Cartesian Product of Functions

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. A supplement of [3] and [2], i.e. some useful and explanatory properties of the product and also the curried and uncurried functions are shown. Besides, the functions yielding functions are considered: two different products and other operation of such functions are introduced. Finally, two facts are presented: quasi-distributivity of the power of the set to other one w.r.t. the union $\left(X_{x} \biguplus_{x} f(x) \approx \prod_{x} X^{f(x)}\right)$ and quasi-distributivity of the poroduct w.r.t. the raising to the power $\left(\prod_{x} f(x)^{X} \approx\left(\prod_{x} f(x)\right)^{X}\right)$.

MML Identifier: FUNCT_6.

The articles [16], [14], [8], [17], [5], [12], [9], [11], [6], [4], [13], [15], [7], [10], [2], [1], and [3] provide the notation and terminology for this paper.

Properties of Cartesian product

For simplicity we follow the rules: x, y, y_{1}, y_{2}, z, a will be arbitrary, f, g, $h, h^{\prime}, f_{1}, f_{2}$ will denote functions, i will denote a natural number, X, Y, Z, V_{1}, V_{2} will denote sets, P will denote a permutation of $X, D, D_{1}, D_{2}, D_{3}$ will denote non-empty sets, d_{1} will denote an element of D_{1}, d_{2} will denote an element of D_{2}, and d_{3} will denote an element of D_{3}. We now state a number of propositions:
(1) $x \in \Pi\langle X\rangle$ if and only if there exists y such that $y \in X$ and $x=\langle y\rangle$.
(2) $z \in \Pi\langle X, Y\rangle$ if and only if there exist x, y such that $x \in X$ and $y \in Y$ and $z=\langle x, y\rangle$.
(3) $\quad a \in \Pi\langle X, Y, Z\rangle$ if and only if there exist x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ and $a=\langle x, y, z\rangle$.
(4) $\Pi\langle D\rangle=D^{1}$.
(5) $\Pi\left\langle D_{1}, D_{2}\right\rangle=\left\{\left\langle d_{1}, d_{2}\right\rangle\right\}$.
(6) $\Pi\langle D, D\rangle=D^{2}$.
(7) $\Pi\left\langle D_{1}, D_{2}, D_{3}\right\rangle=\left\{\left\langle d_{1}, d_{2}, d_{3}\right\rangle\right\}$.
(8) $\Pi\langle D, D, D\rangle=D^{3}$.
(9) $\quad \Pi(i \longmapsto D)=D^{i}$.
$\Pi f \subseteq(\cup f)^{\operatorname{dom} f}$.
Curried and uncurried functions of some functions
The following propositions are true:
(11) If $x \in \operatorname{dom} \curvearrowleft f$, then there exist y, z such that $x=\langle y, z\rangle$.

$$
\begin{equation*}
\curvearrowleft([: X, Y: \longmapsto \longmapsto z)=[: Y, X:] \longmapsto z . \tag{12}
\end{equation*}
$$

