Category Ens

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. If V is any non-empty set of sets, we define Ens $_{V}$ to be the category with the objects of all sets $X \in V$, morphisms of all mappings from X into Y, with the ususal composition of mappings. By a mapping we mean a triple $\langle X, Y, f\rangle$ where f is a function from X into Y. The notations and concepts included correspond to those presented in [11,9]. We also introduce representable functors to illustrate properties of the category Ens.

MML Identifier: ENS_1.

The notation and terminology used here are introduced in the following papers: [15], [16], [13], [2], [3], [7], [5], [1], [14], [10], [12], [4], [8], and [6].

Mappings

In the sequel V denotes a non-empty set and A, B denote elements of V. Let us consider V. The functor Funcs V yielding a non-empty set of functions is defined by:
(Def.1) Funcs $V=\bigcup\left\{B^{A}\right\}$.
We now state three propositions:
(1) For an arbitrary f holds $f \in$ Funcs V if and only if there exist A, B such that if $B=\emptyset$, then $A=\emptyset$ but f is a function from A into B.
(2) $B^{A} \subseteq$ Funcs V.
(3) For every non-empty subset W of V holds Funcs $W \subseteq$ Funcs V.

In the sequel f is an element of Funcs V. Let us consider V. The functor Maps V yielding a non-empty set is defined as follows:
(Def.2) Maps $V=\{\langle\langle A, B\rangle, f\rangle:(B=\emptyset \Rightarrow A=\emptyset) \wedge f$ is a function from A into $B\}$.
In the sequel m, m_{1}, m_{2}, m_{3} are elements of Maps V. One can prove the following four propositions:
(4) There exist f, A, B such that $m=\langle\langle A, B\rangle, f\rangle$ but if $B=\emptyset$, then $A=\emptyset$ and f is a function from A into B.
(5) For every function f from A into B such that if $B=\emptyset$, then $A=\emptyset$ holds $\langle\langle A, B\rangle, f\rangle \in$ Maps V.
(6) Maps $V \subseteq[: V, V:$, Funcs $V:$.
(7) For every non-empty subset W of V holds Maps $W \subseteq$ Maps V.

We now define three new functors. Let us consider V, m. The functor $\operatorname{graph}(m)$ yields a function and is defined as follows:
(Def.3) $\quad \operatorname{graph}(m)=m_{\mathbf{2}}$.
The functor dom m yields an element of V and is defined by:
(Def.4) $\quad \operatorname{dom} m=\left(m_{\mathbf{1}}\right)_{\mathbf{1}}$.
The functor $\operatorname{cod} m$ yielding an element of V is defined by:
(Def.5) $\operatorname{cod} m=\left(m_{\mathbf{1}}\right)_{\mathbf{2}}$.
The following three propositions are true:
(8) $\quad m=\langle\langle\operatorname{dom} m, \operatorname{cod} m\rangle, \operatorname{graph}(m)\rangle$.
(9) $\operatorname{cod} m \neq \emptyset$ or $\operatorname{dom} m=\emptyset$ but $\operatorname{graph}(m)$ is a function from dom m into $\operatorname{cod} m$.
(10) For every function f and for all sets A, B such that $\langle\langle A, B\rangle, f\rangle \in$ Maps V holds if $B=\emptyset$, then $A=\emptyset$ but f is a function from A into B.
Let us consider V, A. The functor $\operatorname{id}(A)$ yields an element of Maps V and is defined by:
(Def.6) $\quad \operatorname{id}(A)=\left\langle\langle A, A\rangle, \operatorname{id}_{A}\right\rangle$.
The following proposition is true
(11) $\operatorname{graph}(\operatorname{id}(A))=\operatorname{id}_{A}$ and $\operatorname{domid}(A)=A$ and $\operatorname{codid}(A)=A$.

