Categories of Groups

Michał Muzalewski

Summary. We define the category of groups and its subcategories: category of Abelian groups and category of groups with the operator of $\frac{1}{2}$. The carriers of the groups are included in a universum. The universum is a parameter of the categories.

MML Identifier: GRCAT_1.

The articles [13], [2], [14], [3], [1], [11], [7], [5], [4], [12], [10], [6], [9], and [8] provide the notation and terminology for this paper. For simplicity we follow the rules: x, y will be arbitrary, D will be a non-empty set, U_1 will be a universal class, and G, H will be group structures. Let us consider x. Then $\{x\}$ is a non-empty set.

The following propositions are true:

- (1) For all sets X, Y, A and for all x, y such that $\langle x, y \rangle \in A$ and $A \subseteq [X, Y]$ holds x is an element of X and y is an element of Y.
- (2) For all sets X, Y, A and for an arbitrary z such that $z \in A$ and $A \subseteq [X, Y]$ there exists an element x of X and there exists an element y of Y such that $z = \langle x, y \rangle$.
- (3) For all elements u_1 , u_2 , u_3 , u_4 of U_1 holds $\langle u_1, u_2, u_3 \rangle$ is an element of U_1 and $\langle u_1, u_2, u_3, u_4 \rangle$ is an element of U_1 .
- (4) For all x, y such that $x \in y$ and $y \in U_1$ holds $x \in U_1$.

In this article we present several logical schemes. The scheme *PartLambda2* deals with a set \mathcal{A} , a set \mathcal{B} , a set \mathcal{C} , a binary functor \mathcal{F} , and a binary predicate \mathcal{P} , and states that:

there exists a partial function f from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for all x, y holds $\langle x, y \rangle \in \text{dom } f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ and for all x, y such that $\langle x, y \rangle \in \text{dom } f$ holds $f(\langle x, y \rangle) = \mathcal{F}(x, y)$

provided the following requirement is met:

• for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.

The scheme *PartLambda2D* deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a set \mathcal{C} , a binary functor \mathcal{F} , and a binary predicate \mathcal{P} , and states that:

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 there exists a partial function f from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $\langle x, y \rangle \in \text{dom } f$ if and only if $\mathcal{P}[x, y]$ and for every element x of \mathcal{A} and for every element y of \mathcal{B} such that $\langle x, y \rangle \in \text{dom } f$ holds $f(\langle x, y \rangle) = \mathcal{F}(x, y)$

provided the parameters satisfy the following condition:

- for every element x of \mathcal{A} and for every element y of \mathcal{B} such that $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.
- We now define three new functors. op_2 is a binary operation on $\{\emptyset\}$.
- op₁ is a unary operation on $\{\emptyset\}$.

 op_0 is an element of $\{\emptyset\}$.

We now state three propositions:

- (5) $\operatorname{op}_2(\emptyset, \emptyset) = \emptyset$ and $\operatorname{op}_1(\emptyset) = \emptyset$ and $\operatorname{op}_0 = \emptyset$.
- (6) $\{\emptyset\} \in U_1 \text{ and } \langle \{\emptyset\}, \{\emptyset\} \rangle \in U_1 \text{ and } [\{\emptyset\}, \{\emptyset\}\}] \in U_1 \text{ and } op_2 \in U_1 \text{ and } op_1 \in U_1.$
- (7) $\langle \{\emptyset\}, \operatorname{op}_2, \operatorname{op}_1, \operatorname{op}_0 \rangle$ is a group with the operator $\frac{1}{2}$.

The trivial group being a group with the operator $\frac{1}{2}$ is defined as follows:

(Def.1) the trivial group= $\langle \{\emptyset\}, \operatorname{op}_2, \operatorname{op}_1, \operatorname{op}_0 \rangle$.

We now state the proposition

(8) If G = the trivial group, then for every element x of G holds $x = \emptyset$ and for all elements x, y of G holds $x + y = \emptyset$ and for every element x of G holds $-x = \emptyset$ and $0_G = \emptyset$.

In the sequel C denotes a category and O denotes a non-empty subset of the objects of C. Let us consider C, O. The functor MorphsO yields a non-empty subset of the morphisms of C and is defined by:

(Def.2) Morphs $O = \bigcup \{ \hom(a, b) : a \in O \land b \in O \}$, where a ranges over objects of C, and b ranges over objects of C.