curry $f=$ curry $^{\prime} \curvearrowleft f$ and uncurry $f=\curvearrowleft$ uncurry' f.
(14) If $: X, Y: \neq \emptyset$, then $\operatorname{curry}(: X, Y: \longmapsto z)=X \longmapsto(Y \longmapsto z)$ and $\operatorname{curry}^{\prime}([X, Y: \longmapsto z)=Y \longmapsto(X \longmapsto z)$.
(15) $\quad \operatorname{uncurry}(X \longmapsto(Y \longmapsto z))=\left\lceil X, Y: \longmapsto z\right.$ and $u^{2} \longmapsto \operatorname{uncr}^{\prime}(X \longmapsto$ $(Y \longmapsto z))=\lceil Y, X: \longmapsto z$.
(16) If $x \in \operatorname{dom} f$ and $g=f(x)$, then $\operatorname{rng} g \subseteq \operatorname{rng}$ uncurry f and $\operatorname{rng} g \subseteq$ rng uncurry' f.
(17) $\operatorname{dom} \operatorname{uncurry}(X \longmapsto f)=\{X, \operatorname{dom} f:$ and $\operatorname{rng} \operatorname{uncurry}(X \longmapsto f) \subseteq$ $\operatorname{rng} f$ and dom uncurry ${ }^{\prime}(X \longmapsto f)=\left\{\operatorname{dom} f, X:\right.$ and rng uncurry $^{\prime}(X \longmapsto$ $f) \subseteq \operatorname{rng} f$.
(18) If $X \neq \emptyset$, then rng uncurry $(X \longmapsto f)=\operatorname{rng} f$ and rng uncurry ${ }^{\prime}(X \longmapsto$ $f)=\operatorname{rng} f$.
(19) If $: X, Y: \neq \emptyset$ and $f \in Z^{\{X, Y:}$, then curry $f \in\left(Z^{Y}\right)^{X}$ and curry' $f \in$ $\left(Z^{X}\right)^{Y}$.
(20) If $f \in\left(Z^{Y}\right)^{X}$, then uncurry $f \in Z^{\{X, Y}:$ and uncurry' $f \in Z^{\{Y, X \exists}$.
(21) If curry $f \in\left(Z^{Y}\right)^{X}$ or curry' $f \in\left(Z^{X}\right)^{Y}$ but $\operatorname{dom} f \subseteq: V_{1}, V_{2}$:, then $f \in Z^{\{X, Y]}$.
(22) If uncurry $f \in Z^{〔 X, Y \sharp}$ or uncurry' $f \in Z^{\{Y, X]}$ but rng $f \subseteq V_{1} \dot{\rightarrow} V_{2}$ and $\operatorname{dom} f=X$, then $f \in\left(Z^{Y}\right)^{X}$.
(23) If $f \in[: X, Y: \dot{\rightarrow} Z$, then curry $f \in X \dot{\rightarrow}(Y \dot{\rightarrow} Z)$ and curry' $f \in Y \dot{\rightarrow}(X \dot{\rightarrow} Z)$.
(24) If $f \in X \dot{\rightarrow}(Y \dot{\rightarrow} Z)$, then uncurry $f \in\{X, Y: \dot{\rightarrow} Z$ and uncurry' $f \in: Y$, $X: \dot{\rightarrow} Z$.
(25) If curry $f \in X \dot{\rightarrow}(Y \dot{\rightarrow} Z)$ or curry' $f \in Y \dot{\rightarrow}(X \dot{\rightarrow} Z)$ but $\operatorname{dom} f \subseteq: V_{1}$, $V_{2}:$, then $f \in[X, Y:] \rightarrow Z$.
(26) If uncurry $f \in\{X, Y:] \rightarrow Z$ or uncurry' $f \in: Y, X:] \rightarrow Z$ but $\operatorname{rng} f \subseteq$ $V_{1} \dot{\rightarrow} V_{2}$ and $\operatorname{dom} f \subseteq X$, then $f \in X \dot{\rightarrow}(Y \dot{\rightarrow} Z)$.

Functions yielding functions

Let X be a set. The functor $\operatorname{Sub}_{\mathrm{f}} X$ is defined as follows:
(Def.1) $\quad x \in \operatorname{Sub}_{\mathrm{f}} X$ if and only if $x \in X$ and x is a function.

Next we state four propositions:
(27) $\operatorname{Sub}_{\mathrm{f}} X \subseteq X$.
(28) $\quad x \in f^{-1} \operatorname{Sub}_{\mathrm{f}} \mathrm{rng} f$ if and only if $x \in \operatorname{dom} f$ and $f(x)$ is a function.
$\operatorname{Sub}_{\mathrm{f}} \emptyset=\emptyset$ and $\operatorname{Sub}_{\mathrm{f}}\{f\}=\{f\}$ and $\operatorname{Sub}_{\mathrm{f}}\{f, g\}=\{f, g\}$ and $\operatorname{Sub}_{f}\{f, g, h\}=\{f, g, h\}$.
(30) If $Y \subseteq \operatorname{Sub}_{\mathrm{f}} X$, then $\operatorname{Sub}_{\mathrm{f}} Y=Y$.

