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Summary. We define the category of groups and its subcategories:
category of Abelian groups and category of groups with the operator of 1

2
.

The carriers of the groups are included in a universum. The universum
is a parameter of the categories.

MML Identifier: GRCAT 1.

The articles [13], [2], [14], [3], [1], [11], [7], [5], [4], [12], [10], [6], [9], and [8]
provide the notation and terminology for this paper. For simplicity we follow
the rules: x, y will be arbitrary, D will be a non-empty set, U1 will be a
universal class, and G, H will be group structures. Let us consider x. Then
{x} is a non-empty set.

The following propositions are true:

(1) For all sets X, Y , A and for all x, y such that 〈〈x, y〉〉 ∈ A and A ⊆ [: X,

Y :] holds x is an element of X and y is an element of Y .

(2) For all sets X, Y , A and for an arbitrary z such that z ∈ A and A ⊆ [: X,

Y :] there exists an element x of X and there exists an element y of Y such
that z = 〈〈x, y〉〉.

(3) For all elements u1, u2, u3, u4 of U1 holds 〈〈u1, u2, u3〉〉 is an element of
U1 and 〈〈u1, u2, u3, u4〉〉 is an element of U1.

(4) For all x, y such that x ∈ y and y ∈ U1 holds x ∈ U1.

In this article we present several logical schemes. The scheme PartLambda2

deals with a set A, a set B, a set C, a binary functor F , and a binary predicate
P, and states that:

there exists a partial function f from [:A, B :] to C such that for all x, y holds
〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B and P[x, y] and for all x, y such
that 〈〈x, y〉〉 ∈ dom f holds f(〈〈x, y〉〉) = F(x, y)
provided the following requirement is met:

• for all x, y such that x ∈ A and y ∈ B and P[x, y] holds F(x, y) ∈ C.
The scheme PartLambda2D deals with a non-empty set A, a non-empty set

B, a set C, a binary functor F , and a binary predicate P, and states that:
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there exists a partial function f from [:A, B :] to C such that for every element
x of A and for every element y of B holds 〈〈x, y〉〉 ∈ dom f if and only if P[x,

y] and for every element x of A and for every element y of B such that 〈〈x,

y〉〉 ∈ dom f holds f(〈〈x, y〉〉) = F(x, y)
provided the parameters satisfy the following condition:

• for every element x of A and for every element y of B such that
P[x, y] holds F(x, y) ∈ C.

We now define three new functors. op2 is a binary operation on {∅}.
op1 is a unary operation on {∅}.
op0 is an element of {∅}.

We now state three propositions:

(5) op2(∅, ∅) = ∅ and op1(∅) = ∅ and op0 = ∅.

(6) {∅} ∈ U1 and 〈〈{∅}, {∅}〉〉 ∈ U1 and [: {∅}, {∅} :] ∈ U1 and op2 ∈ U1 and
op1 ∈ U1.

(7) 〈{∅}, op2, op1, op0〉 is a group with the operator 1
2 .

The trivial group being a group with the operator 1
2 is defined as follows:

(Def.1) the trivial group= 〈{∅}, op2, op1, op0〉.

We now state the proposition

(8) If G = the trivial group , then for every element x of G holds x = ∅
and for all elements x, y of G holds x + y = ∅ and for every element x of
G holds −x = ∅ and 0G = ∅.

In the sequel C denotes a category and O denotes a non-empty subset of the
objects of C. Let us consider C, O. The functor MorphsO yields a non-empty
subset of the morphisms of C and is defined by:

(Def.2) MorphsO =
⋃
{hom(a, b) : a ∈ O ∧ b ∈ O}, where a ranges over objects

of C, and b ranges over objects of C.

We now define four new functors. Let us consider C, O. The functor domO

yielding a function from MorphsO into O is defined by:

(Def.3) domO = (the dom-map of C) � MorphsO.

The functor cod O yields a function from MorphsO into O and is defined by:

(Def.4) cod O = (the cod-map of C) � MorphsO.

The functor comp O yielding a partial function from [:MorphsO, MorphsO qua a
non-empty set :] to MorphsO is defined as follows:

(Def.5) comp O = (the composition of C) � [: MorphsO, MorphsO :].

The functor IO yielding a function from O into MorphsO is defined by:

(Def.6) IO = (the id-map of C) � O.

Next we state the proposition

(9) 〈O,MorphsO,dom O, cod O, comp O, IO〉 is full subcategory of C.