We now define four new functors. Let us consider C, O. The functor dom O yielding a function from Morphs O into O is defined by:

(Def.3) $\operatorname{dom} O = (\operatorname{the dom-map} of C) \upharpoonright \operatorname{Morphs} O.$

The functor $\operatorname{cod} O$ yields a function from Morphs O into O and is defined by: (Def.4) $\operatorname{cod} O = (\operatorname{the cod-map} \text{ of } C) \upharpoonright \operatorname{Morphs} O.$

The functor comp O yielding a partial function from [Morphs O, Morphs O qua a non-empty set] to Morphs O is defined as follows:

(Def.5) $\operatorname{comp} O = (\operatorname{the composition of } C) \upharpoonright [\operatorname{Morphs} O, \operatorname{Morphs} O].$

The functor I_O yielding a function from O into Morphs O is defined by:

(Def.6) $I_O = (\text{the id-map of } C) \upharpoonright O.$

Next we state the proposition

(9) $\langle O, \text{Morphs} O, \text{dom} O, \text{cod} O, \text{comp} O, I_O \rangle$ is full subcategory of C.

Let us consider C, O. The functor cat O yielding a subcategory of C is defined as follows:

(Def.7) $\operatorname{cat} O = \langle O, \operatorname{Morphs} O, \operatorname{dom} O, \operatorname{cod} O, \operatorname{comp} O, \operatorname{I}_O \rangle.$

Next we state the proposition

(10) The objects of $\cot O = O$.

Let us consider G, H. A map from G into H is a function from the carrier of G into the carrier of H.

Let G_1 , G_2 , G_3 be group structures, and let f be a map from G_1 into G_2 , and let g be a map from G_2 into G_3 . Then $g \cdot f$ is a map from G_1 into G_3 .

Let us consider G. The functor id_G yields a map from G into G and is defined by:

(Def.8) $\operatorname{id}_G = \operatorname{id}_{(\text{the carrier of } G)}.$

One can prove the following two propositions:

- (11) For every element x of G holds $id_G(x) = x$.
- (12) For every map f from G into H holds $f \cdot id_G = f$ and $id_H \cdot f = f$.

Let us consider G, H. The functor zero(G, H) yielding a map from G into H is defined by:

(Def.9) $\operatorname{zero}(G, H) = (\text{the carrier of } G) \longmapsto 0_H.$

Let us consider G, H, and let f be a map from G into H. We say that f is additive if and only if:

(Def.10) for all elements x, y of G holds f(x+y) = f(x) + f(y).

One can prove the following propositions:

- (13) For all G_1 , G_2 , G_3 being group structures and for every map f from G_1 into G_2 and for every map g from G_2 into G_3 and for every element x of G_1 holds $(g \cdot f)(x) = g(f(x))$.
- (14) For all G_1 , G_2 , G_3 being group structures and for every map f from G_1 into G_2 and for every map g from G_2 into G_3 such that f is additive and g is additive holds $g \cdot f$ is additive.
- (15) For every element x of G holds $(\operatorname{zero}(G, H))(x) = 0_H$.
- (16) For every group H holds $\operatorname{zero}(G, H)$ is additive.

In the sequel G, H are groups. We consider group morphism structures which are systems

 $\langle a \text{ dom-map}, a \text{ cod-map}, a \text{ Fun} \rangle$,

where the dom-map, the cod-map are a group and the Fun is a map from the dom-map into the cod-map.

We now define two new functors. Let f be a group morphism structure. The functor dom f yielding a group is defined as follows:

(Def.11) $\operatorname{dom} f = \operatorname{the dom-map} \operatorname{of} f.$

The functor $\operatorname{cod} f$ yields a group and is defined by:

(Def.12) $\operatorname{cod} f = \operatorname{the \ cod-map \ of \ } f.$

Let f be a group morphism structure. The functor fun f yields a map from dom f into cod f and is defined by:

(Def.13) fun f = the Fun of f.

Next we state the proposition

(17) For every f being a group morphism structure and for all groups G_1 , G_2 and for every map f_0 from G_1 into G_2 such that $f = \langle G_1, G_2, f_0 \rangle$ holds dom $f = G_1$ and cod $f = G_2$ and fun $f = f_0$.

Let us consider G, H. The functor ZERO G yielding a group morphism structure is defined as follows:

(Def.14) ZERO $G = \langle G, H, \operatorname{zero}(G, H) \rangle$.

A group morphism structure is said to be a morphism of groups if:

(Def.15) funit is additive.

One can prove the following proposition

(18) For every morphism F of groups holds the Fun of F is additive.

Let us consider G, H. Then ZERO G is a morphism of groups.

Let us consider G, H. A morphism of groups is said to be a morphism from G to H if:

(Def.16) dom it = G and cod it = H.