We now define three new functors. Let f be a function. The functor $\operatorname{dom}_{\kappa} f(\kappa)$ yielding a function is defined by:
(Def.2) $\quad \operatorname{dom}\left(\operatorname{dom}_{\kappa} f(\kappa)\right)=f^{-1} \operatorname{Sub}_{\mathrm{f}} \operatorname{rng} f$ and for every x such that $x \in f^{-1}$ Sub $_{\mathrm{f}} \mathrm{rng} f$ holds $\left(\operatorname{dom}_{\kappa} f(\kappa)\right)(x)=\pi_{1}(f(x))$.
The functor $\mathrm{rng}_{\kappa} f(\kappa)$ yields a function and is defined as follows:
(Def.3) $\quad \operatorname{dom}\left(\mathrm{rng}_{\kappa} f(\kappa)\right)=f^{-1} \operatorname{Sub}_{\mathrm{f}} \mathrm{rng} f$ and for every x such that $x \in f^{-1}$ Sub $_{\mathrm{f}} \mathrm{rng} f$ holds $\left(\mathrm{rng}_{\kappa} f(\kappa)\right)(x)=\pi_{2}(f(x))$.
The functor $\cap f$ is defined as follows:
(Def.4) $\quad \cap f=\bigcap \operatorname{rng} f$.
Next we state a number of propositions:
(31) If $x \in \operatorname{dom} f$ and $g=f(x)$, then $x \in \operatorname{dom}\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$ and $\left(\operatorname{dom}_{\kappa} f(\kappa)\right)(x)=\operatorname{dom} g$
and $x \in \operatorname{dom}\left(\operatorname{rng}_{\kappa} f(\kappa)\right)$ and $\left(\operatorname{rng}_{\kappa} f(\kappa)\right)(x)=\operatorname{rng} g$.
(32) $\quad \operatorname{dom}_{\kappa} \square(\kappa)=\square$ and $\operatorname{rng}_{\kappa} \square(\kappa)=\square$.
(33) $\quad \operatorname{dom}_{\kappa}\langle f\rangle(\kappa)=\langle\operatorname{dom} f\rangle$ and $\operatorname{rng}_{\kappa}\langle f\rangle(\kappa)=\langle\operatorname{rng} f\rangle$.
(34) $\operatorname{dom}_{\kappa}\langle f, g\rangle(\kappa)=\langle\operatorname{dom} f, \operatorname{dom} g\rangle$ and $\mathrm{rng}_{\kappa}\langle f, g\rangle(\kappa)=\langle\operatorname{rng} f, \operatorname{rng} g\rangle$
(35) $\operatorname{dom}_{\kappa}\langle f, g, h\rangle(\kappa)=\langle\operatorname{dom} f, \operatorname{dom} g, \operatorname{dom} h\rangle$ and $\operatorname{rng}_{\kappa}\langle f, g, h\rangle(\kappa)=\langle\operatorname{rng} f$, $\operatorname{rng} g, \operatorname{rng} h\rangle$.
(36) $\quad \operatorname{dom}_{\kappa}(X \longmapsto f)(\kappa)=X \longmapsto \operatorname{dom} f$ and $\operatorname{rng}_{\kappa}(X \longmapsto f)(\kappa)=X \longmapsto$ rng f.
(37) If $f \neq \square$, then $x \in \bigcap f$ if and only if for every y such that $y \in \operatorname{dom} f$ holds $x \in f(y)$.
(38) $\cup \square=\emptyset$ and $\cap \square=\emptyset$.
(39) $\cup\langle X\rangle=X$ and $\cap\langle X\rangle=X$.
(40) $\cup\langle X, Y\rangle=X \cup Y$ and $\cap\langle X, Y\rangle=X \cap Y$.
(41) $\cup\langle X, Y, Z\rangle=X \cup Y \cup Z$ and $\cap\langle X, Y, Z\rangle=X \cap Y \cap Z$.
(42) $\quad \cup(\emptyset \longmapsto Y)=\emptyset$ and $\cap(\emptyset \longmapsto Y)=\emptyset$.
(43) If $X \neq \emptyset$, then $\cup(X \longmapsto Y)=Y$ and $\cap(X \longmapsto Y)=Y$.

Let f be a function, and let x, y be arbitrary. The functor $f(x)(y)$ is defined by:
(Def.5) $\quad f(x)(y)=($ uncurry $f)(\langle x, y\rangle)$.
We now state several propositions:
(44) If $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$, then $f(x)(y)=g(y)$.
(45) If $x \in \operatorname{dom} f$, then $\langle f\rangle(1)(x)=f(x)$ and $\langle f, g\rangle(1)(x)=f(x)$ and $\langle f, g$, $h\rangle(1)(x)=f(x)$.
(46) If $x \in \operatorname{dom} g$, then $\langle f, g\rangle(2)(x)=g(x)$ and $\langle f, g, h\rangle(2)(x)=g(x)$.
(47) If $x \in \operatorname{dom} h$, then $\langle f, g, h\rangle(3)(x)=h(x)$.

If $x \in X$ and $y \in \operatorname{dom} f$, then $(X \longmapsto f)(x)(y)=f(y)$.

