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Summary. A continuation of [8]. It contains the definitions of
the convergent sequence and the limit of the sequence. The convergence
with respect to the norm and the distance is also introduced. Last part
is devoted to the following concepts: ball, closed ball and sphere.

MML Identifier: BHSP 2.

The articles [5], [14], [19], [3], [4], [1], [7], [6], [2], [20], [12], [18], [13], [11], [17],
[16], [15], [10], [9], and [8] provide the notation and terminology for this paper.
For simplicity we follow a convention: X is a real unitary space, x, y, z are
points of X, g, g1, g2 are points of X, a, q, r are real numbers, s1, s2, s3, s′1
are sequences of X, and k, n, m are natural numbers. Let us consider X, s1.
We say that s1 is convergent if and only if:

(Def.1) there exists g such that for every r such that r > 0 there exists m such
that for every n such that n ≥ m holds ρ(s1(n), g) < r.

The following propositions are true:

(1) If s1 is constant, then s1 is convergent.

(2) If s1 is convergent and there exists k such that for every n such that
k ≤ n holds s′1(n) = s1(n), then s′1 is convergent.

(3) If s2 is convergent and s3 is convergent, then s2 + s3 is convergent.

(4) If s2 is convergent and s3 is convergent, then s2 − s3 is convergent.

(5) If s1 is convergent, then a · s1 is convergent.

(6) If s1 is convergent, then −s1 is convergent.

(7) If s1 is convergent, then s1 + x is convergent.

(8) If s1 is convergent, then s1 − x is convergent.
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(9) s1 is convergent if and only if there exists g such that for every r such
that r > 0 there exists m such that for every n such that n ≥ m holds
‖s1(n) − g‖ < r.

Let us consider X, s1. Let us assume that s1 is convergent. The functor
lim s1 yields a point of X and is defined as follows:

(Def.2) for every r such that r > 0 there exists m such that for every n such
that n ≥ m holds ρ(s1(n), lim s1) < r.

Next we state a number of propositions:

(10) If s1 is constant and x ∈ rng s1, then lim s1 = x.

(11) If s1 is constant and there exists n such that s1(n) = x, then lim s1 = x.

(12) If s1 is convergent and there exists k such that for every n such that
n ≥ k holds s′1(n) = s1(n), then lim s1 = lim s′1.

(13) If s2 is convergent and s3 is convergent, then lim(s2 + s3) = lim s2 +
lim s3.

(14) If s2 is convergent and s3 is convergent, then lim(s2 − s3) = lim s2 −
lim s3.

(15) If s1 is convergent, then lim(a · s1) = a · lim s1.

(16) If s1 is convergent, then lim(−s1) = −lim s1.

(17) If s1 is convergent, then lim(s1 + x) = lim s1 + x.

(18) If s1 is convergent, then lim(s1 − x) = lim s1 − x.

(19) If s1 is convergent, then lim s1 = g if and only if for every r such
that r > 0 there exists m such that for every n such that n ≥ m holds
‖s1(n) − g‖ < r.

Let us consider X, s1. The functor ‖s1‖ yielding a sequence of real numbers
is defined by:

(Def.3) for every n holds ‖s1‖(n) = ‖s1(n)‖.

Next we state three propositions:

(20) If s1 is convergent, then ‖s1‖ is convergent.

(21) If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and lim‖s1‖ =
‖g‖.

(22) If s1 is convergent and lim s1 = g, then ‖s1 − g‖ is convergent and
lim‖s1 − g‖ = 0.

Let us consider X, s1, x. The functor ρ(s1, x) yielding a sequence of real
numbers is defined by:

(Def.4) for every n holds (ρ(s1, x))(n) = ρ(s1(n), x).

We now state a number of propositions:

(23) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent.

(24) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent and
lim ρ(s1, g) = 0.
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(25) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖s2 + s3‖ is convergent and lim‖s2 + s3‖ = ‖g1 + g2‖.

(26) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖(s2+s3)−(g1 +g2)‖ is convergent and lim‖(s2+s3)−(g1+g2)‖ = 0.

(27) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖s2 − s3‖ is convergent and lim‖s2 − s3‖ = ‖g1 − g2‖.

(28) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖s2 − s3 − (g1 − g2)‖ is convergent and lim‖s2 − s3 − (g1 − g2)‖ = 0.