We now state three propositions:

- (19) For every f being a group morphism structure such that dom f = G and cod f = H and fun f is additive holds f is a morphism from G to H.
- (20) For every map f from G into H such that f is additive holds $\langle G, H, f \rangle$ is a morphism from G to H.
- (21) id_G is additive.

Let us consider G. The functor I_G yields a morphism from G to G and is defined by:

(Def.17) $I_G = \langle G, G, id_G \rangle.$

Let us consider G, H. Then ZERO G is a morphism from G to H.

We now state several propositions:

- (22) For every morphism F from G to H there exists a map f from G into H such that $F = \langle G, H, f \rangle$ and f is additive.
- (23) For every morphism F from G to H there exists a map f from G into H such that $F = \langle G, H, f \rangle$.
- (24) For every morphism F of groups there exist G, H such that F is a morphism from G to H.
- (25) For every morphism F of groups there exist groups G, H and there exists a map f from G into H such that F is a morphism from G to H and $F = \langle G, H, f \rangle$ and f is additive.
- (26) For all morphisms g, f of groups such that dom $g = \operatorname{cod} f$ there exist groups G_1 , G_2 , G_3 such that g is a morphism from G_2 to G_3 and f is a morphism from G_1 to G_2 .
- (27) For every morphism F of groups holds F is a morphism from dom F to $\operatorname{cod} F$.

Let G, F be morphisms of groups. Let us assume that dom $G = \operatorname{cod} F$. The functor $G \cdot F$ yielding a morphism of groups is defined by:

(Def.18) for all groups G_1 , G_2 , G_3 and for every map g from G_2 into G_3 and for every map f from G_1 into G_2 such that $G = \langle G_2, G_3, g \rangle$ and $F = \langle G_1, G_2, f \rangle$ holds $G \cdot F = \langle G_1, G_3, g \cdot f \rangle$.

Next we state the proposition

(28) For all groups G_1 , G_2 , G_3 and for every morphism G from G_2 to G_3 and for every morphism F from G_1 to G_2 holds $G \cdot F$ is a morphism from G_1 to G_3 .

Let G_1 , G_2 , G_3 be groups, and let G be a morphism from G_2 to G_3 , and let F be a morphism from G_1 to G_2 . Then $G \cdot F$ is a morphism from G_1 to G_3 .

The following propositions are true:

- (29) For all groups G_1 , G_2 , G_3 and for every morphism G from G_2 to G_3 and for every morphism F from G_1 to G_2 and for every map g from G_2 into G_3 and for every map f from G_1 into G_2 such that $G = \langle G_2, G_3, g \rangle$ and $F = \langle G_1, G_2, f \rangle$ holds $G \cdot F = \langle G_1, G_3, g \cdot f \rangle$.
- (30) For all morphisms f, g of groups such that dom $g = \operatorname{cod} f$ there exist groups G_1, G_2, G_3 and there exists a map f_0 from G_1 into G_2 and there exists a map g_0 from G_2 into G_3 such that $f = \langle G_1, G_2, f_0 \rangle$ and $g = \langle G_2, G_3, g_0 \rangle$ and $g \cdot f = \langle G_1, G_3, g_0 \cdot f_0 \rangle$.
- (31) For all morphisms f, g of groups such that dom $g = \operatorname{cod} f$ holds dom $(g \cdot f) = \operatorname{dom} f$ and $\operatorname{cod}(g \cdot f) = \operatorname{cod} g$.
- (32) For all groups G_1 , G_2 , G_3 , G_4 and for every morphism f from G_1 to G_2 and for every morphism g from G_2 to G_3 and for every morphism h from G_3 to G_4 holds $h \cdot (g \cdot f) = h \cdot g \cdot f$.
- (33) For all morphisms f, g, h of groups such that dom $h = \operatorname{cod} g$ and dom $g = \operatorname{cod} f$ holds $h \cdot (g \cdot f) = h \cdot g \cdot f$.
- (34) dom(I_G) = G and cod(I_G) = G and for every morphism f of groups such that cod f = G holds I_G · f = f and for every morphism g of groups such that dom g = G holds $g \cdot I_G = g$.

A non-empty set is called a non-empty set of groups if:

(Def.19) for every element x of it holds x is a group.

In the sequel V will be a non-empty set of groups. Let us consider V. We see that the element of V is a group.

We now state two propositions:

- (35) For every morphism f of groups and for every element x of $\{f\}$ holds x is a morphism of groups.
- (36) For every morphism f from G to H and for every element x of $\{f\}$ holds x is a morphism from G to H.

