Categories of Groups

Michał Muzalewski

Abstract

Summary. We define the category of groups and its subcategories: category of Abelian groups and category of groups with the operator of $\frac{1}{2}$. The carriers of the groups are included in a universum. The universum is a parameter of the categories.

MML Identifier: GRCAT_1.

The articles [13], [2], [14], [3], [1], [11], [7], [5], [4], [12], [10], [6], [9], and [8] provide the notation and terminology for this paper. For simplicity we follow the rules: x, y will be arbitrary, D will be a non-empty set, U_{1} will be a universal class, and G, H will be group structures. Let us consider x. Then $\{x\}$ is a non-empty set.

The following propositions are true:
(1) For all sets X, Y, A and for all x, y such that $\langle x, y\rangle \in A$ and $A \subseteq: X$, Y : holds x is an element of X and y is an element of Y.
(2) For all sets X, Y, A and for an arbitrary z such that $z \in A$ and $A \subseteq: X$, Y : there exists an element x of X and there exists an element y of Y such that $z=\langle x, y\rangle$.
(3) For all elements $u_{1}, u_{2}, u_{3}, u_{4}$ of U_{1} holds $\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is an element of U_{1} and $\left\langle u_{1}, u_{2}, u_{3}, u_{4}\right\rangle$ is an element of U_{1}.
(4) For all x, y such that $x \in y$ and $y \in U_{1}$ holds $x \in U_{1}$.

In this article we present several logical schemes. The scheme PartLambda2 deals with a set \mathcal{A}, a set \mathcal{B}, a set \mathcal{C}, a binary functor \mathcal{F}, and a binary predicate \mathcal{P}, and states that:
there exists a partial function f from $: \mathcal{A}, \mathcal{B}:$ to \mathcal{C} such that for all x, y holds $\langle x, y\rangle \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ and for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds $f(\langle x, y\rangle)=\mathcal{F}(x, y)$
provided the following requirement is met:

- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.

The scheme PartLambda2D deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a set \mathcal{C}, a binary functor \mathcal{F}, and a binary predicate \mathcal{P}, and states that:
there exists a partial function f from $: \mathcal{A}, \mathcal{B}:$ to \mathcal{C} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $\langle x, y\rangle \in \operatorname{dom} f$ if and only if $\mathcal{P}[x$, $y]$ and for every element x of \mathcal{A} and for every element y of \mathcal{B} such that $\langle x$, $y\rangle \in \operatorname{dom} f$ holds $f(\langle x, y\rangle)=\mathcal{F}(x, y)$
provided the parameters satisfy the following condition:

- for every element x of \mathcal{A} and for every element y of \mathcal{B} such that $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.
We now define three new functors. op_{2} is a binary operation on $\{\emptyset\}$.
op_{1} is a unary operation on $\{\emptyset\}$.
op_{0} is an element of $\{\emptyset\}$.
We now state three propositions:

$$
\begin{equation*}
\mathrm{op}_{2}(\emptyset, \emptyset)=\emptyset \text { and } \mathrm{op}_{1}(\emptyset)=\emptyset \text { and } \mathrm{op}_{0}=\emptyset \tag{5}
\end{equation*}
$$

$\{\emptyset\} \in U_{1}$ and $\langle\{\emptyset\},\{\emptyset\}\rangle \in U_{1}$ and $\left.:\{\emptyset\},\{\emptyset\}:\right] \in U_{1}$ and $\mathrm{op}_{2} \in U_{1}$ and $\mathrm{op}_{1} \in U_{1}$.

$$
\begin{equation*}
\left\langle\{\emptyset\}, \mathrm{op}_{2}, \mathrm{op}_{1}, \mathrm{op}_{0}\right\rangle \text { is a group with the operator } \frac{1}{2} \tag{6}
\end{equation*}
$$

