Introduction to Banach and Hilbert Spaces - Part II

Jan Popiołek
Warsaw University
Białystok

Abstract

Summary. A continuation of [8]. It contains the definitions of the convergent sequence and the limit of the sequence. The convergence with respect to the norm and the distance is also introduced. Last part is devoted to the following concepts: ball, closed ball and sphere.

MML Identifier: BHSP_2.

The articles [5], [14], [19], [3], [4], [1], [7], [6], [2], [20], [12], [18], [13], [11], [17], [16], [15], [10], [9], and [8] provide the notation and terminology for this paper. For simplicity we follow a convention: X is a real unitary space, x, y, z are points of X, g, g_{1}, g_{2} are points of X, a, q, r are real numbers, $s_{1}, s_{2}, s_{3}, s_{1}^{\prime}$ are sequences of X, and k, n, m are natural numbers. Let us consider X, s_{1}. We say that s_{1} is convergent if and only if:
(Def.1) there exists g such that for every r such that $r>0$ there exists m such that for every n such that $n \geq m$ holds $\rho\left(s_{1}(n), g\right)<r$.
The following propositions are true:
(1) If s_{1} is constant, then s_{1} is convergent.
(2) If s_{1} is convergent and there exists k such that for every n such that $k \leq n$ holds $s_{1}^{\prime}(n)=s_{1}(n)$, then s_{1}^{\prime} is convergent.
(3) If s_{2} is convergent and s_{3} is convergent, then $s_{2}+s_{3}$ is convergent.
(4) If s_{2} is convergent and s_{3} is convergent, then $s_{2}-s_{3}$ is convergent.
(5) If s_{1} is convergent, then $a \cdot s_{1}$ is convergent.
(6) If s_{1} is convergent, then $-s_{1}$ is convergent.
(7) If s_{1} is convergent, then $s_{1}+x$ is convergent.
(8) If s_{1} is convergent, then $s_{1}-x$ is convergent.
(9) s_{1} is convergent if and only if there exists g such that for every r such that $r>0$ there exists m such that for every n such that $n \geq m$ holds $\left\|s_{1}(n)-g\right\|<r$.
Let us consider X, s_{1}. Let us assume that s_{1} is convergent. The functor $\lim s_{1}$ yields a point of X and is defined as follows:
(Def.2) for every r such that $r>0$ there exists m such that for every n such that $n \geq m$ holds $\rho\left(s_{1}(n), \lim s_{1}\right)<r$.