Let us consider V, m_{1}, m_{2}. Let us assume that $\operatorname{cod} m_{1}=\operatorname{dom} m_{2}$. The functor $m_{2} \cdot m_{1}$ yields an element of Maps V and is defined as follows:
(Def.7) $\quad m_{2} \cdot m_{1}=\left\langle\left\langle\operatorname{dom} m_{1}, \operatorname{cod} m_{2}\right\rangle, \operatorname{graph}\left(m_{2}\right) \cdot \operatorname{graph}\left(m_{1}\right)\right\rangle$.
One can prove the following propositions:
(12) If $\operatorname{dom} m_{2}=\operatorname{cod} m_{1}$, then $\operatorname{graph}\left(\left(m_{2} \cdot m_{1}\right)\right)=\operatorname{graph}\left(m_{2}\right) \cdot \operatorname{graph}\left(m_{1}\right)$ and $\operatorname{dom}\left(m_{2} \cdot m_{1}\right)=\operatorname{dom} m_{1}$ and $\operatorname{cod}\left(m_{2} \cdot m_{1}\right)=\operatorname{cod} m_{2}$.
(13) If $\operatorname{dom} m_{2}=\operatorname{cod} m_{1}$ and $\operatorname{dom} m_{3}=\operatorname{cod} m_{2}$, then $m_{3} \cdot\left(m_{2} \cdot m_{1}\right)=$ $m_{3} \cdot m_{2} \cdot m_{1}$.
(14) $m \cdot \operatorname{id}(\operatorname{dom} m)=m$ and $\operatorname{id}(\operatorname{cod} m) \cdot m=m$.

Let us consider V, A, B. The functor $\operatorname{Maps}(A, B)$ yields a set and is defined by:
(Def.8) $\operatorname{Maps}(A, B)=\{\langle\langle A, B\rangle, f\rangle:\langle\langle A, B\rangle, f\rangle \in \operatorname{Maps} V\}$, where f ranges over elements of Funcs V.

The following propositions are true:
(15) For every function f from A into B such that if $B=\emptyset$, then $A=\emptyset$ holds $\langle\langle A, B\rangle, f\rangle \in \operatorname{Maps}(A, B)$.
(19) $\quad m \in \operatorname{Maps}(A, B)$ if and only if $\operatorname{dom} m=A$ and $\operatorname{cod} m=B$.
(20) If $m \in \operatorname{Maps}(A, B)$, then $\operatorname{graph}(m) \in B^{A}$.

Let us consider V, m. We say that m is a surjection if and only if:
(Def.9) $\quad \operatorname{rng} \operatorname{graph}(m)=\operatorname{cod} m$.

Category Ens

We now define four new functors. Let us consider V. The functor Dom_{V} yields a function from Maps V into V and is defined by:
(Def.10) for every m holds $\operatorname{Dom}_{V}(m)=\operatorname{dom} m$.
The functor Cod_{V} yields a function from Maps V into V and is defined as follows:
(Def.11) for every m holds $\operatorname{Cod}_{V}(m)=\operatorname{cod} m$.
The functor $\cdot V$ yields a partial function from $: \operatorname{Maps} V$, Maps V : to Maps V and is defined as follows:
(Def.12) for all m_{2}, m_{1} holds $\left\langle m_{2}, m_{1}\right\rangle \in \operatorname{dom}(\cdot v)$ if and only if $\operatorname{dom} m_{2}=$ $\operatorname{cod} m_{1}$ and for all m_{2}, m_{1} such that dom $m_{2}=\operatorname{cod} m_{1}$ holds $\cdot v\left(\left\langle m_{2}\right.\right.$, $\left.\left.m_{1}\right\rangle\right)=m_{2} \cdot m_{1}$.
The functor Id_{V} yields a function from V into Maps V and is defined by:
(Def.13) for every A holds $\operatorname{Id}_{V}(A)=\operatorname{id}(A)$.
Let us consider V. The functor Ens $_{V}$ yields a category structure and is defined by:
(Def.14) $\quad \operatorname{Ens}_{V}=\left\langle V, \operatorname{Maps} V, \operatorname{Dom}_{V}, \operatorname{Cod}_{V},{ }^{V}, \operatorname{Id}_{V}\right\rangle$.
We now state the proposition
(21) $\left\langle V, \operatorname{Maps} V, \operatorname{Dom}_{V}, \operatorname{Cod}_{V},{ }^{\prime}, \operatorname{Id}_{V}\right\rangle$ is a category.

Let us consider V. Then $\mathbf{E n s}_{V}$ is a category.
In the sequel a, b are objects of $\mathbf{E n s}_{V}$. Next we state the proposition
(22) A is an object of $\mathbf{E n s}_{V}$.

Let us consider V, A. The functor ${ }^{@} A$ yielding an object of Ens $_{V}$ is defined as follows:
(Def.15) $\quad{ }^{@} A=A$.
One can prove the following proposition
(23) a is an element of V.

Let us consider V, a. The functor ${ }^{@} a$ yields an element of V and is defined by:
(Def.16) $\quad{ }^{@} a=a$.
In the sequel f, g denote morphisms of $\mathbf{E n s}_{V}$. The following proposition is true
(24) m is a morphism of $\mathbf{E n s}_{V}$.

