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Summary. Basing on the notion of real linear space (see [15]) we
introduce real unitary space. At first, we define the scalar product of two
vectors and examine some of its properties. On the basis of this notion
we introduce the norm and the distance in real unitary space and study
the properties of these concepts. Next, proceeding from the definition of
the sequence in real unitary space and basic operations on sequences we
prove several theorems which will be used in our further considerations.

MML Identifier: BHSP 1.

The terminology and notation used here are introduced in the following articles:
[5], [12], [16], [3], [4], [1], [6], [2], [17], [10], [11], [9], [15], [14], [13], [8], and [7].
We consider unitary space structures which are systems

〈vectors, a scalar product〉,
where the vectors constitute a real linear space and the scalar product is a
function from [: the vectors of the vectors, the vectors of the vectors :] into � .

In the sequel X will denote a unitary space structure and a, b will denote
real numbers. Let us consider X. A point of X is an element of the vectors of
the vectors of X.

In the sequel x, y will denote points of X. Let us consider X, x, y. The
functor (x|y) yielding a real number is defined as follows:

(Def.1) (x|y) = (the scalar product of X)(〈〈x, y〉〉).

A unitary space structure is said to be a real unitary space if it satisfies the
condition (Def.2).

(Def.2) Let x, y, z be points of it. Given a. Then
(i) (x|x) = 0 if and only if x = 0the vectors of it,
(ii) 0 ≤ (x|x),
(iii) (x|y) = (y|x),
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(iv) ((x + y)|z) = (x|z) + (y|z),
(v) ((a · x)|y) = a · (x|y).

We follow the rules: X denotes a real unitary space and x, y, z, u, v denote
points of X. We now state a number of propositions:

(1) (x|x) = 0 if and only if x = 0the vectors of X .

(2) 0 ≤ (x|x).

(3) (x|y) = (y|x).

(4) ((x + y)|z) = (x|z) + (y|z).

(5) ((a · x)|y) = a · (x|y).

(6) (0the vectors of X |0the vectors of X) = 0.

(7) (x|(y + z)) = (x|y) + (x|z).

(8) (x|(a · y)) = a · (x|y).

(9) ((a · x)|y) = (x|(a · y)).

(10) ((a · x + b · y)|z) = a · (x|z) + b · (y|z).

(11) (x|(a · y + b · z)) = a · (x|y) + b · (x|z).

(12) ((−x)|y) = (x|−y).

(13) ((−x)|y) = −(x|y).

(14) (x|−y) = −(x|y).

(15) ((−x)|−y) = (x|y).

(16) ((x − y)|z) = (x|z) − (y|z).

(17) (x|(y − z)) = (x|y) − (x|z).

(18) ((x − y)|(u − v)) = ((x|u) − (x|v) − (y|u)) + (y|v).

(19) (0the vectors of X |x) = 0.

(20) (x|0the vectors of X) = 0.

(21) ((x + y)|(x + y)) = (x|x) + 2 · (x|y) + (y|y).

(22) ((x + y)|(x − y)) = (x|x) − (y|y).

(23) ((x − y)|(x − y)) = ((x|x) − 2 · (x|y)) + (y|y).

(24) |(x|y)| ≤
√

(x|x) ·
√

(y|y).

Let us consider X, x, y. We say that x, y are ortogonal if and only if:

(Def.3) (x|y) = 0.

The following propositions are true:

(25) If x, y are ortogonal, then y, x are ortogonal.

(26) If x, y are ortogonal, then x, −y are ortogonal.

(27) If x, y are ortogonal, then −x, y are ortogonal.

(28) If x, y are ortogonal, then −x, −y are ortogonal.

(29) x, 0the vectors of X are ortogonal.

(30) If x, y are ortogonal, then ((x + y)|(x + y)) = (x|x) + (y|y).

(31) If x, y are ortogonal, then ((x − y)|(x − y)) = (x|x) + (y|y).

Let us consider X, x. The functor ‖x‖ yielding a real number is defined by:
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(Def.4) ‖x‖ =
√

(x|x).

The following propositions are true:

(32) ‖x‖ = 0 if and only if x = 0the vectors of X .

(33) ‖a · x‖ = |a| · ‖x‖.

(34) 0 ≤ ‖x‖.

(35) |(x|y)| ≤ ‖x‖ · ‖y‖.

(36) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

(37) ‖−x‖ = ‖x‖.

(38) ‖x‖ − ‖y‖ ≤ ‖x − y‖.

(39) |‖x‖ − ‖y‖| ≤ ‖x − y‖.

Let us consider X, x, y. The functor ρ(x, y) yielding a real number is defined
by:

(Def.5) ρ(x, y) = ‖x − y‖.

One can prove the following propositions:

(40) ρ(x, y) = ρ(y, x).

(41) ρ(x, x) = 0.

(42) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

(43) x 6= y if and only if ρ(x, y) 6= 0.

(44) ρ(x, y) ≥ 0.

(45) x 6= y if and only if ρ(x, y) > 0.

