The Euclidean Space

Agata Darmochwał
Warsaw University
Białystok

Summary. The general definition of Euclidean Space.

MML Identifier: EUCLID.

The papers [14], [6], [9], [8], [12], [1], [5], [10], [3], [13], [4], [15], [16], [7], [11], and [2] provide the notation and terminology for this paper. In the sequel k, n denote natural numbers and r denotes a real number. Let us consider n. The functor \mathcal{R}^{n} yields a non-empty set of finite sequences of \mathbb{R} and is defined as follows:
(Def.1) $\quad \mathcal{R}^{n}=\mathbb{R}^{n}$.
In the sequel x will denote a finite sequence of elements of \mathbb{R}. The function $|\square|_{\mathbb{R}}$ from \mathbb{R} into \mathbb{R} is defined as follows:
(Def.2) for every r holds $|\square|_{\mathbb{R}}(r)=|r|$.
Let us consider x. The functor $|x|$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:
(Def.3) $\quad|x|=|\square|_{\mathbb{R}} \cdot x$.
Let us consider n. The functor $\langle\underbrace{0, \ldots, 0}_{n}\rangle$ yields a finite sequence of elements of \mathbb{R} and is defined by:
(Def.4) $\langle\underbrace{0, \ldots, 0}_{n}\rangle=n \longmapsto 0$ qua a real number .
Let us consider n. Then $\langle\underbrace{0, \ldots, 0}_{n}\rangle$ is an element of \mathcal{R}^{n}.
In the sequel x, x_{1}, x_{2}, y denote elements of \mathcal{R}^{n}. One can prove the following proposition
(1) $\quad x$ is an element of \mathbb{R}^{n}.

Let us consider n, x. Then $-x$ is an element of \mathcal{R}^{n}.
Let us consider n, x, y. Then $x+y$ is an element of \mathcal{R}^{n}. Then $x-y$ is an element of \mathcal{R}^{n}.

Let us consider n, r, x. Then $r \cdot x$ is an element of \mathcal{R}^{n}.
Let us consider n, x. Then $|x|$ is an element of \mathbb{R}^{n}.
Let us consider n, x. Then ${ }^{2} x$ is an element of \mathbb{R}^{n}.
Let x be a finite sequence of elements of \mathbb{R}. The functor $|x|$ yielding a real number is defined by:
(Def.5) $\quad|x|=\sqrt{\sum^{2}|x|}$.
Next we state a number of propositions:
(2) $\operatorname{len} x=n$.
(3) $\operatorname{dom} x=\operatorname{Seg} n$.
(4) If $k \in \operatorname{Seg} n$, then $x(k) \in \mathbb{R}$.
(5) If for every k such that $k \in \operatorname{Seg} n$ holds $x_{1}(k)=x_{2}(k)$, then $x_{1}=x_{2}$.
(6) If $k \in \operatorname{Seg} n$ and $r=x(k)$, then $|x|(k)=|r|$.
(7) $|\langle\underbrace{0, \ldots, 0}_{n}\rangle|=n \longmapsto 0$ qua a real number .
(8) $|-x|=|x|$.
(9) $|r \cdot x|=|r| \cdot|x|$.
(12) $|x| \geq 0$.
(13) $\quad|-x|=|x|$.
(14) $|r \cdot x|=|r| \cdot|x|$.
(15) $\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$.
(16) $\left|x_{1}-x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$.
(17) $\left|x_{1}\right|-\left|x_{2}\right| \leq\left|x_{1}+x_{2}\right|$.
(18) $\left|x_{1}\right|-\left|x_{2}\right| \leq\left|x_{1}-x_{2}\right|$.
(19) $\left|x_{1}-x_{2}\right|=0$ if and only if $x_{1}=x_{2}$.
(20) If $x_{1} \neq x_{2}$, then $\left|x_{1}-x_{2}\right|>0$.
(21) $\quad\left|x_{1}-x_{2}\right|=\left|x_{2}-x_{1}\right|$.
(22) $\quad\left|x_{1}-x_{2}\right| \leq\left|x_{1}-x\right|+\left|x-x_{2}\right|$.