(29) If s1 is convergent and lim s1 = g, then ‖a · s1‖ is convergent and
lim‖a · s1‖ = ‖a · g‖.

(30) If s1 is convergent and lim s1 = g, then ‖a · s1 − a · g‖ is convergent and
lim‖a · s1 − a · g‖ = 0.

(31) If s1 is convergent and lim s1 = g, then ‖−s1‖ is convergent and
lim‖−s1‖ = ‖−g‖.

(32) If s1 is convergent and lim s1 = g, then ‖−s1 − −g‖ is convergent and
lim‖−s1 −−g‖ = 0.

(33) If s1 is convergent and lim s1 = g, then ‖(s1 +x)−(g+x)‖ is convergent
and lim‖(s1 + x) − (g + x)‖ = 0.

(34) If s1 is convergent and lim s1 = g, then ‖s1 − x‖ is convergent and
lim‖s1 − x‖ = ‖g − x‖.

(35) If s1 is convergent and lim s1 = g, then ‖s1 − x− (g − x)‖ is convergent
and lim‖s1 − x − (g − x)‖ = 0.

(36) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ρ(s2 + s3, g1 + g2) is convergent and lim ρ(s2 + s3, g1 + g2) = 0.

(37) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ρ(s2 − s3, g1 − g2) is convergent and lim ρ(s2 − s3, g1 − g2) = 0.

(38) If s1 is convergent and lim s1 = g, then ρ(a · s1, a · g) is convergent and
lim ρ(a · s1, a · g) = 0.

(39) If s1 is convergent and lim s1 = g, then ρ(s1 + x, g + x) is convergent
and lim ρ(s1 + x, g + x) = 0.

Let us consider X, x, r. Let us assume that r ≥ 0. The functor Ball(x, r)
yielding a subset of X is defined by:

(Def.5) Ball(x, r) = {y : ‖x − y‖ < r}, where y ranges over points of X.

Let us consider X, x, r. Let us assume that r ≥ 0. The functor Ball(x, r)
yielding a subset of X is defined by:

(Def.6) Ball(x, r) = {y : ‖x − y‖ ≤ r}, where y ranges over points of X.

Let us consider X, x, r. Let us assume that r ≥ 0. The functor Sphere(x, r)
yields a subset of X and is defined as follows:

(Def.7) Sphere(x, r) = {y : ‖x − y‖ = r}, where y ranges over points of X.

The following propositions are true:

(40) If r ≥ 0, then z ∈ Ball(x, r) if and only if ‖x − z‖ < r.
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(41) If r ≥ 0, then z ∈ Ball(x, r) if and only if ρ(x, z) < r.

(42) If r > 0, then x ∈ Ball(x, r).

(43) If r ≥ 0, then if y ∈ Ball(x, r) and z ∈ Ball(x, r), then ρ(y, z) < 2 · r.

(44) If r ≥ 0, then if y ∈ Ball(x, r), then y − z ∈ Ball(x − z, r).

(45) If r ≥ 0, then if y ∈ Ball(x, r), then y − x ∈ Ball(0the vectors of X , r).

(46) If r ≥ 0, then if y ∈ Ball(x, r) and r ≤ q, then y ∈ Ball(x, q).

(47) If r ≥ 0, then z ∈ Ball(x, r) if and only if ‖x − z‖ ≤ r.

(48) If r ≥ 0, then z ∈ Ball(x, r) if and only if ρ(x, z) ≤ r.

(49) If r ≥ 0, then x ∈ Ball(x, r).

(50) If r ≥ 0, then if y ∈ Ball(x, r), then y ∈ Ball(x, r).

(51) If r ≥ 0, then z ∈ Sphere(x, r) if and only if ‖x − z‖ = r.

(52) If r ≥ 0, then z ∈ Sphere(x, r) if and only if ρ(x, z) = r.

(53) If r ≥ 0, then if y ∈ Sphere(x, r), then y ∈ Ball(x, r).

(54) If r ≥ 0, then Ball(x, r) ⊆ Ball(x, r).

(55) If r ≥ 0, then Sphere(x, r) ⊆ Ball(x, r).

(56) If r ≥ 0, then Ball(x, r) ∪ Sphere(x, r) = Ball(x, r).
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