The trivial group being a group with the operator $\frac{1}{2}$ is defined as follows:
(Def.1) the trivial group $=\left\langle\{\emptyset\}, \mathrm{op}_{2}, \mathrm{op}_{1}, \mathrm{op}_{0}\right\rangle$.
We now state the proposition
(8) If $G=$ the trivial group , then for every element x of G holds $x=\emptyset$ and for all elements x, y of G holds $x+y=\emptyset$ and for every element x of G holds $-x=\emptyset$ and $0_{G}=\emptyset$.
In the sequel C denotes a category and O denotes a non-empty subset of the objects of C. Let us consider C, O. The functor Morphs O yields a non-empty subset of the morphisms of C and is defined by:
(Def.2) Morphs $O=\bigcup\{\operatorname{hom}(a, b): a \in O \wedge b \in O\}$, where a ranges over objects of C, and b ranges over objects of C.
We now define four new functors. Let us consider C, O. The functor dom O yielding a function from Morphs O into O is defined by:
(Def.3) $\quad \operatorname{dom} O=($ the dom-map of $C) \upharpoonright$ Morphs O.
The functor cod O yields a function from Morphs O into O and is defined by:
(Def.4) $\quad \operatorname{cod} O=($ the cod-map of $C) \upharpoonright$ Morphs O.
The functor comp O yielding a partial function from $:$ Morphs O, Morphs O qua a non-empty set :] to Morphs O is defined as follows:
(Def.5) comp $O=($ the composition of $C) \upharpoonright$: Morphs O, Morphs O : .
The functor I_{O} yielding a function from O into Morphs O is defined by:
(Def.6) $\quad \mathrm{I}_{O}=($ the id-map of $C) \upharpoonright O$.
Next we state the proposition
(9) $\left\langle O\right.$, Morphs $\left.O, \operatorname{dom} O, \operatorname{cod} O, \operatorname{comp} O, \mathrm{I}_{O}\right\rangle$ is full subcategory of C.

Let us consider C, O. The functor cat O yielding a subcategory of C is defined as follows:
(Def.7) \quad cat $O=\left\langle O, \operatorname{Morphs} O, \operatorname{dom} O, \operatorname{cod} O, \operatorname{comp} O, \mathrm{I}_{O}\right\rangle$.

Next we state the proposition
(10) The objects of cat $O=O$.

Let us consider G, H. A map from G into H is a function from the carrier of G into the carrier of H.

Let G_{1}, G_{2}, G_{3} be group structures, and let f be a map from G_{1} into G_{2}, and let g be a map from G_{2} into G_{3}. Then $g \cdot f$ is a map from G_{1} into G_{3}.

Let us consider G. The functor id_{G} yields a map from G into G and is defined by:
(Def.8) $\quad \mathrm{id}_{G}=\mathrm{id}_{\text {(the carrier of } G)}$.
One can prove the following two propositions:
(11) For every element x of G holds $\operatorname{id}_{G}(x)=x$.
(12) For every map f from G into H holds $f \cdot \operatorname{id}_{G}=f$ and $\operatorname{id}_{H} \cdot f=f$.

Let us consider G, H. The functor $\operatorname{zero}(G, H)$ yielding a map from G into H is defined by:
(Def.9) $\quad \operatorname{zero}(G, H)=($ the carrier of $G) \longmapsto 0_{H}$.
Let us consider G, H, and let f be a map from G into H. We say that f is additive if and only if:
(Def.10) for all elements x, y of G holds $f(x+y)=f(x)+f(y)$.
One can prove the following propositions:
(13) For all G_{1}, G_{2}, G_{3} being group structures and for every map f from G_{1} into G_{2} and for every map g from G_{2} into G_{3} and for every element x of G_{1} holds $(g \cdot f)(x)=g(f(x))$.
(14) For all G_{1}, G_{2}, G_{3} being group structures and for every map f from G_{1} into G_{2} and for every map g from G_{2} into G_{3} such that f is additive and g is additive holds $g \cdot f$ is additive.
(15) For every element x of G holds $(\operatorname{zero}(G, H))(x)=0_{H}$.
(16) For every group H holds zero (G, H) is additive.

In the sequel G, H are groups. We consider group morphism structures which are systems

〈a dom-map, a cod-map, a Fun〉,
where the dom-map, the cod-map are a group and the Fun is a map from the dom-map into the cod-map.

We now define two new functors. Let f be a group morphism structure. The functor $\operatorname{dom} f$ yielding a group is defined as follows:
(Def.11) $\quad \operatorname{dom} f=$ the dom-map of f.
The functor $\operatorname{cod} f$ yields a group and is defined by:
(Def.12) $\quad \operatorname{cod} f=$ the cod-map of f.
Let f be a group morphism structure. The functor fun f yields a map from $\operatorname{dom} f$ into $\operatorname{cod} f$ and is defined by:
(Def.13) fun $f=$ the Fun of f.