A non-empty set is called a non-empty set of morphisms of groups if:

(Def.20) for every element x of it holds x is a morphism of groups.

Let M be a non-empty set of morphisms of groups. We see that the element of M is a morphism of groups.

We now state the proposition

(37) For every morphism f of groups holds $\{f\}$ is a non-empty set of morphisms of groups.

Let us consider G, H. A non-empty set of morphisms of groups is called a non-empty set of morphisms from G into H if:

(Def.21) for every element x of it holds x is a morphism from G to H.

The following two propositions are true:

- (38) D is a non-empty set of morphisms from G into H if and only if for every element x of D holds x is a morphism from G to H.
- (39) For every morphism f from G to H holds $\{f\}$ is a non-empty set of morphisms from G into H.

Let us consider G, H. The functor Morphs(G, H) yields a non-empty set of morphisms from G into H and is defined by:

(Def.22) $x \in Morphs(G, H)$ if and only if x is a morphism from G to H.

Let us consider G, H, and let M be a non-empty set of morphisms from G into H. We see that the element of M is a morphism from G to H.

Let us consider x, y. The predicate $P_{ob} x, y$ is defined by:

(Def.23) there exist arbitrary x_1 , x_2 , x_3 , x_4 such that $x = \langle x_1, x_2, x_3, x_4 \rangle$ and there exists G such that y = G and $x_1 =$ the carrier of G and $x_2 =$ the addition of G and $x_3 =$ the reverse-map of G and $x_4 =$ the zero of G.

One can prove the following two propositions:

- (40) For arbitrary x, y_1, y_2 such that $P_{ob} x, y_1$ and $P_{ob} x, y_2$ holds $y_1 = y_2$.
- (41) There exists x such that $x \in U_1$ and $P_{ob} x$, the trivial group.

Let us consider U_1 . The functor GroupObj (U_1) yields a non-empty set and is defined as follows:

(Def.24) for every y holds $y \in \text{GroupObj}(U_1)$ if and only if there exists x such that $x \in U_1$ and $P_{\text{ob}} x, y$.

The following propositions are true:

- (42) The trivial group \in Group $Obj(U_1)$.
- (43) For every element x of $\operatorname{GroupObj}(U_1)$ holds x is a group.

Let us consider U_1 . Then GroupObj (U_1) is a non-empty set of groups.

Let us consider V. The functor Morphs V yielding a non-empty set of morphisms of groups is defined by:

(Def.25) for every x holds $x \in Morphs V$ if and only if there exist elements G, H of V such that x is a morphism from G to H.

Let us consider V, and let F be an element of Morphs V. Then dom F is an element of V. Then cod F is an element of V.

Let us consider V, and let G be an element of V. The functor I_G yields an element of Morphs V and is defined by:

 $(Def.26) \quad I_G = I_G.$

We now define three new functors. Let us consider V. The functor dom V yields a function from Morphs V into V and is defined as follows:

(Def.27) for every element f of Morphs V holds $(\operatorname{dom} V)(f) = \operatorname{dom} f$.

The functor $\operatorname{cod} V$ yields a function from Morphs V into V and is defined as follows:

(Def.28) for every element f of Morphs V holds $(\operatorname{cod} V)(f) = \operatorname{cod} f$.

The functor I_V yielding a function from V into Morphs V is defined as follows:

(Def.29) for every element G of V holds $I_V(G) = I_G$.

One can prove the following two propositions:

- (44) For all elements g, f of Morphs V such that dom $g = \operatorname{cod} f$ there exist elements G_1 , G_2 , G_3 of V such that g is a morphism from G_2 to G_3 and f is a morphism from G_1 to G_2 .
- (45) For all elements g, f of Morphs V such that dom $g = \operatorname{cod} f$ holds $g \cdot f \in Morphs V$.

Let us consider V. The functor $\operatorname{comp} V$ yields a partial function from [Morphs V, Morphs V] to Morphs V and is defined by:

(Def.30) for all elements g, f of Morphs V holds $\langle g, f \rangle \in \text{dom comp } V$ if and only if dom g = cod f and for all elements g, f of Morphs V such that $\langle g, f \rangle \in \text{dom comp } V$ holds $(\text{comp } V)(\langle g, f \rangle) = g \cdot f$.

