Cartesian Product of Functions

Grzegorz Bancerek Warsaw University Białystok

Summary. A supplement of [3] and [2], i.e. some useful and explanatory properties of the product and also the curried and uncurried functions are shown. Besides, the functions yielding functions are considered: two different products and other operation of such functions are introduced. Finally, two facts are presented: quasi-distributivity of the power of the set to other one w.r.t. the union $(X \biguplus_x^{f(x)} \approx \prod_x X^{f(x)})$ and quasi-distributivity of the porduct w.r.t. the raising to the power $(\prod_x f(x)^X \approx (\prod_x f(x))^X)$.

MML Identifier: FUNCT_6.

The articles [16], [14], [8], [17], [5], [12], [9], [11], [6], [4], [13], [15], [7], [10], [2], [1], and [3] provide the notation and terminology for this paper.

PROPERTIES OF CARTESIAN PRODUCT

For simplicity we follow the rules: x, y, y_1, y_2, z, a will be arbitrary, f, g, h, h', f_1, f_2 will denote functions, i will denote a natural number, X, Y, Z, V_1, V_2 will denote sets, P will denote a permutation of X, D, D_1, D_2, D_3 will denote non-empty sets, d_1 will denote an element of D_1, d_2 will denote an element of D_2 , and d_3 will denote an element of D_3 . We now state a number of propositions:

- (1) $x \in \prod \langle X \rangle$ if and only if there exists y such that $y \in X$ and $x = \langle y \rangle$.
- (2) $z \in \prod \langle X, Y \rangle$ if and only if there exist x, y such that $x \in X$ and $y \in Y$ and $z = \langle x, y \rangle$.
- (3) $a \in \prod \langle X, Y, Z \rangle$ if and only if there exist x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ and $a = \langle x, y, z \rangle$.
- (4) $\prod \langle D \rangle = D^1.$
- (5) $\prod \langle D_1, D_2 \rangle = \{ \langle d_1, d_2 \rangle \}.$
- (6) $\prod \langle D, D \rangle = D^2.$

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- $\prod \langle D_1, D_2, D_3 \rangle = \{ \langle d_1, d_2, d_3 \rangle \}.$ (7)
- $\prod \langle D, D, D \rangle = D^3.$ (8)
- $\prod (i \longmapsto D) = D^i.$ (9)
- $\prod f \subseteq (\bigcup f)^{\operatorname{dom} f}.$ (10)

CURRIED AND UNCURRIED FUNCTIONS OF SOME FUNCTIONS

The following propositions are true:

- If $x \in \text{dom} f$, then there exist y, z such that $x = \langle y, z \rangle$. (11)
- $\mathcal{A}([X, Y] \longmapsto z) = [Y, X] \longmapsto z.$ (12)
- curry $f = \operatorname{curry}' \cap f$ and uncurry $f = \cap \operatorname{uncurry}' f$. (13)
- If $[X, Y] \neq \emptyset$, then curry $([X, Y] \longmapsto z) = X \longmapsto (Y \longmapsto z)$ and (14) $\operatorname{curry}'([X, Y] \longmapsto z) = Y \longmapsto (X \longmapsto z).$
- $\operatorname{uncurry}(X \longmapsto (Y \longmapsto z)) = [X, Y] \longmapsto z$ and $\operatorname{uncurry}'(X \longmapsto z)$ (15) $(Y\longmapsto z))=[Y,\,X\,]\longmapsto z.$
- If $x \in \text{dom } f$ and g = f(x), then $\operatorname{rng} g \subseteq \operatorname{rng} \operatorname{uncurry} f$ and $\operatorname{rng} g \subseteq$ (16)rng uncurry' f.
- (17)dom uncurry $(X \mapsto f) = [X, \text{dom } f]$ and rng uncurry $(X \mapsto f) \subseteq f$ rng f and dom uncurry' $(X \mapsto f) = [\operatorname{dom} f, X]$ and rng uncurry' $(X \mapsto f)$ $f) \subseteq \operatorname{rng} f.$
- If $X \neq \emptyset$, then rng uncurry $(X \mapsto f) = \operatorname{rng} f$ and rng uncurry $'(X \mapsto f)$ (18)f) = rng f.
- If $[X, Y] \neq \emptyset$ and $f \in Z^{[X, Y]}$, then curry $f \in (Z^Y)^X$ and curry $f \in$ (19) $(Z^X)^Y$.
- If $f \in (Z^Y)^X$, then uncurry $f \in Z^{[X,Y]}$ and uncurry $f \in Z^{[Y,X]}$. (20)
- If curry $f \in (Z^Y)^X$ or curry $f \in (Z^X)^Y$ but dom $f \subseteq [V_1, V_2]$, then $f \in Z^{[X,Y]}$. (21)
- If uncurry $f \in Z^{[X,Y]}$ or uncurry $f \in Z^{[Y,X]}$ but $\operatorname{rng} f \subseteq V_1 \xrightarrow{\cdot} V_2$ and (22)dom f = X, then $f \in (Z^Y)^X$.
- If $f \in [X, Y] \rightarrow Z$, then curry $f \in X \rightarrow (Y \rightarrow Z)$ and (23)curry' $f \in Y \rightarrow (X \rightarrow Z)$.
- (24)If $f \in X \rightarrow (Y \rightarrow Z)$, then uncurry $f \in [X, Y] \rightarrow Z$ and uncurry $f \in [Y, Y]$ $X : \stackrel{\cdot}{\to} Z.$
- If curry $f \in X \rightarrow (Y \rightarrow Z)$ or curry $f \in Y \rightarrow (X \rightarrow Z)$ but dom $f \subseteq [V_1, V_1, V_2]$ (25) V_2], then $f \in [X, Y] \rightarrow Z$.
- If uncurry $f \in [X, Y] \xrightarrow{i} Z$ or uncurry $f \in [Y, X] \xrightarrow{i} Z$ but rng $f \subseteq$ (26) $V_1 \rightarrow V_2$ and dom $f \subseteq X$, then $f \in X \rightarrow (Y \rightarrow Z)$.

FUNCTIONS YIELDING FUNCTIONS

Let X be a set. The functor $\operatorname{Sub}_{f} X$ is defined as follows: $x \in \operatorname{Sub}_{\mathrm{f}} X$ if and only if $x \in X$ and x is a function. (Def.1)

Next we state four propositions:

- (27) $\operatorname{Sub}_{f} X \subseteq X.$
- (28) $x \in f^{-1}$ Sub_f rng f if and only if $x \in \text{dom } f$ and f(x) is a function.
- (29) $\operatorname{Sub}_{\mathrm{f}} \emptyset = \emptyset$ and $\operatorname{Sub}_{\mathrm{f}} \{f\} = \{f\}$ and $\operatorname{Sub}_{\mathrm{f}} \{f, g\} = \{f, g\}$ and $\operatorname{Sub}_{\mathrm{f}} \{f, g, h\} = \{f, g, h\}.$
- (30) If $Y \subseteq \operatorname{Sub}_{f} X$, then $\operatorname{Sub}_{f} Y = Y$.

We now define three new functors. Let f be a function. The functor $\operatorname{dom}_{\kappa} f(\kappa)$ yielding a function is defined by:

(Def.2) dom $(dom_{\kappa} f(\kappa)) = f^{-1} \operatorname{Sub}_{f} \operatorname{rng} f$ and for every x such that $x \in f^{-1}$ Sub_{f} rng f holds $(dom_{\kappa} f(\kappa))(x) = \pi_{1}(f(x)).$

The functor $\operatorname{rng}_{\kappa} f(\kappa)$ yields a function and is defined as follows:

(Def.3) dom(rng_{κ} $f(\kappa)$) = f^{-1} Sub_f rng f and for every x such that $x \in f^{-1}$ Sub_f rng f holds (rng_{κ} $f(\kappa)$) $(x) = \pi_2(f(x))$.

The functor $\bigcap f$ is defined as follows:

(Def.4)
$$\bigcap f = \bigcap \operatorname{rng} f$$
.