Let us consider C, O. The functor cat O yielding a subcategory of C is
defined as follows:

(Def.7) cat O = 〈O,MorphsO,dom O, cod O, comp O, IO〉.
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Next we state the proposition

(10) The objects of cat O = O.

Let us consider G, H. A map from G into H is a function from the carrier
of G into the carrier of H.

Let G1, G2, G3 be group structures, and let f be a map from G1 into G2,
and let g be a map from G2 into G3. Then g · f is a map from G1 into G3.

Let us consider G. The functor idG yields a map from G into G and is defined
by:

(Def.8) idG = id(the carrier of G).

One can prove the following two propositions:

(11) For every element x of G holds idG(x) = x.

(12) For every map f from G into H holds f · idG = f and idH ·f = f .

Let us consider G, H. The functor zero(G,H) yielding a map from G into
H is defined by:

(Def.9) zero(G,H) = (the carrier of G) 7−→ 0H .

Let us consider G, H, and let f be a map from G into H. We say that f is
additive if and only if:

(Def.10) for all elements x, y of G holds f(x + y) = f(x) + f(y).

One can prove the following propositions:

(13) For all G1, G2, G3 being group structures and for every map f from G1

into G2 and for every map g from G2 into G3 and for every element x of
G1 holds (g · f)(x) = g(f(x)).

(14) For all G1, G2, G3 being group structures and for every map f from G1

into G2 and for every map g from G2 into G3 such that f is additive and
g is additive holds g · f is additive.

(15) For every element x of G holds (zero(G,H))(x) = 0H .

(16) For every group H holds zero(G,H) is additive.

In the sequel G, H are groups. We consider group morphism structures
which are systems

〈a dom-map, a cod-map, a Fun〉,
where the dom-map, the cod-map are a group and the Fun is a map from the
dom-map into the cod-map.

We now define two new functors. Let f be a group morphism structure. The
functor dom f yielding a group is defined as follows:

(Def.11) dom f = the dom-map of f .

The functor cod f yields a group and is defined by:

(Def.12) cod f = the cod-map of f .

Let f be a group morphism structure. The functor fun f yields a map from
dom f into cod f and is defined by:

(Def.13) fun f = the Fun of f .
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Next we state the proposition

(17) For every f being a group morphism structure and for all groups G1,
G2 and for every map f0 from G1 into G2 such that f = 〈G1, G2, f0〉 holds
dom f = G1 and cod f = G2 and funf = f0.

Let us consider G, H. The functor ZEROG yielding a group morphism
structure is defined as follows:

(Def.14) ZEROG = 〈G,H, zero(G,H)〉.

A group morphism structure is said to be a morphism of groups if:

(Def.15) fun it is additive.

One can prove the following proposition

(18) For every morphism F of groups holds the Fun of F is additive.

Let us consider G, H. Then ZEROG is a morphism of groups.

Let us consider G, H. A morphism of groups is said to be a morphism from
G to H if:

(Def.16) dom it = G and cod it = H.

We now state three propositions:

(19) For every f being a group morphism structure such that dom f = G

and cod f = H and fun f is additive holds f is a morphism from G to H.

(20) For every map f from G into H such that f is additive holds 〈G,H, f〉
is a morphism from G to H.

(21) idG is additive.

Let us consider G. The functor IG yields a morphism from G to G and is
defined by:

(Def.17) IG = 〈G,G, idG〉.

Let us consider G, H. Then ZEROG is a morphism from G to H.

We now state several propositions:

(22) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉 and f is additive.

(23) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉.

(24) For every morphism F of groups there exist G, H such that F is a
morphism from G to H.

(25) For every morphism F of groups there exist groups G, H and there
exists a map f from G into H such that F is a morphism from G to H

and F = 〈G,H, f〉 and f is additive.

(26) For all morphisms g, f of groups such that dom g = cod f there exist
groups G1, G2, G3 such that g is a morphism from G2 to G3 and f is a
morphism from G1 to G2.

(27) For every morphism F of groups holds F is a morphism from domF to
cod F .
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Let G, F be morphisms of groups. Let us assume that domG = cod F . The
functor G · F yielding a morphism of groups is defined by:

(Def.18) for all groups G1, G2, G3 and for every map g from G2 into G3 and for
every map f from G1 into G2 such that G = 〈G2, G3, g〉 and F = 〈G1,

G2, f〉 holds G · F = 〈G1, G3, g · f〉.

Next we state the proposition

(28) For all groups G1, G2, G3 and for every morphism G from G2 to G3

and for every morphism F from G1 to G2 holds G ·F is a morphism from
G1 to G3.