Let us consider n. The functor ρ^{n} yields a function from : $\mathcal{R}^{n}, \mathcal{R}^{n} \ddagger$ into \mathbb{R} and is defined by:
(Def.6) for all elements x, y of \mathcal{R}^{n} holds $\rho^{n}(x, y)=|x-y|$.
Next we state two propositions:

$$
\begin{equation*}
{ }^{2}(x-y)={ }^{2}(y-x) . \tag{23}
\end{equation*}
$$

(24) $\quad \rho^{n}$ is a metric of \mathcal{R}^{n}.

Let us consider n. The functor \mathcal{E}^{n} yields a metric space and is defined by:
(Def.7) $\quad \mathcal{E}^{n}=\left\langle\mathcal{R}^{n}, \rho^{n}\right\rangle$.
Let us consider n. The functor $\mathcal{E}_{\mathrm{T}}^{n}$ yielding a topological space is defined by: (Def.8) $\quad \mathcal{E}_{\mathrm{T}}^{n}=\mathcal{E}_{\text {top }}^{n}$.

We adopt the following rules: p, p_{1}, p_{2}, p_{3} will denote points of $\mathcal{E}_{\mathrm{T}}^{n}$ and x, $x_{1}, x_{2}, y, y_{1}, y_{2}$ will denote real numbers. One can prove the following four propositions:
(25) The carrier of $\mathcal{E}_{\mathrm{T}}^{n}=\mathcal{R}^{n}$.
(26) $\quad p$ is a function from $\operatorname{Seg} n$ into \mathbb{R}.
(27) $\quad p$ is a finite sequence of elements of \mathbb{R}.
(28) For every finite sequence f such that $f=p$ holds len $f=n$.

Let us consider n. The functor $0_{\mathcal{E}_{\mathrm{T}}^{n}}$ yielding a point of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined by:
(Def.9) $0_{\mathcal{E}_{\mathrm{T}}^{n}}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
Let us consider n, p_{1}, p_{2}. The functor $p_{1}+p_{2}$ yields a point of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined as follows:
(Def.10) for all elements $p_{1}^{\prime}, p_{2}^{\prime}$ of \mathcal{R}^{n} such that $p_{1}^{\prime}=p_{1}$ and $p_{2}^{\prime}=p_{2}$ holds $p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}$.
One can prove the following propositions:
(30) $p_{1}+p_{2}+p_{3}=p_{1}+\left(p_{2}+p_{3}\right)$.
(31) $\quad 0_{\mathcal{E}_{\mathrm{T}}^{n}}+p=p$ and $p+0_{\mathcal{E}_{\mathrm{T}}^{n}}=p$.

Let us consider x, n, p. The functor $x \cdot p$ yields a point of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined as follows:
(Def.11) for every element p^{\prime} of \mathcal{R}^{n} such that $p^{\prime}=p$ holds $x \cdot p=x \cdot p^{\prime}$.
Next we state several propositions:
(32) $x \cdot 0_{\mathcal{E}_{\mathrm{T}}^{n}}=0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
(33) $1 \cdot p=p$ and $0 \cdot p=0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
(34) $x \cdot y \cdot p=x \cdot(y \cdot p)$.
(35) If $x \cdot p=0_{\mathcal{E}_{\mathrm{T}}^{n}}$, then $x=0$ or $p=0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
(36) $x \cdot\left(p_{1}+p_{2}\right)=x \cdot p_{1}+x \cdot p_{2}$.
(37) $(x+y) \cdot p=x \cdot p+y \cdot p$.
(38) If $x \cdot p_{1}=x \cdot p_{2}$, then $x=0$ or $p_{1}=p_{2}$.

Let us consider n, p. The functor $-p$ yields a point of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined as follows:
(Def.12) for every element p^{\prime} of \mathcal{R}^{n} such that $p^{\prime}=p$ holds $-p=-p^{\prime}$.
We now state several propositions:

$$
\begin{equation*}
--p=p \tag{39}
\end{equation*}
$$

$$
\begin{align*}
& p+-p=0_{\mathcal{E}_{\mathrm{T}}^{n}} \text { and }-p+p=0_{\mathcal{E}_{\mathrm{T}}^{n}} . \tag{40}\\
& \text { If } p_{1}+p_{2}=0_{\mathcal{E}_{\mathrm{T}}^{n}} \text {, then } p_{1}=-p_{2} \text { and } p_{2}=-p_{1} . \tag{41}\\
& -\left(p_{1}+p_{2}\right)=-p_{1}+-p_{2} . \tag{42}\\
& -p=(-1) \cdot p . \tag{43}\\
& -x \cdot p=(-x) \cdot p \text { and }-x \cdot p=x \cdot-p . \tag{44}
\end{align*}
$$