Cartesian product of functions with the same domain

Let f be a function. The functor $\Pi^{*} f$ yielding a function is defined as follows:
(Def.6) $\quad \Pi^{*} f=\operatorname{curry}\left(\right.$ uncurry' $^{\prime} f \upharpoonright \emptyset \cap\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$, $\operatorname{dom} f:$).
We now state several propositions:
$\operatorname{dom} \Pi^{*} f=\bigcap\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$ and $\operatorname{rng} \Pi^{*} f \subseteq \Pi\left(\mathrm{rng}_{\kappa} f(\kappa)\right)$.
If $x \in \operatorname{dom} \Pi^{*} f$, then $\left(\Pi^{*} f\right)(x)$ is a function.
If $x \in \operatorname{dom} \Pi^{*} f$ and $g=\left(\Pi^{*} f\right)(x)$, then $\operatorname{dom} g=f^{-1} \operatorname{Sub}_{\mathrm{f}} \mathrm{rng} f$ and for every y such that $y \in \operatorname{dom} g$ holds $\langle y, x\rangle \in \operatorname{dom}$ uncurry f and $g(y)=($ uncurry $f)(\langle y, x\rangle)$.
(52) If $x \in \operatorname{dom} \prod^{*} f$, then for every g such that $g \in \operatorname{rng} f$ holds $x \in \operatorname{dom} g$.
(53) If $g \in \operatorname{rng} f$ and for every g such that $g \in \operatorname{rng} f$ holds $x \in \operatorname{dom} g$, then $x \in \operatorname{dom} \prod^{*} f$.
(54) If $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} \Pi^{*} f$ and $h=\left(\Pi^{*} f\right)(y)$, then $g(y)=h(x)$.
(55) If $x \in \operatorname{dom} f$ and $f(x)$ is a function and $y \in \operatorname{dom} \prod^{*} f$, then $f(x)(y)=$ $\left(\Pi^{*} f\right)(y)(x)$.

Cartesian product of functions

Let f be a function. The functor $\Pi^{\circ} f$ yielding a function is defined by the conditions (Def.7).
(Def.7) (i) $\quad \operatorname{dom} \Pi^{\circ} f=\Pi\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$,
(ii) for every g such that $g \in \prod\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$ there exists h such that $\left(\Pi^{\circ} f\right)(g)=h$ and dom $h=f^{-1} \operatorname{Sub}_{\mathrm{f}} \mathrm{rng} f$ and for every x such that $x \in \operatorname{dom} h$ holds $h(x)=($ uncurry $f)(\langle x, g(x)\rangle)$.

The following propositions are true:
(56) If $g \in \Pi\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$ and $x \in \operatorname{dom} g$, then $\left(\Pi^{\circ} f\right)(g)(x)=f(x)(g(x))$. then $h(x) \in \operatorname{dom} g$ and $h^{\prime}(x)=g(h(x))$ and $h^{\prime} \in \Pi\left(\operatorname{rng}_{\kappa} f(\kappa)\right)$.

$$
\begin{equation*}
\operatorname{rng} \Pi^{\circ} f=\Pi\left(\operatorname{rng}_{\kappa} f(\kappa)\right) \tag{57}
\end{equation*}
$$

If $\square \notin \operatorname{rng} f$, then $\Pi^{\circ} f$ is one-to-one if and only if for every g such that $g \in \operatorname{rng} f$ holds g is one-to-one.