Next we state the proposition
(17) For every f being a group morphism structure and for all groups G_{1}, G_{2} and for every map f_{0} from G_{1} into G_{2} such that $f=\left\langle G_{1}, G_{2}, f_{0}\right\rangle$ holds $\operatorname{dom} f=G_{1}$ and $\operatorname{cod} f=G_{2}$ and fun $f=f_{0}$.
Let us consider G, H. The functor ZERO G yielding a group morphism structure is defined as follows:
(Def.14) \quad ZERO $G=\langle G, H, \operatorname{zero}(G, H)\rangle$.
A group morphism structure is said to be a morphism of groups if:
(Def.15) funit is additive.
One can prove the following proposition
(18) For every morphism F of groups holds the Fun of F is additive.

Let us consider G, H. Then ZERO G is a morphism of groups.
Let us consider G, H. A morphism of groups is said to be a morphism from G to H if:
(Def.16) domit $=G$ and codit $=H$.
We now state three propositions:
(19) For every f being a group morphism structure such that $\operatorname{dom} f=G$ and $\operatorname{cod} f=H$ and fun f is additive holds f is a morphism from G to H.
(20) For every map f from G into H such that f is additive holds $\langle G, H, f\rangle$ is a morphism from G to H.
(21) id_{G} is additive.

Let us consider G. The functor I_{G} yields a morphism from G to G and is defined by:
(Def.17) $\mathrm{I}_{G}=\left\langle G, G, \mathrm{id}_{G}\right\rangle$.
Let us consider G, H. Then ZERO G is a morphism from G to H.
We now state several propositions:
(22) For every morphism F from G to H there exists a map f from G into H such that $F=\langle G, H, f\rangle$ and f is additive.
(23) For every morphism F from G to H there exists a map f from G into H such that $F=\langle G, H, f\rangle$.
(24) For every morphism F of groups there exist G, H such that F is a morphism from G to H.
(25) For every morphism F of groups there exist groups G, H and there exists a map f from G into H such that F is a morphism from G to H and $F=\langle G, H, f\rangle$ and f is additive.
(26) For all morphisms g, f of groups such that $\operatorname{dom} g=\operatorname{cod} f$ there exist groups G_{1}, G_{2}, G_{3} such that g is a morphism from G_{2} to G_{3} and f is a morphism from G_{1} to G_{2}.
(27) For every morphism F of groups holds F is a morphism from $\operatorname{dom} F$ to $\operatorname{cod} F$.

Let G, F be morphisms of groups. Let us assume that $\operatorname{dom} G=\operatorname{cod} F$. The functor $G \cdot F$ yielding a morphism of groups is defined by:
(Def.18) for all groups G_{1}, G_{2}, G_{3} and for every map g from G_{2} into G_{3} and for every map f from G_{1} into G_{2} such that $G=\left\langle G_{2}, G_{3}, g\right\rangle$ and $F=\left\langle G_{1}\right.$, $\left.G_{2}, f\right\rangle$ holds $G \cdot F=\left\langle G_{1}, G_{3}, g \cdot f\right\rangle$.
Next we state the proposition
(28) For all groups G_{1}, G_{2}, G_{3} and for every morphism G from G_{2} to G_{3} and for every morphism F from G_{1} to G_{2} holds $G \cdot F$ is a morphism from G_{1} to G_{3}.
Let G_{1}, G_{2}, G_{3} be groups, and let G be a morphism from G_{2} to G_{3}, and let F be a morphism from G_{1} to G_{2}. Then $G \cdot F$ is a morphism from G_{1} to G_{3}.