Let G1, G2, G3 be groups, and let G be a morphism from G2 to G3, and let
F be a morphism from G1 to G2. Then G · F is a morphism from G1 to G3.

The following propositions are true:

(29) For all groups G1, G2, G3 and for every morphism G from G2 to G3

and for every morphism F from G1 to G2 and for every map g from G2

into G3 and for every map f from G1 into G2 such that G = 〈G2, G3, g〉
and F = 〈G1, G2, f〉 holds G · F = 〈G1, G3, g · f〉.

(30) For all morphisms f , g of groups such that dom g = cod f there exist
groups G1, G2, G3 and there exists a map f0 from G1 into G2 and there
exists a map g0 from G2 into G3 such that f = 〈G1, G2, f0〉 and g = 〈G2,

G3, g0〉 and g · f = 〈G1, G3, g0 · f0〉.

(31) For all morphisms f , g of groups such that dom g = cod f holds dom(g ·
f) = dom f and cod(g · f) = cod g.

(32) For all groups G1, G2, G3, G4 and for every morphism f from G1 to
G2 and for every morphism g from G2 to G3 and for every morphism h

from G3 to G4 holds h · (g · f) = h · g · f .

(33) For all morphisms f , g, h of groups such that domh = cod g and
dom g = cod f holds h · (g · f) = h · g · f .

(34) dom(IG) = G and cod(IG) = G and for every morphism f of groups
such that cod f = G holds IG · f = f and for every morphism g of groups
such that dom g = G holds g · IG = g.

A non-empty set is called a non-empty set of groups if:

(Def.19) for every element x of it holds x is a group.

In the sequel V will be a non-empty set of groups. Let us consider V . We
see that the element of V is a group.

We now state two propositions:

(35) For every morphism f of groups and for every element x of {f} holds
x is a morphism of groups.

(36) For every morphism f from G to H and for every element x of {f}
holds x is a morphism from G to H.

A non-empty set is called a non-empty set of morphisms of groups if:

(Def.20) for every element x of it holds x is a morphism of groups.
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Let M be a non-empty set of morphisms of groups. We see that the element
of M is a morphism of groups.

We now state the proposition

(37) For every morphism f of groups holds {f} is a non-empty set of mor-
phisms of groups.

Let us consider G, H. A non-empty set of morphisms of groups is called a
non-empty set of morphisms from G into H if:

(Def.21) for every element x of it holds x is a morphism from G to H.

The following two propositions are true:

(38) D is a non-empty set of morphisms from G into H if and only if for
every element x of D holds x is a morphism from G to H.

(39) For every morphism f from G to H holds {f} is a non-empty set of
morphisms from G into H.

Let us consider G, H. The functor Morphs(G,H) yields a non-empty set of
morphisms from G into H and is defined by:

(Def.22) x ∈ Morphs(G,H) if and only if x is a morphism from G to H.

Let us consider G, H, and let M be a non-empty set of morphisms from G

into H. We see that the element of M is a morphism from G to H.

Let us consider x, y. The predicate Pob x, y is defined by:

(Def.23) there exist arbitrary x1, x2, x3, x4 such that x = 〈〈x1, x2, x3, x4〉〉 and
there exists G such that y = G and x1 = the carrier of G and x2 = the
addition of G and x3 = the reverse-map of G and x4 = the zero of G.

One can prove the following two propositions:

(40) For arbitrary x, y1, y2 such that Pob x, y1 and Pob x, y2 holds y1 = y2.

(41) There exists x such that x ∈ U1 and Pob x,the trivial group .

Let us consider U1. The functor GroupObj(U1) yields a non-empty set and
is defined as follows:

(Def.24) for every y holds y ∈ GroupObj(U1) if and only if there exists x such
that x ∈ U1 and Pob x, y.

The following propositions are true:

(42) The trivial group∈ GroupObj(U1).

(43) For every element x of GroupObj(U1) holds x is a group.

Let us consider U1. Then GroupObj(U1) is a non-empty set of groups.

Let us consider V . The functor MorphsV yielding a non-empty set of mor-
phisms of groups is defined by:

(Def.25) for every x holds x ∈ MorphsV if and only if there exist elements G,
H of V such that x is a morphism from G to H.

Let us consider V , and let F be an element of MorphsV . Then domF is an
element of V . Then cod F is an element of V .



categories of groups 569

Let us consider V , and let G be an element of V . The functor IG yields an
element of MorphsV and is defined by:

(Def.26) IG = IG.

