Oriented Metric-Affine Plane - Part I

Jarosław Zajkowski
Warsaw University
Białystok

Abstract

Summary. We present (in Euclidean and Minkowskian geometry) definitions and some properties of the oriented orthogonality relation. Next we consider consistence of Euclidean space and consistence of Minkowskian space.

MML Identifier: ANALORT.

The terminology and notation used in this paper have been introduced in the following articles: [1], [6], [7], [5], [3], [2], and [4]. We adopt the following rules: V will denote a real linear space, $u, u_{1}, u_{2}, v, v_{1}, v_{2}, w, w_{1}, x, y$ will denote vectors of V, and n will denote a real number. Let us consider V, x, y. Let us assume that x, y span the space. Let us consider u. The functor $\rho_{x, y}^{\mathrm{M}}(u)$ yielding a vector of V is defined as follows:

$$
\begin{equation*}
\rho_{x, y}^{\mathrm{M}}(u)=\pi_{x, y}^{1}(u) \cdot x+\left(-\pi_{x, y}^{2}(u)\right) \cdot y . \tag{Def.1}
\end{equation*}
$$

The following propositions are true:
(1) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(u+v)=\rho_{x, y}^{\mathrm{M}}(u)+\rho_{x, y}^{\mathrm{M}}(v)$.
(2) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(n \cdot u)=n \cdot \rho_{x, y}^{\mathrm{M}}(u)$.
(3) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}\left(0_{V}\right)=0_{V}$.
(4) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(-u)=-\rho_{x, y}^{\mathrm{M}}(u)$.
(5) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(u-v)=\rho_{x, y}^{\mathrm{M}}(u)-\rho_{x, y}^{\mathrm{M}}(v)$.
(6) If x, y span the space and $\rho_{x, y}^{\mathrm{M}}(u)=\rho_{x, y}^{\mathrm{M}}(v)$, then $u=v$.
(7) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}\left(\rho_{x, y}^{\mathrm{M}}(u)\right)=u$.
(8) If x, y span the space, then there exists v such that $u=\rho_{x, y}^{\mathrm{M}}(v)$.

Let us consider V, x, y. Let us assume that x, y span the space. Let us consider u. The functor $\rho_{x, y}^{\mathrm{E}}(u)$ yielding a vector of V is defined by:
(Def.2)

$$
\rho_{x, y}^{\mathrm{E}}(u)=\pi_{x, y}^{2}(u) \cdot x+\left(-\pi_{x, y}^{1}(u)\right) \cdot y .
$$

Next we state several propositions:
(9) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(-v)=-\rho_{x, y}^{\mathrm{E}}(v)$.
(10) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(u+v)=\rho_{x, y}^{\mathrm{E}}(u)+\rho_{x, y}^{\mathrm{E}}(v)$.

If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(u-v)=\rho_{x, y}^{\mathrm{E}}(u)-\rho_{x, y}^{\mathrm{E}}(v)$.
(12) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(n \cdot u)=n \cdot \rho_{x, y}^{\mathrm{E}}(u)$.
(13) If x, y span the space and $\rho_{x, y}^{\mathrm{E}}(u)=\rho_{x, y}^{\mathrm{E}}(v)$, then $u=v$.

If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}\left(\rho_{x, y}^{\mathrm{E}}(u)\right)=-u$.
(15) If x, y span the space, then there exists v such that $\rho_{x, y}^{\mathrm{E}}(v)=u$.

We now define two new predicates. Let us consider $V, x, y, u, v, u_{1}, v_{1}$. Let us assume that x, y span the space. We say that the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y if and only if:
(Def.3) $\quad \rho_{x, y}^{\mathrm{E}}(u), \rho_{x, y}^{\mathrm{E}}(v) \mathbb{1} u_{1}, v_{1}$.
We say that the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y if and only if:

$$
\begin{equation*}
\rho_{x, y}^{\mathrm{M}}(u), \rho_{x, y}^{\mathrm{M}}(v) \mathbb{\|} u_{1}, v_{1} . \tag{Def.4}
\end{equation*}
$$