The following propositions are true:
(29) For all groups G_{1}, G_{2}, G_{3} and for every morphism G from G_{2} to G_{3} and for every morphism F from G_{1} to G_{2} and for every map g from G_{2} into G_{3} and for every map f from G_{1} into G_{2} such that $G=\left\langle G_{2}, G_{3}, g\right\rangle$ and $F=\left\langle G_{1}, G_{2}, f\right\rangle$ holds $G \cdot F=\left\langle G_{1}, G_{3}, g \cdot f\right\rangle$.
(30) For all morphisms f, g of groups such that $\operatorname{dom} g=\operatorname{cod} f$ there exist groups G_{1}, G_{2}, G_{3} and there exists a map f_{0} from G_{1} into G_{2} and there exists a map g_{0} from G_{2} into G_{3} such that $f=\left\langle G_{1}, G_{2}, f_{0}\right\rangle$ and $g=\left\langle G_{2}\right.$, $\left.G_{3}, g_{0}\right\rangle$ and $g \cdot f=\left\langle G_{1}, G_{3}, g_{0} \cdot f_{0}\right\rangle$.
(31) For all morphisms f, g of groups such that $\operatorname{dom} g=\operatorname{cod} f$ holds $\operatorname{dom}(g$. $f)=\operatorname{dom} f$ and $\operatorname{cod}(g \cdot f)=\operatorname{cod} g$.
(32) For all groups $G_{1}, G_{2}, G_{3}, G_{4}$ and for every morphism f from G_{1} to G_{2} and for every morphism g from G_{2} to G_{3} and for every morphism h from G_{3} to G_{4} holds $h \cdot(g \cdot f)=h \cdot g \cdot f$.
(33) For all morphisms f, g, h of groups such that $\operatorname{dom} h=\operatorname{cod} g$ and dom $g=\operatorname{cod} f$ holds $h \cdot(g \cdot f)=h \cdot g \cdot f$.
$\operatorname{dom}\left(\mathrm{I}_{G}\right)=G$ and $\operatorname{cod}\left(\mathrm{I}_{G}\right)=G$ and for every morphism f of groups such that $\operatorname{cod} f=G$ holds $\mathrm{I}_{G} \cdot f=f$ and for every morphism g of groups such that $\operatorname{dom} g=G$ holds $g \cdot \mathrm{I}_{G}=g$.
A non-empty set is called a non-empty set of groups if:
(Def.19) for every element x of it holds x is a group.
In the sequel V will be a non-empty set of groups. Let us consider V. We see that the element of V is a group.

We now state two propositions:
(35) For every morphism f of groups and for every element x of $\{f\}$ holds x is a morphism of groups.
(36) For every morphism from G to H and for every element x of $\{f\}$ holds x is a morphism from G to H.
A non-empty set is called a non-empty set of morphisms of groups if:
(Def.20) for every element x of it holds x is a morphism of groups.

Let M be a non-empty set of morphisms of groups. We see that the element of M is a morphism of groups.

We now state the proposition
(37) For every morphism f of groups holds $\{f\}$ is a non-empty set of morphisms of groups.
Let us consider G, H. A non-empty set of morphisms of groups is called a non-empty set of morphisms from G into H if:
(Def.21) for every element x of it holds x is a morphism from G to H.
The following two propositions are true:
(38) D is a non-empty set of morphisms from G into H if and only if for every element x of D holds x is a morphism from G to H.
(39) For every morphism from G to H holds $\{f\}$ is a non-empty set of morphisms from G into H.
Let us consider G, H. The functor $\operatorname{Morphs}(G, H)$ yields a non-empty set of morphisms from G into H and is defined by:
(Def.22) $\quad x \in \operatorname{Morphs}(G, H)$ if and only if x is a morphism from G to H.
Let us consider G, H, and let M be a non-empty set of morphisms from G into H. We see that the element of M is a morphism from G to H.

Let us consider x, y. The predicate $\mathrm{P}_{\mathrm{ob}} x, y$ is defined by:
(Def.23) there exist arbitrary $x_{1}, x_{2}, x_{3}, x_{4}$ such that $x=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ and there exists G such that $y=G$ and $x_{1}=$ the carrier of G and $x_{2}=$ the addition of G and $x_{3}=$ the reverse-map of G and $x_{4}=$ the zero of G.
One can prove the following two propositions:
(40) For arbitrary x, y_{1}, y_{2} such that $\mathrm{P}_{\mathrm{ob}} x, y_{1}$ and $\mathrm{P}_{\mathrm{ob}} x, y_{2}$ holds $y_{1}=y_{2}$.
(41) There exists x such that $x \in U_{1}$ and $\mathrm{P}_{\mathrm{ob}} x$, the trivial group .

Let us consider U_{1}. The functor $\operatorname{GroupObj}\left(U_{1}\right)$ yields a non-empty set and is defined as follows:
(Def.24) for every y holds $y \in \operatorname{GroupObj}\left(U_{1}\right)$ if and only if there exists x such that $x \in U_{1}$ and $\mathrm{P}_{\mathrm{ob}} x, y$.
The following propositions are true:
(42) The trivial group $\in \operatorname{GroupObj}\left(U_{1}\right)$.
(43) For every element x of $\operatorname{GroupObj}\left(U_{1}\right)$ holds x is a group.

