$.
(85) G is an Abelian group if and only if $G^{\mathrm{c}}=\{\mathbf{1}\}_{G}$.
(86) If the left cosets of H is finite and $|\bullet: H|_{\mathbb{N}}=2$, then G^{c} is a subgroup of H.

Center of a Group

Let us consider G. The functor $\mathrm{Z}(G)$ yielding a subgroup of G is defined as follows:
(Def.10) the carrier of $Z(G)=\left\{a: \wedge_{b} a \cdot b=b \cdot a\right\}$.
We now state several propositions:
(87) If the carrier of $H=\left\{a: \bigwedge_{b} a \cdot b=b \cdot a\right\}$, then $H=\mathrm{Z}(G)$.
(88) The carrier of $Z(G)=\left\{a: \bigwedge_{b} a \cdot b=b \cdot a\right\}$.
(89) $a \in \mathrm{Z}(G)$ if and only if for every b holds $a \cdot b=b \cdot a$.
(90) $\mathrm{Z}(G)$ is a normal subgroup of G.
(91) If H is a subgroup of $\mathrm{Z}(G)$, then H is a normal subgroup of G.
(92) $\mathrm{Z}(G)$ is an Abelian group.
(93) $\quad a \in \mathrm{Z}(G)$ if and only if $a^{\bullet}=\{a\}$.
(94) G is an Abelian group if and only if $\mathrm{Z}(G)=G$.

Auxiliary theorems

In the sequel E will be a non-empty set and p, q will be finite sequences of elements of E. The following propositions are true:
(95) If $k \in \operatorname{dom} p$ or $k \in \operatorname{Seg} \operatorname{len} p$, then $\pi_{k}\left(p^{\wedge} q\right)=\pi_{k} p$.
(96) If $k \in \operatorname{dom} q$ or $k \in \operatorname{Seg}$ len q, then $\pi_{\text {len } p+k}\left(p^{\wedge} q\right)=\pi_{k} q$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] M. I. Kargapołow and J. I. Mierzlakow. Podstawy teorii grup. PWN, Warszawa, 1989.
[7] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[11] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[12] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[13] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[14] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[15] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received May 15, 1991