(46) ρ(x, y) =
√

((x − y)|(x − y)).

(47) ρ(x + y, u + v) ≤ ρ(x, u) + ρ(y, v).

(48) ρ(x − y, u − v) ≤ ρ(x, u) + ρ(y, v).

(49) ρ(x − z, y − z) = ρ(x, y).

(50) ρ(x − z, y − z) ≤ ρ(z, x) + ρ(z, y).

Let us consider X. A subset of X is a subset of the vectors of the vectors of
X.

Let us consider X. A function is called a sequence of X if:

(Def.6) dom it = � and rng it ⊆ the vectors of the vectors of X.

For simplicity we adopt the following rules: s1, s2, s3, s4, s′1 denote sequences
of X, k, n, m denote natural numbers, f denotes a function, and d is arbitrary.
We now state four propositions:

(51) f is a sequence of X if and only if dom f = � and rng f ⊆ the vectors
of the vectors of X.

(52) f is a sequence of X if and only if dom f = � and for every d such that
d ∈ � holds f(d) is a point of X.

(53) For all s1, s′1 such that for every n holds s1(n) = s′1(n) holds s1 = s′1.

(54) For every n holds s1(n) is a point of X.
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Let us consider X, s1, n. Then s1(n) is a point of X.

The scheme Ex Seq in RUS concerns a real unitary space A and a unary
functor F yielding a point of A and states that:

there exists a sequence s1 of A such that for every n holds s1(n) = F(n)
for all values of the parameters.

Let us consider X, s2, s3. The functor s2 + s3 yielding a sequence of X is
defined by:

(Def.7) for every n holds (s2 + s3)(n) = s2(n) + s3(n).

Let us consider X, s2, s3. The functor s2 − s3 yielding a sequence of X is
defined as follows:

(Def.8) for every n holds (s2 − s3)(n) = s2(n) − s3(n).

Let us consider X, s1, a. The functor a · s1 yields a sequence of X and is
defined as follows:

(Def.9) for every n holds (a · s1)(n) = a · s1(n).

Let us consider X, s1. The functor −s1 yields a sequence of X and is defined
by:

(Def.10) for every n holds (−s1)(n) = −s1(n).

Let us consider X, s1. We say that s1 is constant if and only if:

(Def.11) there exists x such that for every n holds s1(n) = x.

Let us consider X, s1, x. The functor s1 + x yielding a sequence of X is
defined as follows:

(Def.12) for every n holds (s1 + x)(n) = s1(n) + x.

Let us consider X, s1, x. The functor s1 − x yields a sequence of X and is
defined by:

(Def.13) for every n holds (s1 − x)(n) = s1(n) − x.

We now state a number of propositions:

(55) s2 + s3 = s3 + s2.

(56) s2 + (s3 + s4) = s2 + s3 + s4.

(57) If s2 is constant and s3 is constant and s1 = s2 +s3, then s1 is constant.

(58) If s2 is constant and s3 is constant and s1 = s2−s3, then s1 is constant.

(59) If s2 is constant and s1 = a · s2, then s1 is constant.

(60) For every x there exists s1 such that rng s1 = {x}.

(61) There exists s1 such that rng s1 = {0the vectors of X}.

(62) If there exists x such that for every n holds s1(n) = x, then there exists
x such that rng s1 = {x}.

(63) If there exists x such that rng s1 = {x}, then for every n holds s1(n) =
s1(n + 1).

(64) If for every n holds s1(n) = s1(n + 1), then for all n, k holds s1(n) =
s1(n + k).
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(65) If for all n, k holds s1(n) = s1(n + k), then for all n, m holds s1(n) =
s1(m).

(66) If for all n, m holds s1(n) = s1(m), then there exists x such that for
every n holds s1(n) = x.

(67) s1 is constant if and only if there exists x such that rng s1 = {x}.

(68) s1 is constant if and only if for every n holds s1(n) = s1(n + 1).

(69) s1 is constant if and only if for all n, k holds s1(n) = s1(n + k).

(70) s1 is constant if and only if for all n, m holds s1(n) = s1(m).

(71) s2 − s3 = s2 + −s3.

(72) s1 = s1 + 0the vectors of X .

(73) a · (s2 + s3) = a · s2 + a · s3.

(74) (a + b) · s1 = a · s1 + b · s1.

(75) a · b · s1 = a · (b · s1).

(76) 1 · s1 = s1.

(77) (−1) · s1 = −s1.

(78) s1 − x = s1 + −x.

(79) s2 − s3 = −(s3 − s2).

(80) s1 = s1 − 0the vectors of X .

(81) s1 = −−s1.

(82) s2 − (s3 + s4) = s2 − s3 − s4.

(83) (s2 + s3) − s4 = s2 + (s3 − s4).

(84) s2 − (s3 − s4) = (s2 − s3) + s4.

(85) a · (s2 − s3) = a · s2 − a · s3.
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[13] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[14] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized

Mathematics, 1(2):297–301, 1990.
[15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–

296, 1990.

[16] Zinaida Trybulec and Halina Świe
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