Let us consider U_{1}. Then GroupObj $\left(U_{1}\right)$ is a non-empty set of groups.
Let us consider V. The functor Morphs V yielding a non-empty set of morphisms of groups is defined by:
(Def.25) for every x holds $x \in$ Morphs V if and only if there exist elements G, H of V such that x is a morphism from G to H.
Let us consider V, and let F be an element of Morphs V. Then $\operatorname{dom} F$ is an element of V. Then $\operatorname{cod} F$ is an element of V.

Let us consider V, and let G be an element of V. The functor I_{G} yields an element of Morphs V and is defined by:
(Def.26) $\quad \mathrm{I}_{G}=\mathrm{I}_{G}$.
We now define three new functors. Let us consider V. The functor $\operatorname{dom} V$ yields a function from Morphs V into V and is defined as follows:
(Def.27) for every element f of Morphs V holds $(\operatorname{dom} V)(f)=\operatorname{dom} f$.
The functor $\operatorname{cod} V$ yields a function from Morphs V into V and is defined as follows:
(Def.28) for every element f of Morphs V holds $(\operatorname{cod} V)(f)=\operatorname{cod} f$.
The functor I_{V} yielding a function from V into Morphs V is defined as follows:
(Def.29) for every element G of V holds $\mathrm{I}_{V}(G)=\mathrm{I}_{G}$.
One can prove the following two propositions:
(44) For all elements g, f of Morphs V such that $\operatorname{dom} g=\operatorname{cod} f$ there exist elements G_{1}, G_{2}, G_{3} of V such that g is a morphism from G_{2} to G_{3} and f is a morphism from G_{1} to G_{2}.
(45) For all elements g, f of Morphs V such that $\operatorname{dom} g=\operatorname{cod} f$ holds $g \cdot f \in$ Morphs V.
Let us consider V. The functor comp V yields a partial function from [: Morphs V, Morphs V : to Morphs V and is defined by:
(Def.30) for all elements g, f of Morphs V holds $\langle g, f\rangle \in \operatorname{dom} \operatorname{comp} V$ if and only if $\operatorname{dom} g=\operatorname{cod} f$ and for all elements g, f of Morphs V such that $\langle g$, $f\rangle \in \operatorname{dom} \operatorname{comp} V$ holds $(\operatorname{comp} V)(\langle g, f\rangle)=g \cdot f$.
Let us consider U_{1}. The functor $\operatorname{GroupCat}\left(U_{1}\right)$ yielding a category structure is defined by:
(Def.31) $\operatorname{GroupCat}\left(U_{1}\right)=\left\langle\operatorname{GroupObj}\left(U_{1}\right), \operatorname{Morphs} \operatorname{GroupObj}\left(U_{1}\right)\right.$, dom GroupObj $\left(U_{1}\right)$, cod $\operatorname{GroupObj}\left(U_{1}\right)$, comp $\left.\operatorname{GroupObj}\left(U_{1}\right), \mathrm{I}_{\mathrm{GroupObj}\left(U_{1}\right)}\right)$.
Next we state several propositions:
(46) For all morphisms f, g of $\operatorname{GroupCat}\left(U_{1}\right)$ holds $\langle g, f\rangle \in \operatorname{dom}$ (the composition of $\left.\operatorname{GroupCat}\left(U_{1}\right)\right)$ if and only if $\operatorname{dom} g=\operatorname{cod} f$.
(47) For every morphism f of $\operatorname{GroupCat}\left(U_{1}\right)$ and for every element f^{\prime} of Morphs GroupObj $\left(U_{1}\right)$
and for every object b of $\operatorname{GroupCat}\left(U_{1}\right)$ and for every element b^{\prime} of $\operatorname{GroupObj}\left(U_{1}\right)$ holds f is an element of $\operatorname{Morphs} \operatorname{Group} \operatorname{Obj}\left(U_{1}\right)$ and f^{\prime} is a morphism of $\operatorname{GroupCat}\left(U_{1}\right)$ and b is an element of $\operatorname{GroupObj}\left(U_{1}\right)$ and b^{\prime} is an object of $\operatorname{GroupCat}\left(U_{1}\right)$.
(48) For every object b of $\operatorname{GroupCat}\left(U_{1}\right)$ and for every element b^{\prime} of GroupObj $\left(U_{1}\right)$ such that $b=b^{\prime}$ holds
$\mathrm{id}_{b}=\mathrm{I}_{b^{\prime}}$.
(49) For every morphism f of $\operatorname{GroupCat}\left(U_{1}\right)$ and for every element f^{\prime} of Morphs GroupObj $\left(U_{1}\right)$ such that $f=f^{\prime}$ holds $\operatorname{dom} f=\operatorname{dom} f^{\prime}$ and $\operatorname{cod} f=\operatorname{cod} f^{\prime}$.