Properties of Cartesian products of functions

The following propositions are true:
(60) $\quad \Pi^{*} \square=\square$ and $\Pi^{\circ} \square=\{\square\} \longmapsto \square$.
(61) $\operatorname{dom} \prod^{*}\langle h\rangle=\operatorname{dom} h$ and for every x such that $x \in \operatorname{dom} h$ holds $\left(\Pi^{*}\langle h\rangle\right)(x)=\langle h(x)\rangle$.
(62) $\quad \operatorname{dom} \prod^{*}\left\langle f_{1}, f_{2}\right\rangle=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every x such that $x \in \operatorname{dom} f_{1} \cap$ $\operatorname{dom} f_{2}$ holds $\left(\Pi^{*}\left\langle f_{1}, f_{2}\right\rangle\right)(x)=\left\langle f_{1}(x), f_{2}(x)\right\rangle$.
(63) If $X \neq \emptyset$, then $\operatorname{dom} \Pi^{*}(X \longmapsto f)=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $\left(\Pi^{*}(X \longmapsto f)\right)(x)=X \longmapsto f(x)$.
(64) $\operatorname{dom} \Pi^{\circ}\langle h\rangle=\Pi\langle\operatorname{dom} h\rangle$ and $\operatorname{rng} \Pi^{\circ}\langle h\rangle=\Pi\langle\operatorname{rng} h\rangle$ and for every x such that $x \in \operatorname{dom} h$ holds $\left(\Pi^{\circ}\langle h\rangle\right)(\langle x\rangle)=\langle h(x)\rangle$.
(65) (i) $\operatorname{dom} \Pi^{\circ}\left\langle f_{1}, f_{2}\right\rangle=\Pi\left\langle\operatorname{dom} f_{1}, \operatorname{dom} f_{2}\right\rangle$,
(ii) $\operatorname{rng} \Pi^{\circ}\left\langle f_{1}, f_{2}\right\rangle=\Pi\left\langle\operatorname{rng} f_{1}, \operatorname{rng} f_{2}\right\rangle$,
(iii) for all x, y such that $x \in \operatorname{dom} f_{1}$ and $y \in \operatorname{dom} f_{2}$ holds $\left(\prod^{\circ}\left\langle f_{1}, f_{2}\right\rangle\right)(\langle x$, $y\rangle)=\left\langle f_{1}(x), f_{2}(y)\right\rangle$.
(66) $\quad \operatorname{dom} \Pi^{\circ}(X \longmapsto f)=(\operatorname{dom} f)^{X}$ and $\operatorname{rng} \Pi^{\circ}(X \longmapsto f)=(\operatorname{rng} f)^{X}$ and for every g such that $g \in(\operatorname{dom} f)^{X}$ holds $\left(\Pi^{\circ}(X \longmapsto f)\right)(g)=f \cdot g$.
(67) If $x \in \operatorname{dom} f_{1}$ and $x \in \operatorname{dom} f_{2}$, then for all y_{1}, y_{2} holds $\left\langle f_{1}, f_{2}\right\rangle(x)=\left\langle y_{1}\right.$, $\left.y_{2}\right\rangle$ if and only if $\left(\Pi^{*}\left\langle f_{1}, f_{2}\right\rangle\right)(x)=\left\langle y_{1}, y_{2}\right\rangle$.
(68) If $x \in \operatorname{dom} f_{1}$ and $y \in \operatorname{dom} f_{2}$, then for all y_{1}, y_{2} holds : $f_{1}, f_{2} \ddagger(\langle x$, $y\rangle)=\left\langle y_{1}, y_{2}\right\rangle$ if and only if $\left(\Pi^{\circ}\left\langle f_{1}, f_{2}\right\rangle\right)(\langle x, y\rangle)=\left\langle y_{1}, y_{2}\right\rangle$.
(69) If $\operatorname{dom} f=X$ and $\operatorname{dom} g=X$ and for every x such that $x \in X$ holds $f(x) \approx g(x)$, then $\Pi f \approx \prod g$.
(70) If $\operatorname{dom} f=\operatorname{dom} h$ and $\operatorname{dom} g=\operatorname{rng} h$ and h is one-to-one and for every x such that $x \in \operatorname{dom} h$ holds $f(x) \approx g(h(x))$, then $\Pi f \approx \Pi g$.
(71) If $\operatorname{dom} f=X$, then $\Pi f \approx \prod(f \cdot P)$.

Function yielding powers

Let us consider f, X. The functor X^{f} yielding a function is defined by:
(Def.8) $\underset{X^{f(x)} \text {. }}{\operatorname{dom}\left(X^{f}\right)}=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $X^{f}(x)=$
We now state several propositions:
(72) \quad If $\emptyset \notin \operatorname{rng} f$, then $\emptyset^{f}=\operatorname{dom} f \longmapsto \emptyset$.
(73) $\quad X^{\square}=\square$.
(74) $Y^{\langle X\rangle}=\left\langle Y^{X}\right\rangle$.
(75) $\quad Z^{\langle X, Y\rangle}=\left\langle Z^{X}, Z^{Y}\right\rangle$.
(76) $\quad Z^{X \longmapsto Y}=X \longmapsto Z^{Y}$.

$$
\begin{equation*}
X \bigcup \text { disjoin } f \approx \Pi\left(X^{f}\right) \tag{77}
\end{equation*}
$$

Let us consider X, f. The functor f^{X} yielding a function is defined by:
(Def.9) $\quad \operatorname{dom}\left(f^{X}\right)=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $f^{X}(x)=$ $f(x)^{X}$.
Next we state several propositions:

$$
\begin{equation*}
f^{\emptyset}=\operatorname{dom} f \longmapsto\{\square\} \tag{78}
\end{equation*}
$$

$$
\begin{equation*}
\square^{X}=\square \tag{79}
\end{equation*}
$$

(80) $\langle Y\rangle^{X}=\left\langle Y^{X}\right\rangle$.
(81) $\langle Y, Z\rangle^{X}=\left\langle Y^{X}, Z^{X}\right\rangle$.
(82) $\quad(Y \longmapsto Z)^{X}=Y \longmapsto Z^{X}$.
(83) $\quad \Pi\left(f^{X}\right) \approx(\Pi f)^{X}$.

REFERENCES

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received September 30, 1991