Let us consider V, m. The functor ${ }^{@} m$ yields a morphism of $\mathbf{E n s}_{V}$ and is defined as follows:
(Def.17) ${ }^{@} m=m$.
One can prove the following proposition
(25) f is an element of Maps V.

Let us consider V, f. The functor ${ }^{@} f$ yields an element of Maps V and is defined as follows:
(Def.18) ${ }^{@} f=f$.
One can prove the following propositions:
$\operatorname{dom} f=\operatorname{dom}\left({ }^{@} f\right)$ and $\operatorname{cod} f=\operatorname{cod}\left({ }^{@} f\right)$.
(27) $\operatorname{hom}(a, b)=\operatorname{Maps}\left({ }^{@} a,{ }^{@} b\right)$.
(28) If $\operatorname{dom} g=\operatorname{cod} f$, then $g \cdot f=\left({ }^{@} g\right) \cdot\left({ }^{@} f\right)$.
$\operatorname{id}_{a}=\operatorname{id}\left({ }^{@} a\right)$.
(30) If $a=\emptyset$, then a is an initial object.
(31) If $\emptyset \in V$ and a is an initial object, then $a=\emptyset$.
(32) For every universal class W and for every object a of Ens $_{W}$ such that a is an initial object holds $a=\emptyset$.
(33) If there exists arbitrary x such that $a=\{x\}$, then a is a terminal object.
(34) If $V \neq\{\emptyset\}$ and a is a terminal object, then there exists arbitrary x such that $a=\{x\}$.
(35) For every universal class W and for every object a of Ens $_{W}$ such that a is a terminal object there exists arbitrary x such that $a=\{x\}$.
(36) f is monic if and only if graph $\left(\left({ }^{@} f\right)\right)$ is one-to-one. $x_{1} \in A$ and $x_{2} \in A$ and $x_{1} \neq x_{2}$, then ${ }^{@} f$ is a surjection.
(38) If ${ }^{@} f$ is a surjection, then f is epi.
(39) For every universal class W and for every morphism f of Ens $_{W}$ such that f is epi holds ${ }^{@} f$ is a surjection.
(40) For every non-empty subset W of V holds $\mathbf{E n s}_{W}$ is full subcategory of Ens $_{V}$.

Representable Functors

We follow a convention: C will be a category, a, b, c will be objects of C, and $f, g, h, f^{\prime}, g^{\prime}$ will be morphisms of C. Let us consider C. The functor $\operatorname{Hom}(C)$ yields a non-empty set and is defined as follows:
(Def.19) $\operatorname{Hom}(C)=\{\operatorname{hom}(a, b)\}$.
We now state two propositions:
(41) $\operatorname{hom}(a, b) \in \operatorname{Hom}(C)$.
(42) If $\operatorname{hom}(a, \operatorname{cod} f)=\emptyset$, then $\operatorname{hom}(a, \operatorname{dom} f)=\emptyset$ but if $\operatorname{hom}(\operatorname{dom} f, a)=\emptyset$, then $\operatorname{hom}(\operatorname{cod} f, a)=\emptyset$.
We now define two new functors. Let us consider C, a, f. The functor $\operatorname{hom}(a, f)$ yielding a function from $\operatorname{hom}(a, \operatorname{dom} f)$ into $\operatorname{hom}(a, \operatorname{cod} f)$ is defined by:
(Def.20) for every g such that $g \in \operatorname{hom}(a, \operatorname{dom} f)$ holds $(\operatorname{hom}(a, f))(g)=f \cdot g$.
The functor $\operatorname{hom}(f, a)$ yields a function from $\operatorname{hom}(\operatorname{cod} f, a)$ into $\operatorname{hom}(\operatorname{dom} f, a)$ and is defined by:
(Def.21) for every g such that $g \in \operatorname{hom}(\operatorname{cod} f, a)$ holds $(\operatorname{hom}(f, a))(g)=g \cdot f$.
We now state several propositions:
(43) $\operatorname{hom}\left(a, \operatorname{id}_{c}\right)=\operatorname{id}_{\text {hom }(a, c)}$.
(44) $\operatorname{hom}\left(\mathrm{id}_{c}, a\right)=\operatorname{id}_{\text {hom }(c, a)}$.
(45) If $\operatorname{dom} g=\operatorname{cod} f$, then $\operatorname{hom}(a, g \cdot f)=\operatorname{hom}(a, g) \cdot \operatorname{hom}(a, f)$.
(46) If $\operatorname{dom} g=\operatorname{cod} f$, then $\operatorname{hom}(g \cdot f, a)=\operatorname{hom}(f, a) \cdot \operatorname{hom}(g, a)$.
(47) $\langle\langle\operatorname{hom}(a, \operatorname{dom} f), \operatorname{hom}(a, \operatorname{cod} f)\rangle, \operatorname{hom}(a, f)\rangle$ is an element of Maps $\operatorname{Hom}(C)$.
(48) $\langle\langle\operatorname{hom}(\operatorname{cod} f, a), \operatorname{hom}(\operatorname{dom} f, a)\rangle, \operatorname{hom}(f, a)\rangle$ is an element of Maps Hom (C).
We now define two new functors. Let us consider C, a. The functor hom $(a,-)$ yields a function from the morphisms of C into $\operatorname{Maps} \operatorname{Hom}(C)$ and is defined as follows:
(Def.22) for every f holds $(\operatorname{hom}(a,-))(f)=\langle\langle\operatorname{hom}(a, \operatorname{dom} f), \operatorname{hom}(a, \operatorname{cod} f)\rangle$, $\operatorname{hom}(a, f)\rangle$.
The functor hom $(-, a)$ yields a function from the morphisms of C into
Maps Hom (C)
and is defined as follows:
(Def.23) for every f holds $(\operatorname{hom}(-, a))(f)=\langle\langle\operatorname{hom}(\operatorname{cod} f, a), \operatorname{hom}(\operatorname{dom} f, a)\rangle$, $\operatorname{hom}(f, a)\rangle$.
The following propositions are true:
(49) If $\operatorname{Hom}(C) \subseteq V$, then $\operatorname{hom}(a,-)$ is a functor from C to $\mathbf{E n s}_{V}$.
(50) If $\operatorname{Hom}(C) \subseteq V$, then $\operatorname{hom}(-, a)$ is a contravariant functor from C into Ens $_{V}$.
(51) If $\operatorname{hom}\left(\operatorname{dom} f, \operatorname{cod} f^{\prime}\right)=\emptyset$, then $\operatorname{hom}\left(\operatorname{cod} f, \operatorname{dom} f^{\prime}\right)=\emptyset$.