Let f, g be morphisms of GroupCat $\left(U_{1}\right)$. Let f^{\prime}, g^{\prime} be elements of Morphs GroupObj $\left(U_{1}\right)$. Suppose $f=f^{\prime}$ and $g=g^{\prime}$. Then
(i) $\operatorname{dom} g=\operatorname{cod} f$ if and only if $\operatorname{dom} g^{\prime}=\operatorname{cod} f^{\prime}$,
(ii) $\operatorname{dom} g=\operatorname{cod} f$ if and only if $\left\langle g^{\prime}, f^{\prime}\right\rangle \in \operatorname{dom}$ comp GroupObj $\left(U_{1}\right)$,
(iii) if $\operatorname{dom} g=\operatorname{cod} f$, then $g \cdot f=g^{\prime} \cdot f^{\prime}$,
(iv) $\quad \operatorname{dom} f=\operatorname{dom} g$ if and only if $\operatorname{dom} f^{\prime}=\operatorname{dom} g^{\prime}$,
(v) $\operatorname{cod} f=\operatorname{cod} g$ if and only if $\operatorname{cod} f^{\prime}=\operatorname{cod} g^{\prime}$.

Let us consider U_{1}. Then $\operatorname{GroupCat}\left(U_{1}\right)$ is a category.
Let us consider U_{1}. The functor $\operatorname{AbGroupObj}\left(U_{1}\right)$ yielding a non-empty subset of the objects of $\operatorname{GroupCat}\left(U_{1}\right)$ is defined as follows:
(Def.32) $\operatorname{AbGroupObj}\left(U_{1}\right)=\left\{G: \bigvee_{H} G=H\right\}$, where G ranges over elements of the objects of $\operatorname{GroupCat}\left(U_{1}\right)$, and H ranges over Abelian groups.
One can prove the following proposition
(51) The trivial group $\in \operatorname{AbGroupObj}\left(U_{1}\right)$.

Let us consider U_{1}. The functor AbGroupCat $\left(U_{1}\right)$ yielding a subcategory of GroupCat $\left(U_{1}\right)$ is defined as follows:
(Def.33) $\operatorname{AbGroupCat}\left(U_{1}\right)=$ cat $\operatorname{AbGroupObj}\left(U_{1}\right)$.
We now state the proposition
(52) The objects of $\operatorname{AbGroupCat}\left(U_{1}\right)=\operatorname{AbGroupObj}\left(U_{1}\right)$.

Let us consider U_{1}. The functor $\frac{1}{2} \operatorname{GroupObj}\left(U_{1}\right)$ yields a non-empty subset of the objects of $\operatorname{AbGroupCat}\left(U_{1}\right)$ and is defined as follows:
(Def.34) $\frac{1}{2} \operatorname{GroupObj}\left(U_{1}\right)=\left\{G: \bigvee_{H} G=H\right\}$, where G ranges over elements of the objects of $\operatorname{AbGroupCat}\left(U_{1}\right)$, and H ranges over groups with the operator $\frac{1}{2}$.
Let us consider U_{1}. The functor $\frac{1}{2} \operatorname{GroupCat}\left(U_{1}\right)$ yields a subcategory of AbGroupCat $\left(U_{1}\right)$ and is defined by:
(Def.35) $\quad \frac{1}{2} \operatorname{GroupCat}\left(U_{1}\right)=$ cat $\frac{1}{2} \operatorname{GroupObj}\left(U_{1}\right)$.
Next we state two propositions:
(53) The objects of $\frac{1}{2} \operatorname{GroupCat}\left(U_{1}\right)=\frac{1}{2} \operatorname{GroupObj}\left(U_{1}\right)$.

The trivial group $\in \frac{1}{2} \operatorname{GroupObj}\left(U_{1}\right)$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Michał Muzalewski. Atlas of Midpoint Algebra. Formalized Mathematics, 2(4):487-491, 1991.
[9] Michał Muzalewski and Wojciech Skaba. Groups, rings, left- and right-modules. Formalized Mathematics, 2(2):275-278, 1991.
[10] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595-600, 1990.
[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[12] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received October 3, 1990

