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Summary. The article consists of two parts. The first part is
translation of chapter II.3 of [18]. A section of DH(a) determined by
f (symbolically SH(a, f)) and a notion of predicative closure of a class
are defined. It is proved that if following assumptions are satisfied: (o)
A =

⋃
ξ
Aξ, (i) Aξ ⊂ Aη for ξ < η, (ii) Aλ =

⋃
ξ<λ

Aλ (λ is a limit

number), (iii) Aξ ∈ A, (iv) Aξ is transitive, (v) (x, y ∈ A) → (x∩ y ∈ A),
(vi) A is predicatively closed, then the axiom of power sets and the axiom
of substitution are valid in A. The second part is continuation of [17]. It
is proved that if a non-void transitive class is closed under the operations
A1 − A7 then it is predicatively closed. At last sufficient criteria for a
class to be a model of ZF-theory are formulated: if Aξ satisfies o – iv and
A is closed under the operations A1 − A7 then A is a model of ZF.

MML Identifier: ZF FUND2.

The papers [21], [20], [3], [14], [15], [16], [8], [6], [7], [9], [12], [2], [1], [5], [11],
[13], [19], [4], [10], [22], and [17] provide the terminology and notation for this
paper. For simplicity we adopt the following rules: H will denote a ZF-formula,
M , E will denote non-empty sets, e will denote an element of E, m will denote
an element of M , v will denote a function from VAR into M , and f will denote
a function from VAR into E. Let us consider H, M , v. The functor Sv(H)
yields a subset of M and is defined by:

(Def.1) (i) Sv(H) = {m : M,v(x0

m
) |= H} if x0 ∈ Free H,

(ii) Sv(H) = ∅, otherwise.

Let us consider M . We say that M is predicatively closed if and only if:

(Def.2) for all H, E, f such that E ∈ M holds Sf (H) ∈ M .

We now state the proposition

(1) If E is transitive, then Sf(
x1

e
)(∀x2

(x2ǫ(x0) ⇒ x2ǫ(x1))) = E ∩ 2e.
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For simplicity we adopt the following convention: W denotes a universal
class, Y denotes a subclass of W , a, b denote ordinals of W , and L denotes a
transfinite sequence of non-empty sets from W . We now state several proposi-
tions:

(2) If for all a, b such that a ∈ b holds L(a) ⊆ L(b) and for every a holds
L(a) ∈

⋃
L and L(a) is transitive and

⋃
L is predicatively closed, then

⋃
L |= the axiom of power sets.

(3) Suppose that
(i) ω ∈ W ,
(ii) for all a, b such that a ∈ b holds L(a) ⊆ L(b),
(iii) for every a such that a 6= 0 and a is a limit ordinal number holds

L(a) =
⋃

(L
�
a),

(iv) for every a holds L(a) ∈
⋃

L and L(a) is transitive,
(v)

⋃
L is predicatively closed.

Then for every H such that {x0, x1, x2} misses Free H holds
⋃

L |=
the axiom of substitution forH.

(4) Sv(H) = {m : {〈〈0,m〉〉} ∪ (v · decode)
�
(code(Free H) \ {0}) ∈ DM (H)}.

(5) If Y is closed w.r.t. A1-A7 and Y is transitive, then Y is predicatively
closed.

(6) Suppose that
(i) ω ∈ W ,
(ii) for all a, b such that a ∈ b holds L(a) ⊆ L(b),
(iii) for every a such that a 6= 0 and a is a limit ordinal number holds

L(a) =
⋃

(L
�
a),

(iv) for every a holds L(a) ∈
⋃

L and L(a) is transitive,
(v)

⋃
L is closed w.r.t. A1-A7.

Then
⋃

L is a model of ZF.
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