The Euclidean Space

Agata Darmochwał Warsaw University Białystok

Summary. The general definition of Euclidean Space.

 MML Identifier: <code>EUCLID</code>.

The papers [14], [6], [9], [8], [12], [1], [5], [10], [3], [13], [4], [15], [16], [7], [11], and [2] provide the notation and terminology for this paper. In the sequel k, ndenote natural numbers and r denotes a real number. Let us consider n. The functor \mathcal{R}^n yields a non-empty set of finite sequences of \mathbb{R} and is defined as follows:

(Def.1) $\mathcal{R}^n = \mathbb{R}^n$.

In the sequel x will denote a finite sequence of elements of \mathbb{R} . The function $|\Box|_{\mathbb{R}}$ from \mathbb{R} into \mathbb{R} is defined as follows:

(Def.2) for every r holds $|\Box|_{\mathbb{R}}(r) = |r|$.

Let us consider x. The functor |x| yields a finite sequence of elements of \mathbb{R} and is defined as follows:

$$(\text{Def.3}) \quad |x| = |\Box|_{\mathbb{R}} \cdot x.$$

Let us consider *n*. The functor $\langle \underbrace{0, \dots, 0}_{n} \rangle$ yields a finite sequence of elements

of $\mathbb R$ and is defined by:

(Def.4) $\langle \underbrace{0, \dots, 0}_{n} \rangle = n \longmapsto 0$ qua a real number .

Let us consider *n*. Then $(\underbrace{0,\ldots,0})$ is an element of \mathcal{R}^n .

In the sequel x, x_1, x_2, y denote elements of \mathcal{R}^n . One can prove the following proposition

(1) x is an element of \mathbb{R}^n .

601

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 Let us consider n, x. Then -x is an element of \mathcal{R}^n .

Let us consider n, x, y. Then x + y is an element of \mathcal{R}^n . Then x - y is an element of \mathcal{R}^n .

Let us consider n, r, x. Then $r \cdot x$ is an element of \mathcal{R}^n .

Let us consider n, x. Then |x| is an element of \mathbb{R}^n .

Let us consider n, x. Then ${}^{2}x$ is an element of \mathbb{R}^{n} .

Let x be a finite sequence of elements of \mathbb{R} . The functor |x| yielding a real number is defined by:

(Def.5) $|x| = \sqrt{\sum^2 |x|}.$

Next we state a number of propositions:

- (2) $\operatorname{len} x = n.$
- (3) $\operatorname{dom} x = \operatorname{Seg} n.$
- (4) If $k \in \text{Seg } n$, then $x(k) \in \mathbb{R}$.
- (5) If for every k such that $k \in \text{Seg } n$ holds $x_1(k) = x_2(k)$, then $x_1 = x_2$.
- (6) If $k \in \text{Seg } n$ and r = x(k), then |x|(k) = |r|.

(7)
$$|\langle \underbrace{0, \dots, 0}_{n} \rangle| = n \longmapsto 0$$
 qua a real number

(8)
$$|-x| = |x|.$$

$$(9) \quad |r \cdot x| = |r| \cdot |x|.$$

(10)
$$|\langle 0,\ldots,0\rangle|=0.$$

(11) If
$$|x| = 0$$
, then $x = \langle \underbrace{0, \dots, 0}_{n} \rangle$.

- $(12) \quad |x| \ge 0.$
- (13) |-x| = |x|.
- $(14) \quad |r \cdot x| = |r| \cdot |x|.$
- (15) $|x_1 + x_2| \le |x_1| + |x_2|.$
- (16) $|x_1 x_2| \le |x_1| + |x_2|.$
- (17) $|x_1| |x_2| \le |x_1 + x_2|.$
- (18) $|x_1| |x_2| \le |x_1 x_2|.$
- (19) $|x_1 x_2| = 0$ if and only if $x_1 = x_2$.
- (20) If $x_1 \neq x_2$, then $|x_1 x_2| > 0$.
- (21) $|x_1 x_2| = |x_2 x_1|.$
- (22) $|x_1 x_2| \le |x_1 x| + |x x_2|.$

Let us consider *n*. The functor ρ^n yields a function from $[\mathcal{R}^n, \mathcal{R}^n]$ into \mathbb{R} and is defined by:

(Def.6) for all elements x, y of \mathcal{R}^n holds $\rho^n(x, y) = |x - y|$.

Next we state two propositions:

(23)
$${}^{2}(x-y) = {}^{2}(y-x).$$

(24) ρ^n is a metric of \mathcal{R}^n .

Let us consider *n*. The functor \mathcal{E}^n yields a metric space and is defined by: (Def.7) $\mathcal{E}^n = \langle \mathcal{R}^n, \rho^n \rangle$.

Let us consider *n*. The functor \mathcal{E}_{T}^{n} yielding a topological space is defined by: (Def.8) $\mathcal{E}_{T}^{n} = \mathcal{E}_{top}^{n}$.

We adopt the following rules: p, p_1, p_2, p_3 will denote points of \mathcal{E}_T^n and x, x_1, x_2, y, y_1, y_2 will denote real numbers. One can prove the following four propositions:

- (25) The carrier of $\mathcal{E}_{\mathrm{T}}^n = \mathcal{R}^n$.
- (26) p is a function from Seg n into \mathbb{R} .
- (27) p is a finite sequence of elements of \mathbb{R} .
- (28) For every finite sequence f such that f = p holds len f = n.