Let us consider C, f, g. The functor $\operatorname{hom}(f, g)$ yielding a function from $\operatorname{hom}(\operatorname{cod} f, \operatorname{dom} g)$ into hom $(\operatorname{dom} f, \operatorname{cod} g)$ is defined by:
(Def.24) for every h such that $h \in \operatorname{hom}(\operatorname{cod} f, \operatorname{dom} g) \operatorname{holds}(\operatorname{hom}(f, g))(h)=$ $g \cdot h \cdot f$.
We now state several propositions:
(52) $\quad\langle\langle\operatorname{hom}(\operatorname{cod} f, \operatorname{dom} g), \operatorname{hom}(\operatorname{dom} f, \operatorname{cod} g)\rangle, \operatorname{hom}(f, g)\rangle$ is an element of Maps $\mathrm{Hom}(C)$.
(53) $\operatorname{hom}\left(\mathrm{id}_{a}, f\right)=\operatorname{hom}(a, f)$ and $\operatorname{hom}\left(f, \mathrm{id}_{a}\right)=\operatorname{hom}(f, a)$.

$$
\begin{align*}
& \operatorname{hom}\left(\operatorname{id}_{a}, \operatorname{id}_{b}\right)=\operatorname{id}_{\operatorname{hom}(a, b)} \tag{54}\\
& \operatorname{hom}(f, g)=\operatorname{hom}(\operatorname{dom} f, g) \cdot \operatorname{hom}(f, \operatorname{dom} g) \tag{55}\\
& \text { If } \operatorname{cod} g=\operatorname{dom} f \text { and dom } g^{\prime}=\operatorname{cod} f^{\prime}, \text { then } \operatorname{hom}\left(f \cdot g, g^{\prime} \cdot f^{\prime}\right)=\operatorname{hom}\left(g, g^{\prime}\right) \text {. } \tag{56}\\
& \operatorname{hom}\left(f, f^{\prime}\right) \text {. }
\end{align*}
$$

Let us consider C. The functor $\operatorname{hom}_{C}(-,-)$ yielding a function from the morphisms of : C, C : into $\operatorname{Maps} \operatorname{Hom}(C)$ is defined as follows:
(Def.25) for all f, g holds $\left(\operatorname{hom}_{C}(-,-)\right)(\langle f, g\rangle)=$
$\langle\langle\operatorname{hom}(\operatorname{cod} f, \operatorname{dom} g), \operatorname{hom}(\operatorname{dom} f, \operatorname{cod} g)\rangle, \operatorname{hom}(f, g)\rangle$.
The following two propositions are true:
(57) $\operatorname{hom}(a,-)=\left(\operatorname{curry}\left(\operatorname{hom}_{C}(-,-)\right)\right)\left(\mathrm{id}_{a}\right)$ and
$\operatorname{hom}(-, a)=\left(\operatorname{curry}^{\prime}\left(\operatorname{hom}_{C}(-,-)\right)\right)\left(\operatorname{id}_{a}\right)$.
(58) If $\operatorname{Hom}(C) \subseteq V$, then $\operatorname{hom}_{C}(-,-)$ is a functor from $: C^{\text {op }}, C$: to $\mathbf{E n s}_{V}$.