Next we state a number of propositions:
(10) If s_{1} is constant and $x \in \operatorname{rng} s_{1}$, then $\lim s_{1}=x$.
(11) If s_{1} is constant and there exists n such that $s_{1}(n)=x$, then $\lim s_{1}=x$.
(12) If s_{1} is convergent and there exists k such that for every n such that $n \geq k$ holds $s_{1}^{\prime}(n)=s_{1}(n)$, then $\lim s_{1}=\lim s_{1}^{\prime}$.
(13) If s_{2} is convergent and s_{3} is convergent, then $\lim \left(s_{2}+s_{3}\right)=\lim s_{2}+$ $\lim s_{3}$.
(14) If s_{2} is convergent and s_{3} is convergent, then $\lim \left(s_{2}-s_{3}\right)=\lim s_{2}-$ $\lim s_{3}$.
(15) If s_{1} is convergent, then $\lim \left(a \cdot s_{1}\right)=a \cdot \lim s_{1}$.
(16) If s_{1} is convergent, then $\lim \left(-s_{1}\right)=-\lim s_{1}$.
(17) If s_{1} is convergent, then $\lim \left(s_{1}+x\right)=\lim s_{1}+x$.
(18) If s_{1} is convergent, then $\lim \left(s_{1}-x\right)=\lim s_{1}-x$.
(19) If s_{1} is convergent, then $\lim s_{1}=g$ if and only if for every r such that $r>0$ there exists m such that for every n such that $n \geq m$ holds $\left\|s_{1}(n)-g\right\|<r$.
Let us consider X, s_{1}. The functor $\left\|s_{1}\right\|$ yielding a sequence of real numbers is defined by:
(Def.3) for every n holds $\left\|s_{1}\right\|(n)=\left\|s_{1}(n)\right\|$.
Next we state three propositions:
(20) If s_{1} is convergent, then $\left\|s_{1}\right\|$ is convergent.
(21) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|s_{1}\right\|$ is convergent and $\lim \left\|s_{1}\right\|=$ $\|g\|$.
(22) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|s_{1}-g\right\|$ is convergent and $\lim \left\|s_{1}-g\right\|=0$.
Let us consider X, s_{1}, x. The functor $\rho\left(s_{1}, x\right)$ yielding a sequence of real numbers is defined by:
(Def.4) for every n holds $\left(\rho\left(s_{1}, x\right)\right)(n)=\rho\left(s_{1}(n), x\right)$.
We now state a number of propositions:
(23) If s_{1} is convergent and $\lim s_{1}=g$, then $\rho\left(s_{1}, g\right)$ is convergent.
(24) If s_{1} is convergent and $\lim s_{1}=g$, then $\rho\left(s_{1}, g\right)$ is convergent and $\lim \rho\left(s_{1}, g\right)=0$.
(25) If s_{2} is convergent and $\lim s_{2}=g_{1}$ and s_{3} is convergent and $\lim s_{3}=g_{2}$, then $\left\|s_{2}+s_{3}\right\|$ is convergent and $\lim \left\|s_{2}+s_{3}\right\|=\left\|g_{1}+g_{2}\right\|$.
(26) If s_{2} is convergent and $\lim s_{2}=g_{1}$ and s_{3} is convergent and $\lim s_{3}=g_{2}$, then $\left\|\left(s_{2}+s_{3}\right)-\left(g_{1}+g_{2}\right)\right\|$ is convergent and $\lim \left\|\left(s_{2}+s_{3}\right)-\left(g_{1}+g_{2}\right)\right\|=0$.
(27) If s_{2} is convergent and $\lim s_{2}=g_{1}$ and s_{3} is convergent and $\lim s_{3}=g_{2}$, then $\left\|s_{2}-s_{3}\right\|$ is convergent and $\lim \left\|s_{2}-s_{3}\right\|=\left\|g_{1}-g_{2}\right\|$.
(28) If s_{2} is convergent and $\lim s_{2}=g_{1}$ and s_{3} is convergent and $\lim s_{3}=g_{2}$, then $\left\|s_{2}-s_{3}-\left(g_{1}-g_{2}\right)\right\|$ is convergent and $\lim \left\|s_{2}-s_{3}-\left(g_{1}-g_{2}\right)\right\|=0$.
(29) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|a \cdot s_{1}\right\|$ is convergent and $\lim \left\|a \cdot s_{1}\right\|=\|a \cdot g\|$.
(30) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|a \cdot s_{1}-a \cdot g\right\|$ is convergent and $\lim \left\|a \cdot s_{1}-a \cdot g\right\|=0$.
(31) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|-s_{1}\right\|$ is convergent and $\lim \left\|-s_{1}\right\|=\|-g\|$.
(32) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|-s_{1}--g\right\|$ is convergent and $\lim \left\|-s_{1}--g\right\|=0$.
(33) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|\left(s_{1}+x\right)-(g+x)\right\|$ is convergent and $\lim \left\|\left(s_{1}+x\right)-(g+x)\right\|=0$.
(34) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|s_{1}-x\right\|$ is convergent and $\lim \left\|s_{1}-x\right\|=\|g-x\|$.
(35) If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|s_{1}-x-(g-x)\right\|$ is convergent and $\lim \left\|s_{1}-x-(g-x)\right\|=0$.
(36) If s_{2} is convergent and $\lim s_{2}=g_{1}$ and s_{3} is convergent and $\lim s_{3}=g_{2}$, then $\rho\left(s_{2}+s_{3}, g_{1}+g_{2}\right)$ is convergent and $\lim \rho\left(s_{2}+s_{3}, g_{1}+g_{2}\right)=0$.
(37) If s_{2} is convergent and $\lim s_{2}=g_{1}$ and s_{3} is convergent and $\lim s_{3}=g_{2}$, then $\rho\left(s_{2}-s_{3}, g_{1}-g_{2}\right)$ is convergent and $\lim \rho\left(s_{2}-s_{3}, g_{1}-g_{2}\right)=0$.
(38) If s_{1} is convergent and $\lim s_{1}=g$, then $\rho\left(a \cdot s_{1}, a \cdot g\right)$ is convergent and $\lim \rho\left(a \cdot s_{1}, a \cdot g\right)=0$.
(39) If s_{1} is convergent and $\lim s_{1}=g$, then $\rho\left(s_{1}+x, g+x\right)$ is convergent and $\lim \rho\left(s_{1}+x, g+x\right)=0$.
Let us consider X, x, r. Let us assume that $r \geq 0$. The functor $\operatorname{Ball}(x, r)$ yielding a subset of X is defined by:
(Def.5) $\operatorname{Ball}(x, r)=\{y:\|x-y\|<r\}$, where y ranges over points of X.
Let us consider X, x, r. Let us assume that $r \geq 0$. The functor $\overline{\operatorname{Ball}}(x, r)$ yielding a subset of X is defined by:
(Def.6) $\overline{\operatorname{Ball}}(x, r)=\{y:\|x-y\| \leq r\}$, where y ranges over points of X.
Let us consider X, x, r. Let us assume that $r \geq 0$. The functor $\operatorname{Sphere}(x, r)$ yields a subset of X and is defined as follows:
(Def.7) $\quad \operatorname{Sphere}(x, r)=\{y:\|x-y\|=r\}$, where y ranges over points of X.
The following propositions are true:
(40) If $r \geq 0$, then $z \in \operatorname{Ball}(x, r)$ if and only if $\|x-z\|<r$.
(41) If $r \geq 0$, then $z \in \operatorname{Ball}(x, r)$ if and only if $\rho(x, z)<r$.