Next we state a number of propositions:

- (31) If $x \in \text{dom } f$ and g = f(x), then $x \in \text{dom}(\text{dom}_{\kappa} f(\kappa))$ and $(\text{dom}_{\kappa} f(\kappa))(x) = \text{dom } g$ and $x \in \text{dom}(\text{rng}_{\kappa} f(\kappa))$ and $(\text{rng}_{\kappa} f(\kappa))(x) = \text{rng } g$.
- (32) $\operatorname{dom}_{\kappa} \Box(\kappa) = \Box \text{ and } \operatorname{rng}_{\kappa} \Box(\kappa) = \Box.$
- (33) $\operatorname{dom}_{\kappa}\langle f \rangle(\kappa) = \langle \operatorname{dom} f \rangle \text{ and } \operatorname{rng}_{\kappa}\langle f \rangle(\kappa) = \langle \operatorname{rng} f \rangle.$
- (34) $\operatorname{dom}_{\kappa}\langle f, g \rangle(\kappa) = \langle \operatorname{dom} f, \operatorname{dom} g \rangle \text{ and } \operatorname{rng}_{\kappa}\langle f, g \rangle(\kappa) = \langle \operatorname{rng} f, \operatorname{rng} g \rangle.$
- (35) $\operatorname{dom}_{\kappa}\langle f, g, h \rangle(\kappa) = \langle \operatorname{dom} f, \operatorname{dom} g, \operatorname{dom} h \rangle$ and $\operatorname{rng}_{\kappa}\langle f, g, h \rangle(\kappa) = \langle \operatorname{rng} f, \operatorname{rng} g, \operatorname{rng} h \rangle$.
- (36) $\operatorname{dom}_{\kappa}(X \longmapsto f)(\kappa) = X \longmapsto \operatorname{dom} f \text{ and } \operatorname{rng}_{\kappa}(X \longmapsto f)(\kappa) = X \longmapsto \operatorname{rng} f.$
- (37) If $f \neq \Box$, then $x \in \bigcap f$ if and only if for every y such that $y \in \operatorname{dom} f$ holds $x \in f(y)$.
- (38) $\bigcup \Box = \emptyset$ and $\bigcap \Box = \emptyset$.
- (39) $\bigcup \langle X \rangle = X$ and $\bigcap \langle X \rangle = X$.
- (40) $\bigcup \langle X, Y \rangle = X \cup Y \text{ and } \bigcap \langle X, Y \rangle = X \cap Y.$
- (41) $\bigcup \langle X, Y, Z \rangle = X \cup Y \cup Z \text{ and } \bigcap \langle X, Y, Z \rangle = X \cap Y \cap Z.$
- (42) $\bigcup (\emptyset \longmapsto Y) = \emptyset$ and $\bigcap (\emptyset \longmapsto Y) = \emptyset$.
- (43) If $X \neq \emptyset$, then $\bigcup (X \longmapsto Y) = Y$ and $\bigcap (X \longmapsto Y) = Y$.

Let f be a function, and let x, y be arbitrary. The functor f(x)(y) is defined by:

(Def.5) $f(x)(y) = (\text{uncurry } f)(\langle x, y \rangle).$

We now state several propositions:

(44) If $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$, then f(x)(y) = g(y).

GRZEGORZ BANCEREK

- (45) If $x \in \text{dom } f$, then $\langle f \rangle(1)(x) = f(x)$ and $\langle f, g \rangle(1)(x) = f(x)$ and $\langle f, g, h \rangle(1)(x) = f(x)$.
- (46) If $x \in \text{dom } g$, then $\langle f, g \rangle(2)(x) = g(x)$ and $\langle f, g, h \rangle(2)(x) = g(x)$.
- (47) If $x \in \text{dom } h$, then $\langle f, g, h \rangle(3)(x) = h(x)$.
- (48) If $x \in X$ and $y \in \text{dom } f$, then $(X \mapsto f)(x)(y) = f(y)$.