We now define two new functors. Let us consider V, C, a. Let us assume that $\operatorname{Hom}(C) \subseteq V$. The functor $\operatorname{hom}_{V}(a,-)$ yields a functor from C to $\mathbf{E n s}_{V}$ and is defined by:
(Def.26) $\operatorname{hom}_{V}(a,-)=\operatorname{hom}(a,-)$.
The functor $\operatorname{hom}_{V}(-, a)$ yields a contravariant functor from C into $\mathbf{E n s}_{V}$ and is defined as follows:
(Def.27) $\operatorname{hom}_{V}(-, a)=\operatorname{hom}(-, a)$.
Let us consider V, C. Let us assume that $\operatorname{Hom}(C) \subseteq V$. The functor $\operatorname{hom}_{V}^{C}(-,-)$ yielding a functor from $: C^{\text {op }}, C:$ to $\mathbf{E n s}_{V}$ is defined as follows:
(Def.28) $\operatorname{hom}_{V}^{C}(-,-)=\operatorname{hom}_{C}(-,-)$.
One can prove the following propositions:
(59) If $\operatorname{Hom}(C) \subseteq V$, then
$\left(\operatorname{hom}_{V}(a,-)\right)(f)=\langle\langle\operatorname{hom}(a, \operatorname{dom} f), \operatorname{hom}(a, \operatorname{cod} f)\rangle, \operatorname{hom}(a, f)\rangle$.
(60) If $\operatorname{Hom}(C) \subseteq V$, then $\left(\operatorname{Obj}\left(\operatorname{hom}_{V}(a,-)\right)\right)(b)=\operatorname{hom}(a, b)$.
(61) If $\operatorname{Hom}(C) \subseteq V$, then
$\left(\operatorname{hom}_{V}(-, a)\right)(f)=\langle\langle\operatorname{hom}(\operatorname{cod} f, a), \operatorname{hom}(\operatorname{dom} f, a)\rangle, \operatorname{hom}(f, a)\rangle$.
(62) If $\operatorname{Hom}(C) \subseteq V$, then $\left(\operatorname{Obj}\left(\operatorname{hom}_{V}(-, a)\right)\right)(b)=\operatorname{hom}(b, a)$.
(63) If $\operatorname{Hom}(C) \subseteq V$, then $\left(\operatorname{hom}_{V}^{C}(-,-)\right)\left(\left\langle f^{\text {op }}, g\right\rangle\right)=\langle\langle\operatorname{hom}(\operatorname{cod} f, \operatorname{dom} g)$,
$\operatorname{hom}(\operatorname{dom} f, \operatorname{cod} g)\rangle, \operatorname{hom}(f, g)\rangle$.
(64) If $\operatorname{Hom}(C) \subseteq V$, then $\left(\operatorname{Obj}\left(\operatorname{hom}_{V}^{C}(-,-)\right)\right)\left(\left\langle a^{\text {op }}, b\right\rangle\right)=\operatorname{hom}(a, b)$.
(65) If $\operatorname{Hom}(C) \subseteq V$, then $\left(\operatorname{hom}_{V}^{C}(-,-)\right)\left(a^{\mathrm{op}},-\right)=\operatorname{hom}_{V}(a,-)$.
(66) If $\operatorname{Hom}(C) \subseteq V$, then $\left.\operatorname{(hom}_{V}^{C}(-,-)\right)(-, a)=\operatorname{hom}_{V}(-, a)$.

Acknowledgements

I would like to thank Andrzej Trybulec for his useful sugestions and valuable comments.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[5] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[6] Czesław Byliński. Opposite categories and contravariant functors. Formalized Mathematics, 2(3):419-424, 1991.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
[9] Sunders MacLane. Categories for the working mathematician. Springer, Berlin/Heilderberg/New York, 1972.
[10] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595-600, 1990.
[11] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów. Volume 45 of Biblioteka Matematyczna, PWN, Warszawa, 1978.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received August 1, 1991