Let us consider n, p_{1}, p_{2}. The functor $p_{1}-p_{2}$ yields a point of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined by:
(Def.13) for all elements $p_{1}^{\prime}, p_{2}^{\prime}$ of \mathcal{R}^{n} such that $p_{1}^{\prime}=p_{1}$ and $p_{2}^{\prime}=p_{2}$ holds $p_{1}-p_{2}=p_{1}^{\prime}-p_{2}^{\prime}$.
One can prove the following propositions:

$$
\begin{array}{ll}
(45) & p_{1}-p_{2}=p_{1}+-p_{2} . \\
(46) & p-p=0_{\mathcal{E}_{\mathrm{T}}^{n}} . \\
(47) & \text { If } p_{1}-p_{2}=0_{\mathcal{E}_{\mathrm{T}}^{n}}, \text { then } p_{1}=p_{2} . \\
\text { (48) } & -\left(p_{1}-p_{2}\right)=p_{2}-p_{1} \text { and }-\left(p_{1}-p_{2}\right)=-p_{1}+p_{2} . \\
(49) & p_{1}+\left(p_{2}-p_{3}\right)=\left(p_{1}+p_{2}\right)-p_{3} . \\
\text { (50) } & p_{1}-\left(p_{2}+p_{3}\right)=p_{1}-p_{2}-p_{3} . \\
\text { (51) } & p_{1}-\left(p_{2}-p_{3}\right)=\left(p_{1}-p_{2}\right)+p_{3} . \\
(52) & p=\left(p+p_{1}\right)-p_{1} \text { and } p=\left(p-p_{1}\right)+p_{1} . \tag{52}\\
(53) & x \cdot\left(p_{1}-p_{2}\right)=x \cdot p_{1}-x \cdot p_{2} . \\
(54) & (x-y) \cdot p=x \cdot p-y \cdot p .
\end{array}
$$

In the sequel p, p_{1}, p_{2} will be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Next we state the proposition
(55) There exist x, y such that $p=\langle x, y\rangle$.

We now define two new functors. Let us consider p. The functor p_{1} yields a real number and is defined by:
(Def.14) for every finite sequence f such that $p=f$ holds $p_{\mathbf{1}}=f(1)$.
The functor p_{2} yielding a real number is defined by:
(Def.15) for every finite sequence f such that $p=f$ holds $p_{\mathbf{2}}=f(2)$.
Let us consider x, y. The functor $[x, y]$ yields a point of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def.16) $\quad[x, y]=\langle x, y\rangle$.
The following propositions are true:

$$
\begin{array}{ll}
(56) & {[x, y]_{\mathbf{1}}=x \text { and }[x, y]_{\mathbf{2}}=y .} \\
(57) & p=\left[p_{\mathbf{1}}, p_{\mathbf{2}}\right] . \\
(58) & 0_{\mathcal{E}_{\mathrm{T}}^{2}}=[0,0] . \\
(59) & p_{1}+p_{2}=\left[p_{1 \mathbf{1}}+p_{2 \mathbf{1}}, p_{1_{\mathbf{2}}}+p_{2 \mathbf{2}}\right] . \\
(60) & {\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]=\left[x_{1}+x_{2}, y_{1}+y_{2}\right] .} \\
(61) & x \cdot p=\left[x \cdot p_{\mathbf{1}}, x \cdot p_{\mathbf{2}}\right] . \\
(62) & x \cdot\left[x_{1}, y_{1}\right]=\left[x \cdot x_{1}, x \cdot y_{1}\right] . \\
(63) & -p=\left[-p_{\mathbf{1}},-p_{\mathbf{2}}\right] .
\end{array}
$$

$$
\begin{align*}
& -\left[x_{1}, y_{1}\right]=\left[-x_{1},-y_{1}\right] \tag{64}\\
& p_{1}-p_{2}=\left[p_{1 \mathbf{1}}-p_{2 \mathbf{1}}, p_{1 \mathbf{2}}-p_{2 \mathbf{2}}\right] \tag{65}\\
& {\left[x_{1}, y_{1}\right]-\left[x_{2}, y_{2}\right]=\left[x_{1}-x_{2}, y_{1}-y_{2}\right]}
\end{align*}
$$

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received November 21, 1991