If $r>0$, then $x \in \operatorname{Ball}(x, r)$.
If $r \geq 0$, then if $y \in \operatorname{Ball}(x, r)$ and $z \in \operatorname{Ball}(x, r)$, then $\rho(y, z)<2 \cdot r$.
If $r \geq 0$, then if $y \in \operatorname{Ball}(x, r)$, then $y-z \in \operatorname{Ball}(x-z, r)$.
If $r \geq 0$, then if $y \in \operatorname{Ball}(x, r)$, then $y-x \in \operatorname{Ball}\left(0_{\text {the }}\right.$ vectors of $\left.x, r\right)$.
If $r \geq 0$, then if $y \in \operatorname{Ball}(x, r)$ and $r \leq q$, then $y \in \operatorname{Ball}(x, q)$.
If $r \geq 0$, then $z \in \overline{\operatorname{Ball}}(x, r)$ if and only if $\|x-z\| \leq r$.
If $r \geq 0$, then $z \in \overline{\operatorname{Ball}}(x, r)$ if and only if $\rho(x, z) \leq r$.
If $r \geq 0$, then $x \in \overline{\operatorname{Ball}}(x, r)$.
If $r \geq 0$, then if $y \in \operatorname{Ball}(x, r)$, then $y \in \overline{\operatorname{Ball}}(x, r)$.
If $r \geq 0$, then $z \in \operatorname{Sphere}(x, r)$ if and only if $\|x-z\|=r$.
If $r \geq 0$, then $z \in \operatorname{Sphere}(x, r)$ if and only if $\rho(x, z)=r$.
If $r \geq 0$, then if $y \in \operatorname{Sphere}(x, r)$, then $y \in \overline{\operatorname{Ball}}(x, r)$.
If $r \geq 0$, then $\operatorname{Ball}(x, r) \subseteq \overline{\operatorname{Ball}}(x, r)$.
If $r \geq 0$, then $\operatorname{Sphere}(x, r) \subseteq \overline{\operatorname{Ball}}(x, r)$.
If $r \geq 0$, then $\operatorname{Ball}(x, r) \cup \operatorname{Sphere}(x, r)=\overline{\operatorname{Ball}}(x, r)$.

References

[1] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[8] Jan Popiołek. Introduction to Banach and Hilbert spaces - part I. Formalized Mathematics, 2(4):511-516, 1991.
[9] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.
[10] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, $1(\mathbf{2}): 263-264,1990$.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received July 19, 1991