Let us consider n. The functor $0_{\mathcal{E}^n_T}$ yielding a point of \mathcal{E}^n_T is defined by:

(Def.9)
$$0_{\mathcal{E}_{\mathrm{T}}^n} = \langle \underbrace{0, \dots, 0}_n \rangle.$$

Let us consider n, p_1, p_2 . The functor $p_1 + p_2$ yields a point of \mathcal{E}_T^n and is defined as follows:

(Def.10) for all elements p'_1 , p'_2 of \mathcal{R}^n such that $p'_1 = p_1$ and $p'_2 = p_2$ holds $p_1 + p_2 = p'_1 + p'_2$.

One can prove the following propositions:

- $(29) \quad p_1 + p_2 = p_2 + p_1.$
- (30) $p_1 + p_2 + p_3 = p_1 + (p_2 + p_3).$
- (31) $0_{\mathcal{E}^n_{\mathrm{T}}} + p = p \text{ and } p + 0_{\mathcal{E}^n_{\mathrm{T}}} = p.$

Let us consider x, n, p. The functor $x \cdot p$ yields a point of \mathcal{E}_{T}^{n} and is defined as follows:

(Def.11) for every element p' of \mathcal{R}^n such that p' = p holds $x \cdot p = x \cdot p'$.

Next we state several propositions:

- $(32) \quad x \cdot 0_{\mathcal{E}^n_{\mathrm{T}}} = 0_{\mathcal{E}^n_{\mathrm{T}}}.$
- (33) $1 \cdot p = p \text{ and } 0 \cdot p = 0_{\mathcal{E}^n_{\mathrm{T}}}.$
- (34) $x \cdot y \cdot p = x \cdot (y \cdot p).$
- (35) If $x \cdot p = 0_{\mathcal{E}^n_{\mathcal{T}}}$, then x = 0 or $p = 0_{\mathcal{E}^n_{\mathcal{T}}}$.
- (36) $x \cdot (p_1 + p_2) = x \cdot p_1 + x \cdot p_2.$
- (37) $(x+y) \cdot p = x \cdot p + y \cdot p.$
- (38) If $x \cdot p_1 = x \cdot p_2$, then x = 0 or $p_1 = p_2$.

Let us consider n, p. The functor -p yields a point of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined as follows:

(Def.12) for every element p' of \mathcal{R}^n such that p' = p holds -p = -p'.

We now state several propositions:

$$(39) \quad --p = p.$$

(40)
$$p + -p = 0_{\mathcal{E}^n_{\mathrm{T}}} \text{ and } -p + p = 0_{\mathcal{E}^n_{\mathrm{T}}}$$

- (41) If $p_1 + p_2 = 0_{\mathcal{E}_{\mathrm{T}}^n}$, then $p_1 = -p_2$ and $p_2 = -p_1$.
- $(42) \quad -(p_1+p_2) = -p_1 + -p_2.$
- (43) $-p = (-1) \cdot p.$
- (44) $-x \cdot p = (-x) \cdot p$ and $-x \cdot p = x \cdot -p$.

Let us consider n, p_1, p_2 . The functor $p_1 - p_2$ yields a point of $\mathcal{E}_{\mathrm{T}}^n$ and is defined by:

(Def.13) for all elements p'_1 , p'_2 of \mathcal{R}^n such that $p'_1 = p_1$ and $p'_2 = p_2$ holds $p_1 - p_2 = p'_1 - p'_2$.

One can prove the following propositions:

- $(45) \quad p_1 p_2 = p_1 + -p_2.$
- $(46) \quad p-p=0_{\mathcal{E}^n_{\mathrm{T}}}.$
- (47) If $p_1 p_2 = 0_{\mathcal{E}^n_{\mathcal{T}}}$, then $p_1 = p_2$.
- (48) $-(p_1 p_2) = p_2 p_1$ and $-(p_1 p_2) = -p_1 + p_2$.
- (49) $p_1 + (p_2 p_3) = (p_1 + p_2) p_3.$
- (50) $p_1 (p_2 + p_3) = p_1 p_2 p_3.$
- (51) $p_1 (p_2 p_3) = (p_1 p_2) + p_3.$
- (52) $p = (p + p_1) p_1$ and $p = (p p_1) + p_1$.
- (53) $x \cdot (p_1 p_2) = x \cdot p_1 x \cdot p_2.$
- (54) $(x-y) \cdot p = x \cdot p y \cdot p.$

In the sequel p, p_1, p_2 will be points of $\mathcal{E}_{\mathrm{T}}^2$. Next we state the proposition

(55) There exist x, y such that $p = \langle x, y \rangle$.

We now define two new functors. Let us consider p. The functor p_1 yields a real number and is defined by:

(Def.14) for every finite sequence f such that p = f holds $p_1 = f(1)$.

The functor p_2 yielding a real number is defined by:

(Def.15) for every finite sequence f such that p = f holds $p_2 = f(2)$.

Let us consider x, y. The functor [x, y] yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined as follows:

(Def.16) $[x, y] = \langle x, y \rangle.$

The following propositions are true:

- (56) $[x, y]_1 = x$ and $[x, y]_2 = y$.
- (57) $p = [p_1, p_2].$
- (58) $0_{\mathcal{E}^2_{\varpi}} = [0, 0].$
- (59) $p_1 + p_2 = [p_{11} + p_{21}, p_{12} + p_{22}].$
- (60) $[x_1, y_1] + [x_2, y_2] = [x_1 + x_2, y_1 + y_2].$
- (61) $x \cdot p = [x \cdot p_1, x \cdot p_2].$
- (62) $x \cdot [x_1, y_1] = [x \cdot x_1, x \cdot y_1].$

(63)
$$-p = [-p_1, -p_2].$$

- $(64) \quad -[x_1, y_1] = [-x_1, -y_1].$
- (65) $p_1 p_2 = [p_{11} p_{21}, p_{12} p_{22}].$
- (66) $[x_1, y_1] [x_2, y_2] = [x_1 x_2, y_1 y_2].$

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [13] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received November 21, 1991