Let us consider U_1 . The functor $\operatorname{GroupCat}(U_1)$ yielding a category structure is defined by:

(Def.31) GroupCat $(U_1) = \langle \text{GroupObj}(U_1), \text{Morphs GroupObj}(U_1), \\ \text{dom GroupObj}(U_1), \text{cod GroupObj}(U_1), \text{comp GroupObj}(U_1), \text{I}_{\text{GroupObj}(U_1)} \rangle.$

Next we state several propositions:

- (46) For all morphisms f, g of $\operatorname{GroupCat}(U_1)$ holds $\langle g, f \rangle \in \operatorname{dom}$ (the composition of $\operatorname{GroupCat}(U_1)$) if and only if $\operatorname{dom} g = \operatorname{cod} f$.
- (47) For every morphism f of $\operatorname{GroupCat}(U_1)$ and for every element f' of Morphs $\operatorname{GroupObj}(U_1)$ and for every object b of $\operatorname{GroupCat}(U_1)$ and for every element b' of $\operatorname{GroupObj}(U_1)$ holds f is an element of $\operatorname{Morphs} \operatorname{GroupObj}(U_1)$ and f'is a morphism of $\operatorname{GroupCat}(U_1)$ and b is an element of $\operatorname{GroupObj}(U_1)$ and b' is an object of $\operatorname{GroupCat}(U_1)$.
- (48) For every object b of GroupCat (U_1) and for every element b' of GroupObj (U_1) such that b = b' holds $\mathrm{id}_b = \mathrm{I}_{b'}$.
- (49) For every morphism f of $\operatorname{GroupCat}(U_1)$ and for every element f' of Morphs $\operatorname{GroupObj}(U_1)$ such that f = f' holds dom $f = \operatorname{dom} f'$ and $\operatorname{cod} f = \operatorname{cod} f'$.

- (50) Let f, g be morphisms of $\operatorname{GroupCat}(U_1)$. Let f', g' be elements of Morphs $\operatorname{GroupObj}(U_1)$. Suppose f = f' and g = g'. Then
 - (i) dom $g = \operatorname{cod} f$ if and only if dom $g' = \operatorname{cod} f'$,
- (ii) dom $g = \operatorname{cod} f$ if and only if $\langle g', f' \rangle \in \operatorname{dom} \operatorname{comp} \operatorname{GroupObj}(U_1)$,
- (iii) if dom $g = \operatorname{cod} f$, then $g \cdot f = g' \cdot f'$,
- (iv) dom $f = \operatorname{dom} g$ if and only if dom $f' = \operatorname{dom} g'$,
- (v) $\operatorname{cod} f = \operatorname{cod} g$ if and only if $\operatorname{cod} f' = \operatorname{cod} g'$.
- Let us consider U_1 . Then GroupCat (U_1) is a category.

Let us consider U_1 . The functor AbGroupObj (U_1) yielding a non-empty subset of the objects of GroupCat (U_1) is defined as follows:

(Def.32) AbGroupObj $(U_1) = \{G : \bigvee_H G = H\}$, where G ranges over elements of the objects of GroupCat (U_1) , and H ranges over Abelian groups.

One can prove the following proposition

(51) The trivial group \in AbGroupObj (U_1) .

Let us consider U_1 . The functor AbGroupCat (U_1) yielding a subcategory of GroupCat (U_1) is defined as follows:

(Def.33) $AbGroupCat(U_1) = cat AbGroupObj(U_1).$

We now state the proposition

(52) The objects of AbGroupCat (U_1) = AbGroupObj (U_1) .

Let us consider U_1 . The functor $\frac{1}{2}$ GroupObj (U_1) yields a non-empty subset of the objects of AbGroupCat (U_1) and is defined as follows:

(Def.34) $\frac{1}{2}$ GroupObj $(U_1) = \{G : \bigvee_H G = H\}$, where G ranges over elements of the objects of AbGroupCat (U_1) , and H ranges over groups with the operator $\frac{1}{2}$.

Let us consider U_1 . The functor $\frac{1}{2}$ GroupCat (U_1) yields a subcategory of AbGroupCat (U_1) and is defined by:

(Def.35) $\frac{1}{2}$ GroupCat $(U_1) = \operatorname{cat} \frac{1}{2}$ GroupObj (U_1) .

Next we state two propositions:

- (53) The objects of $\frac{1}{2}$ GroupCat $(U_1) = \frac{1}{2}$ GroupObj (U_1) .
- (54) The trivial group $\in \frac{1}{2}$ GroupObj (U_1) .

References

- [1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.

- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [8] Michał Muzalewski. Atlas of Midpoint Algebra. Formalized Mathematics, 2(4):487–491, 1991.
- Michał Muzalewski and Wojciech Skaba. Groups, rings, left- and right-modules. Formalized Mathematics, 2(2):275–278, 1991.
- [10] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595–600, 1990.
- [11] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [12] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.

Received October 3, 1990