CARTESIAN PRODUCT OF FUNCTIONS WITH THE SAME DOMAIN

Let f be a function. The functor $\prod^* f$ yielding a function is defined as follows:

(Def.6) $\prod^* f = \operatorname{curry}(\operatorname{uncurry}' f \upharpoonright [\cap (\operatorname{dom}_{\kappa} f(\kappa)), \operatorname{dom} f]).$

We now state several propositions:

- (49) dom $\prod^* f = \bigcap (\operatorname{dom}_{\kappa} f(\kappa))$ and $\operatorname{rng} \prod^* f \subseteq \prod (\operatorname{rng}_{\kappa} f(\kappa))$.
- (50) If $x \in \text{dom} \prod^* f$, then $(\prod^* f)(x)$ is a function.
- (51) If $x \in \text{dom} \prod^* f$ and $g = (\prod^* f)(x)$, then $\text{dom} g = f^{-1} \text{Sub}_f \operatorname{rng} f$ and for every y such that $y \in \text{dom} g$ holds $\langle y, x \rangle \in \text{dom uncurry } f$ and $g(y) = (\text{uncurry } f)(\langle y, x \rangle).$
- (52) If $x \in \text{dom} \prod^* f$, then for every g such that $g \in \text{rng } f$ holds $x \in \text{dom } g$.
- (53) If $g \in \operatorname{rng} f$ and for every g such that $g \in \operatorname{rng} f$ holds $x \in \operatorname{dom} g$, then $x \in \operatorname{dom} \prod^* f$.
- (54) If $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } \prod^* f$ and $h = (\prod^* f)(y)$, then g(y) = h(x).
- (55) If $x \in \text{dom } f$ and f(x) is a function and $y \in \text{dom } \prod^* f$, then $f(x)(y) = (\prod^* f)(y)(x)$.

CARTESIAN PRODUCT OF FUNCTIONS

Let f be a function. The functor $\prod^{\circ} f$ yielding a function is defined by the conditions (Def.7).

(Def.7) (i) dom $\prod^{\circ} f = \prod (\text{dom}_{\kappa} f(\kappa))$, (ii) for every g such that $g \in \prod (\text{dom}_{\kappa} f(\kappa))$ there exists h such that $(\prod^{\circ} f)(g) = h$ and dom $h = f^{-1}$ Subf rng f and for every x such that $x \in \text{dom } h$ holds $h(x) = (\text{uncurry } f)(\langle x, g(x) \rangle)$.

The following propositions are true:

- (56) If $g \in \prod (\operatorname{dom}_{\kappa} f(\kappa))$ and $x \in \operatorname{dom} g$, then $(\prod^{\circ} f)(g)(x) = f(x)(g(x))$.
- (57) If $x \in \text{dom } f$ and g = f(x) and $h \in \prod(\text{dom}_{\kappa} f(\kappa))$ and $h' = (\prod^{\circ} f)(h)$, then $h(x) \in \text{dom } g$ and h'(x) = g(h(x)) and $h' \in \prod(\text{rng}_{\kappa} f(\kappa))$.
- (58) $\operatorname{rng} \prod^{\circ} f = \prod (\operatorname{rng}_{\kappa} f(\kappa)).$
- (59) If $\Box \notin \operatorname{rng} f$, then $\prod^{\circ} f$ is one-to-one if and only if for every g such that $g \in \operatorname{rng} f$ holds g is one-to-one.

PROPERTIES OF CARTESIAN PRODUCTS OF FUNCTIONS

The following propositions are true:

- (60) $\Pi^* \Box = \Box \text{ and } \Pi^\circ \Box = \{\Box\} \longmapsto \Box.$
- (61) dom $\prod^* \langle h \rangle = \operatorname{dom} h$ and for every x such that $x \in \operatorname{dom} h$ holds $(\prod^* \langle h \rangle)(x) = \langle h(x) \rangle.$
- (62) dom $\prod^* \langle f_1, f_2 \rangle = \text{dom } f_1 \cap \text{dom } f_2$ and for every x such that $x \in \text{dom } f_1 \cap \text{dom } f_2$ holds $(\prod^* \langle f_1, f_2 \rangle)(x) = \langle f_1(x), f_2(x) \rangle.$
- (63) If $X \neq \emptyset$, then dom $\prod^* (X \longmapsto f) = \text{dom } f$ and for every x such that $x \in \text{dom } f$ holds $(\prod^* (X \longmapsto f))(x) = X \longmapsto f(x)$.
- (64) dom $\prod^{\circ} \langle h \rangle = \prod \langle \operatorname{dom} h \rangle$ and $\operatorname{rng} \prod^{\circ} \langle h \rangle = \prod \langle \operatorname{rng} h \rangle$ and for every x such that $x \in \operatorname{dom} h$ holds $(\prod^{\circ} \langle h \rangle)(\langle x \rangle) = \langle h(x) \rangle$.
- (65) (i) dom $\prod^{\circ} \langle f_1, f_2 \rangle = \prod \langle \operatorname{dom} f_1, \operatorname{dom} f_2 \rangle$,
 - (ii) $\operatorname{rng} \prod^{\circ} \langle f_1, f_2 \rangle = \prod \langle \operatorname{rng} f_1, \operatorname{rng} f_2 \rangle,$
 - (iii) for all x, y such that $x \in \text{dom } f_1$ and $y \in \text{dom } f_2$ holds $(\prod^{\circ} \langle f_1, f_2 \rangle)(\langle x, y \rangle) = \langle f_1(x), f_2(y) \rangle.$
- (66) dom $\prod^{\circ}(X \longmapsto f) = (\text{dom } f)^X$ and $\operatorname{rng} \prod^{\circ}(X \longmapsto f) = (\operatorname{rng} f)^X$ and for every g such that $g \in (\text{dom } f)^X$ holds $(\prod^{\circ}(X \longmapsto f))(g) = f \cdot g$.
- (67) If $x \in \text{dom } f_1$ and $x \in \text{dom } f_2$, then for all y_1, y_2 holds $\langle f_1, f_2 \rangle(x) = \langle y_1, y_2 \rangle$ if and only if $(\prod^* \langle f_1, f_2 \rangle)(x) = \langle y_1, y_2 \rangle$.
- (68) If $x \in \text{dom } f_1$ and $y \in \text{dom } f_2$, then for all y_1, y_2 holds $[f_1, f_2](\langle x, y \rangle) = \langle y_1, y_2 \rangle$ if and only if $(\prod^{\circ} \langle f_1, f_2 \rangle)(\langle x, y \rangle) = \langle y_1, y_2 \rangle$.
- (69) If dom f = X and dom g = X and for every x such that $x \in X$ holds $f(x) \approx g(x)$, then $\prod f \approx \prod g$.
- (70) If dom f = dom h and dom g = rng h and h is one-to-one and for every x such that $x \in \text{dom } h$ holds $f(x) \approx g(h(x))$, then $\prod f \approx \prod g$.
- (71) If dom f = X, then $\prod f \approx \prod (f \cdot P)$.

FUNCTION YIELDING POWERS

Let us consider f, X. The functor X^f yielding a function is defined by:

(Def.8) $\operatorname{dom}(X^f) = \operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $X^f(x) = X^{f(x)}$.

We now state several propositions:

- (72) If $\emptyset \notin \operatorname{rng} f$, then $\emptyset^f = \operatorname{dom} f \longmapsto \emptyset$.
- (73) $X^{\Box} = \Box$.
- (74) $Y^{\langle X \rangle} = \langle Y^X \rangle.$
- (75) $Z^{\langle X,Y\rangle} = \langle Z^X, Z^Y \rangle.$
- $(76) \qquad Z^{X \longmapsto Y} = X \longmapsto Z^Y.$
- (77) $X^{\bigcup \operatorname{disjoin} f} \approx \prod (X^f).$

Let us consider X, f. The functor f^X yielding a function is defined by:

(Def.9) $\operatorname{dom}(f^X) = \operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $f^X(x) = f(x)^X$.

Next we state several propositions:

- (78) $f^{\emptyset} = \operatorname{dom} f \longmapsto \{\Box\}.$
- (79) $\Box^X = \Box$.
- (80) $\langle Y \rangle^X = \langle Y^X \rangle.$
- (81) $\langle Y, Z \rangle^X = \langle Y^X, Z^X \rangle.$
- $(82) \quad (Y \longmapsto Z)^X = Y \longmapsto Z^X.$
- (83) $\prod (f^X) \approx (\prod f)^X.$

References

- [1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
- [2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.

Received September 30, 1991