One can prove the following propositions:
If x, y span the space, then if $u, v \Uparrow u_{1}, v_{1}$, then $\rho_{x, y}^{\mathrm{E}}(u), \rho_{x, y}^{\mathrm{E}}(v) \Uparrow$ $\rho_{x, y}^{\mathrm{E}}\left(u_{1}\right), \rho_{x, y}^{\mathrm{E}}\left(v_{1}\right)$.
(17) If x, y span the space, then if $u, v \Uparrow u_{1}, v_{1}$, then $\rho_{x, y}^{\mathrm{M}}(u), \rho_{x, y}^{\mathrm{M}}(v) \mathbb{\|}$ $\rho_{x, y}^{\mathrm{M}}\left(u_{1}\right), \rho_{x, y}^{\mathrm{M}}\left(v_{1}\right)$.
(18) If x, y span the space, then if the segments u, u_{1} and v, v_{1} are Ecoherently orthogonal in the basis x, y, then the segments v, v_{1} and u_{1}, u are E-coherently orthogonal in the basis x, y.
(19) If x, y span the space, then if the segments u, u_{1} and v, v_{1} are Mcoherently orthogonal in the basis x, y, then the segments v, v_{1} and u, u_{1} are M-coherently orthogonal in the basis x, y.
(20) If x, y span the space, then the segments u, u and v, w are E-coherently orthogonal in the basis x, y.
(21) If x, y span the space, then the segments u, u and v, w are M-coherently orthogonal in the basis x, y.
(22) If x, y span the space, then the segments u, v and w, w are E-coherently orthogonal in the basis x, y.
(23) If x, y span the space, then the segments u, v and w, w are M-coherently orthogonal in the basis x, y.
(24) If x, y span the space, then $u, v, \rho_{x, y}^{\mathrm{E}}(u)$ and $\rho_{x, y}^{\mathrm{E}}(v)$ are orthogonal w.r.t. x, y.
(25) If x, y span the space, then the segments u, v and $\rho_{x, y}^{\mathrm{E}}(u), \rho_{x, y}^{\mathrm{E}}(v)$ are E-coherently orthogonal in the basis x, y.
(26) If x, y span the space, then the segments u, v and $\rho_{x, y}^{\mathrm{M}}(u), \rho_{x, y}^{\mathrm{M}}(v)$ are M-coherently orthogonal in the basis x, y.
(27) If x, y span the space, then $u, v \Uparrow u_{1}, v_{1}$ if and only if there exist u_{2}, v_{2} such that $u_{2} \neq v_{2}$ and the segments u_{2}, v_{2} and u, v are E-coherently orthogonal in the basis x, y and the segments u_{2}, v_{2} and u_{1}, v_{1} are Ecoherently orthogonal in the basis x, y.
(28) If x, y span the space, then $u, v \Uparrow u_{1}, v_{1}$ if and only if there exist u_{2}, v_{2} such that $u_{2} \neq v_{2}$ and the segments u_{2}, v_{2} and u, v are M-coherently orthogonal in the basis x, y and the segments u_{2}, v_{2} and u_{1}, v_{1} are Mcoherently orthogonal in the basis x, y.
(29) If x, y span the space, then u, v, u_{1} and v_{1} are orthogonal w.r.t. x, y if and only if the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y or the segments u, v and v_{1}, u_{1} are E-coherently orthogonal in the basis x, y.
(30) If x, y span the space and the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y and the segments u, v and v_{1}, u_{1} are Ecoherently orthogonal in the basis x, y, then $u=v$ or $u_{1}=v_{1}$.
(31) If x, y span the space and the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y and the segments u, v and v_{1}, u_{1} are Mcoherently orthogonal in the basis x, y, then $u=v$ or $u_{1}=v_{1}$.
(32) If x, y span the space and the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y and the segments u, v and u_{1}, w are Ecoherently orthogonal in the basis x, y, then the segments u, v and v_{1}, w are E-coherently orthogonal in the basis x, y or the segments u, v and w, v_{1} are E-coherently orthogonal in the basis x, y.
(33) If x, y span the space and the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y and the segments u, v and u_{1}, w are Mcoherently orthogonal in the basis x, y, then the segments u, v and v_{1}, w are M-coherently orthogonal in the basis x, y or the segments u, v and w, v_{1} are M -coherently orthogonal in the basis x, y.
(34) If x, y span the space and the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y, then the segments v, u and v_{1}, u_{1} are Ecoherently orthogonal in the basis x, y.
(35) If x, y span the space and the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y, then the segments v, u and v_{1}, u_{1} are Mcoherently orthogonal in the basis x, y.
(36) If x, y span the space and the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y and the segments u, v and v_{1}, w are Ecoherently orthogonal in the basis x, y, then the segments u, v and u_{1}, w are E-coherently orthogonal in the basis x, y.
(37) If x, y span the space and the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y and the segments u, v and v_{1}, w are Mcoherently orthogonal in the basis x, y, then the segments u, v and u_{1}, w are M-coherently orthogonal in the basis x, y.
(38) If x, y span the space, then for every u, v, w there exists u_{1} such that
$w \neq u_{1}$ and the segments w, u_{1} and u, v are E-coherently orthogonal in the basis x, y.
(39) If x, y span the space, then for every u, v, w there exists u_{1} such that $w \neq u_{1}$ and the segments w, u_{1} and u, v are M-coherently orthogonal in the basis x, y.
(40) If x, y span the space, then for every u, v, w there exists u_{1} such that $w \neq u_{1}$ and the segments u, v and w, u_{1} are E-coherently orthogonal in the basis x, y.
