FORMALIZED MATHEMATICS

Vol.2, No,4, September—October 1991
Université Catholique de Louvain

The Euclidean Space

Agata Darmochwat
Warsaw University
Biatystok

Summary. The general definition of Euclidean Space.

MML Identifier: EUCLID.

The papers [14], [6], [9], [8], [12], [1], [5], [10], [3], [13], [4], [15], 16], [7]. [11],
and [2] provide the notation and terminology for this paper. In the sequel k, n
denote natural numbers and r denotes a real number. Let us consider n. The
functor R" yields a non-empty set of finite sequences of R and is defined as
follows:

(Def.1) R" =R".

In the sequel x will denote a finite sequence of elements of R. The function
|O|g from R into R is defined as follows:

(Def.2)  for every r holds |O|g(r) = |r|.

Let us consider z. The functor |z| yields a finite sequence of elements of R
and is defined as follows:

(Def.3)  |z| =|0|g - 2.

Let us consider n. The functor (0, ...,0) yields a finite sequence of elements

——
n

of R and is defined by:

(Def4) (0,...,0) =n+—— 0quaa real number .
——
Let us consider n. Then (0,...,0) is an element of R".
——

n
In the sequel z, x1, x2, y denote elements of R™. One can prove the following
proposition
(1) =z is an element of R™.
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Let us consider n, . Then —z is an element of R™.

Let us consider n, z, y. Then = + y is an element of R™. Then x — y is an
element of R™.

Let us consider n, r, x. Then r - x is an element of R™.

Let us consider n, . Then |z| is an element of R™.

Let us consider n, . Then 2z is an element of R™.

Let z be a finite sequence of elements of R. The functor |z| yielding a real
number is defined by:

(Def.5)

] = /2%l

Next we state a number of propositions:
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lenxz = n.

dom x = Segn.

If k € Segn, then x(k) € R.

If for every k such that k € Segn holds x1(k) = z2(k), then z1 = x2.
If k € Segn and r = z(k), then |z|(k) = |r|.

|(0,...,0)| = n — 0quaa real number .
——
n
|—z| = |z,
real = r| - |z|.
0,0} =0,
——
n
If |x| =0, then x = (0,...,0).
——
n
|z| > 0.
=] = [x].
r-xf = [r| |zl

|21 4 @2| < ||+ |2a.

|21 — @a| < |21 | + |32

1] — |zo| < |o1 + 22|

21| — |z2| < |21 — 2]

|21 — 29| = 0 if and only if 21 = xo.
If 1 # x5, then |z — x9| > 0.

|z1 — x2| = T2 — 21

|z1 — 22| <1 — 2| + |2 — 22|

Let us consider n. The functor p™ yields a function from [R"™, R™] into R
and is defined by:

(Def.6)

for all elements z, y of R™ holds p"(z, y) = |z — y|.

Next we state two propositions:

(23)

2z —y) =2y —x).
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(24)  p™is a metric of R".
Let us consider n. The functor £" yields a metric space and is defined by:
(Def.7)  E™ = (R™,p").
Let us consider n. The functor £F yielding a topological space is defined by:
(Def.8)  &F = &gy
We adopt the following rules: p, pi, p2, p3 will denote points of £ and =z,
1, T2, Y, Y1, y2 will denote real numbers. One can prove the following four
propositions:
(25)  The carrier of £&F = R™.
(26) pis a function from Segn into R.
(27)  pis a finite sequence of elements of R.
(28)  For every finite sequence f such that f = p holds len f = n.
Let us consider n. The functor Ogn yielding a point of &1 is defined by:
(Def.9)  Ogn = (0,...,0).
n

Let us consider n, p1, p2. The functor p; + p2 yields a point of £F and is
defined as follows:

(Def.10)  for all elements p), ph of R™ such that pj = p; and p), = py holds
p1+ P2 =P + ph.
One can prove the following propositions:
(29) p1+p2=p2+p1
(30)  p1+p2+p3s=p1+(p2+ps)
(31)  Ogn+p=pand p+0g =p.
Let us consider xz, n, p. The functor x - p yields a point of £} and is defined
as follows:
(Def.11)  for every element p’ of R™ such that p’ =p holds x -p =z -p'.

Next we state several propositions:
32)  x-0gn = Ogp.

33) l-p=pand0-p=0gn.

34) z-y-p=z-(y-p).

35) If z-p=0gn, then x = 0 or p = Ogx.

36) x-(p1+p2)=x-p1+zT-po

37 (z+y)-p=x-pt+y-p

38) Ifz-p; ==x-po, then z =0 or p; = pa.

Let us consider n, p. The functor —p yields a point of £F and is defined as
follows:

o~~~ o~ o~ o~ o~

!/

(Def.12)  for every element p’ of R™ such that p’ = p holds —p = —p/.

We now state several propositions:
(39) ——p=p.
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p+—p=0g and —p +p = Ogz.

Ifpr+p= Og%, then p; = —po and po = —p;.
—(p1 +p2) = —p1 + —p2.

—p=(-1)-p.

—x-p=(—z)-pand —z-p=1x-—p.

N N N N
Iy
N =

S N N N N

43
44

Let us consider n, p1, p2. The functor p; — po yields a point of £F and is
defined by:

(Def.13)  for all elements p), ph of R™ such that p}j = p; and p), = py holds
p1— P2 =P| — Ph-
One can prove the following propositions:

(45)  p1—p2=p1+ —p2.

(46) p—p=_0¢z.

(47)  If p1 — p2 = Ogp, then py = pa.

(48)  —(p1 —p2) = p2 —p1 and —(p1 — p2) = —p1 + p2.
(49)  p1+(p2 —p3) = (p1 +p2) — 3.

(50)  p1— (p2 +p3) = p1 — p2 — p3.

(61)  p1— (p2 —p3) = (p1 — p2) + p3.

(52) p=(p+p1)—prandp=(p—p1)+p1.

(63)  x-(pr—p2)=x-p1—T-p2.

(54) (x—y)-p=x-p—y-p

In the sequel p, p1, p2 will be points of E%. Next we state the proposition
(55)  There exist x, y such that p = (z,y).

We now define two new functors. Let us consider p. The functor pq yields a
real number and is defined by:

(Def.14)  for every finite sequence f such that p = f holds p1 = f(1).
The functor po yielding a real number is defined by:
(Def.15)  for every finite sequence f such that p = f holds p2 = f(2).
Let us consider z, y. The functor [z,y] yields a point of £2 and is defined as
follows:
(Def.16)  [z,y] = (z,y).

The following propositions are true:

(56)  [z,y]1 = v and [z,y]2 = y.

(57)  p=[p1,p2]-

(58)  0Og2 = [0,0).

(59)  p1+p2 = [p11 + 21,012 + P22
(60)  [w1,y1] + [z2,92] = [71 + 22,91 + Y2].
(61) x-p=[r-p1,7-p2.

(62) x-[x1,y1] =[x 21,2 Y1)

(63)  —p=[-p1,—p2]



THE EUCLIDEAN SPACE 605

(64)  —[z1,y1] = [~21, —y1].
(65) b1 —p2 = [p11 —P21,P12 —p22]-
(66)  [z1,y1] — [22,92] = [x1 — @2, 1 — 12].
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