We now define three new functors. Let us consider V . The functor domV

yields a function from MorphsV into V and is defined as follows:

(Def.27) for every element f of MorphsV holds (domV )(f) = dom f .

The functor cod V yields a function from MorphsV into V and is defined as
follows:

(Def.28) for every element f of MorphsV holds (cod V )(f) = cod f .

The functor IV yielding a function from V into MorphsV is defined as follows:

(Def.29) for every element G of V holds IV (G) = IG.

One can prove the following two propositions:

(44) For all elements g, f of MorphsV such that dom g = cod f there exist
elements G1, G2, G3 of V such that g is a morphism from G2 to G3 and
f is a morphism from G1 to G2.

(45) For all elements g, f of MorphsV such that dom g = cod f holds g · f ∈
MorphsV .

Let us consider V . The functor comp V yields a partial function from
[:MorphsV, MorphsV :] to MorphsV and is defined by:

(Def.30) for all elements g, f of MorphsV holds 〈〈g, f〉〉 ∈ dom comp V if and
only if dom g = cod f and for all elements g, f of MorphsV such that 〈〈g,

f〉〉 ∈ dom comp V holds (comp V )(〈〈g, f〉〉) = g · f .

Let us consider U1. The functor GroupCat(U1) yielding a category structure
is defined by:

(Def.31) GroupCat(U1) = 〈GroupObj(U1),MorphsGroupObj(U1),
dom GroupObj(U1), cod GroupObj(U1), comp GroupObj(U1), IGroupObj(U1)〉.

Next we state several propositions:

(46) For all morphisms f , g of GroupCat(U1) holds 〈〈g, f〉〉 ∈ dom (the com-
position of GroupCat(U1)) if and only if dom g = cod f .

(47) For every morphism f of GroupCat(U1) and for every element f ′ of
MorphsGroupObj(U1)
and for every object b of GroupCat(U1) and for every element b′ of
GroupObj(U1) holds f is an element of MorphsGroupObj(U1) and f ′

is a morphism of GroupCat(U1) and b is an element of GroupObj(U1)
and b′ is an object of GroupCat(U1).

(48) For every object b of GroupCat(U1) and for every element b′

of GroupObj(U1) such that b = b′ holds
idb = Ib′ .

(49) For every morphism f of GroupCat(U1) and for every element f ′ of
MorphsGroupObj(U1) such that f = f ′ holds dom f = dom f ′ and
cod f = cod f ′.
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(50) Let f , g be morphisms of GroupCat(U1). Let f ′, g′ be elements of
MorphsGroupObj(U1). Suppose f = f ′ and g = g′. Then

(i) dom g = cod f if and only if dom g′ = cod f ′,
(ii) dom g = cod f if and only if 〈〈g′, f ′〉〉 ∈ dom comp GroupObj(U1),
(iii) if dom g = cod f , then g · f = g′ · f ′,
(iv) dom f = dom g if and only if dom f ′ = dom g′,
(v) cod f = cod g if and only if cod f ′ = cod g′.

Let us consider U1. Then GroupCat(U1) is a category.

Let us consider U1. The functor AbGroupObj(U1) yielding a non-empty
subset of the objects of GroupCat(U1) is defined as follows:

(Def.32) AbGroupObj(U1) = {G :
∨

H G = H}, where G ranges over elements of
the objects of GroupCat(U1), and H ranges over Abelian groups.

One can prove the following proposition

(51) The trivial group∈ AbGroupObj(U1).

Let us consider U1. The functor AbGroupCat(U1) yielding a subcategory of
GroupCat(U1) is defined as follows:

(Def.33) AbGroupCat(U1) = cat AbGroupObj(U1).

We now state the proposition

(52) The objects of AbGroupCat(U1) = AbGroupObj(U1).

Let us consider U1. The functor 1
2 GroupObj(U1) yields a non-empty subset

of the objects of AbGroupCat(U1) and is defined as follows:

(Def.34) 1
2 GroupObj(U1) = {G :

∨
H G = H}, where G ranges over elements

of the objects of AbGroupCat(U1), and H ranges over groups with the
operator 1

2 .

Let us consider U1. The functor 1
2 GroupCat(U1) yields a subcategory of

AbGroupCat(U1) and is defined by:

(Def.35) 1
2 GroupCat(U1) = cat 1

2 GroupObj(U1).

Next we state two propositions:

(53) The objects of 1
2 GroupCat(U1) = 1

2 GroupObj(U1).

(54) The trivial group∈ 1
2 GroupObj(U1).
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[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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