(41) If x, y span the space, then for every u, v, w there exists u_{1} such that $w \neq u_{1}$ and the segments u, v and w, u_{1} are M-coherently orthogonal in the basis x, y.
(42) If x, y span the space and the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y and the segments w, w_{1} and v, v_{1} are Ecoherently orthogonal in the basis x, y and the segments w, w_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y, then $w=w_{1}$ or $v=v_{1}$ or the segments u, u_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y.
(43) If x, y span the space and the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y and the segments w, w_{1} and v, v_{1} are Mcoherently orthogonal in the basis x, y and the segments w, w_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y, then $w=w_{1}$ or $v=v_{1}$ or the segments u, u_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y.
(44) If x, y span the space and the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y, then the segments v, v_{1} and u, u_{1} are Ecoherently orthogonal in the basis x, y or the segments v, v_{1} and u_{1}, u are E-coherently orthogonal in the basis x, y.
(45) If x, y span the space and the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y, then the segments v, v_{1} and u, u_{1} are Mcoherently orthogonal in the basis x, y or the segments v, v_{1} and u_{1}, u are M-coherently orthogonal in the basis x, y.
(46) If x, y span the space and the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y and the segments v, v_{1} and w, w_{1} are Ecoherently orthogonal in the basis x, y and the segments u_{2}, v_{2} and w, w_{1} are E-coherently orthogonal in the basis x, y, then the segments u, u_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y or $v=v_{1}$ or $w=w_{1}$.
Next we state several propositions:
(47) If x, y span the space and the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y and the segments v, v_{1} and w, w_{1} are Mcoherently orthogonal in the basis x, y and the segments u_{2}, v_{2} and w, w_{1} are M-coherently orthogonal in the basis x, y, then the segments u, u_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y or $v=v_{1}$ or
$w=w_{1}$.
(48) If x, y span the space and the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y and the segments v, v_{1} and w, w_{1} are Ecoherently orthogonal in the basis x, y and the segments u, u_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y, then the segments u_{2}, v_{2} and w, w_{1} are E-coherently orthogonal in the basis x, y or $v=v_{1}$ or $u=u_{1}$.
(49) If x, y span the space and the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y and the segments v, v_{1} and w, w_{1} are Mcoherently orthogonal in the basis x, y and the segments u, u_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y, then the segments u_{2}, v_{2} and w, w_{1} are M-coherently orthogonal in the basis x, y or $v=v_{1}$ or $u=u_{1}$.
(50) Suppose x, y span the space. Given $v, w, u_{1}, v_{1}, w_{1}$. Suppose the segments v, v_{1} and w, u_{1} are not E-coherently orthogonal in the basis x, y and the segments v, v_{1} and u_{1}, w are not E-coherently orthogonal in the basis x, y and the segments u_{1}, w_{1} and u_{1}, w are E-coherently orthogonal in the basis x, y. Then there exists u_{2} such that the segments v, v_{1} and v, u_{2} are E-coherently orthogonal in the basis x, y or the segments v, v_{1} and u_{2}, v are E-coherently orthogonal in the basis x, y but the segments u_{1}, w_{1} and u_{1}, u_{2} are E-coherently orthogonal in the basis x, y or the segments u_{1}, w_{1} and u_{2}, u_{1} are E-coherently orthogonal in the basis x, y.
(51) If x, y span the space, then there exist u, v, w such that the segments u, v and u, w are E-coherently orthogonal in the basis x, y and for all v_{1}, w_{1} such that the segments v_{1}, w_{1} and u, v are E-coherently orthogonal in the basis x, y holds the segments v_{1}, w_{1} and u, w are not E-coherently orthogonal in the basis x, y and the segments v_{1}, w_{1} and w, u are not E-coherently orthogonal in the basis x, y or $v_{1}=w_{1}$.
(52) Suppose x, y span the space. Given $v, w, u_{1}, v_{1}, w_{1}$. Suppose h the segments v, v_{1} and w, u_{1} are not M-coherently orthogonal in the basis x, y and h the segments v, v_{1} and u_{1}, w are not M-coherently orthogonal in the basis x, y and the segments u_{1}, w_{1} and u_{1}, w are M-coherently orthogonal in the basis x, y. Then there exists u_{2} such that the segments v, v_{1} and v, u_{2} are M-coherently orthogonal in the basis x, y or the segments v, v_{1} and u_{2}, v are M-coherently orthogonal in the basis x, y but the segments u_{1}, w_{1} and u_{1}, u_{2} are M-coherently orthogonal in the basis x, y or the segments u_{1}, w_{1} and u_{2}, u_{1} are M-coherently orthogonal in the basis x, y.
(53) If x, y span the space, then there exist u, v, w such that the segments u, v and u, w are M-coherently orthogonal in the basis x, y and for all v_{1}, w_{1} such that the segments v_{1}, w_{1} and u, v are M-coherently orthogonal in the basis x, y holds h the segments v_{1}, w_{1} and u, w are not M-coherently orthogonal in the basis x, y and h the segments v_{1}, w_{1} and w, u are not M-coherently orthogonal in the basis x, y or $v_{1}=w_{1}$.

In the sequel u_{3}, v_{3} will be arbitrary. Let us consider V, x, y. Let us assume that x, y span the space. The Euclidean oriented orthogonality defined over V, x, y yielding a binary relation on : the vectors of V, the vectors of V : is defined as follows:
(Def.5) $\left\langle u_{3}, v_{3}\right\rangle \in$ the Euclidean oriented orthogonality defined over V, x, y if and only if there exist $u_{1}, u_{2}, v_{1}, v_{2}$ such that $u_{3}=\left\langle u_{1}, u_{2}\right\rangle$ and $v_{3}=\left\langle v_{1}\right.$, $\left.v_{2}\right\rangle$ and the segments u_{1}, u_{2} and v_{1}, v_{2} are E-coherently orthogonal in the basis x, y.
Let us consider V, x, y. Let us assume that x, y span the space. The Minkowskian oriented orthogonality defined over V, x, y yields a binary relation on : the vectors of V, the vectors of V : and is defined by:
(Def.6) $\left\langle u_{3}, v_{3}\right\rangle \in$ the Minkowskian oriented orthogonality defined over V, x, y if and only if there exist $u_{1}, u_{2}, v_{1}, v_{2}$ such that $u_{3}=\left\langle u_{1}, u_{2}\right\rangle$ and $v_{3}=\left\langle v_{1}\right.$, $\left.v_{2}\right\rangle$ and the segments u_{1}, u_{2} and v_{1}, v_{2} are M-coherently orthogonal in the basis x, y.
Let us consider V, x, y. Let us assume that x, y span the space. The functor CESpace (V, x, y) yields an affine structure and is defined by:
(Def.7) CESpace $(V, x, y)=\langle$ the vectors of V, the Euclidean oriented orthogonality defined over $V, x, y\rangle$.
Let us consider V, x, y. Let us assume that x, y span the space. The functor CMSpace (V, x, y) yielding an affine structure is defined by:
(Def.8) CMSpace $(V, x, y)=\langle$ the vectors of V,the Minkowskian oriented orthogonality defined over $V, x, y\rangle$.
Let A_{1} be an affine structure, and let p, q, r, s be elements of the points of A_{1}. The predicate $p, q \top^{>} r, s$ is defined as follows:
(Def.9) $\quad\langle\langle p, q\rangle,\langle r, s\rangle\rangle \in$ the congruence of A_{1}.
One can prove the following propositions:
(54) If x, y span the space, then for every u_{3} holds u_{3} is an element of the points of CESpace (V, x, y) if and only if u_{3} is a vector of V.
(55) If x, y span the space, then for every u_{3} holds u_{3} is an element of the points of CMSpace (V, x, y) if and only if u_{3} is a vector of V.
In the sequel p, q, r, s are elements of the points of CESpace (V, x, y). Next we state the proposition
(56) If x, y span the space and $u=p$ and $v=q$ and $u_{1}=r$ and $v_{1}=s$, then $p, q \top^{>} r, s$ if and only if the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y.
In the sequel p, q, r, s will be elements of the points of CMSpace (V, x, y). We now state the proposition
(57) If x, y span the space and $u=p$ and $v=q$ and $u_{1}=r$ and $v_{1}=s$, then $p, q \top^{>} r, s$ if and only if the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y.

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical metric affine spaces and planes. Formalized Mathematics, 1(5):891-899, 1990.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. A construction of analytical ordered trapezium spaces. Formalized Mathematics, 2(3):315-322, 1991.
[5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[6] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[7] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 24, 1991

