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Summary. A contiuation of [5]. The notions of finite-order trees,
succesors of an element of a tree, and chains, levels and branches of a
tree are introduced. Those notions are used to formalize König’s Lemma
which claims that there is a infinite branch of a finite-order tree if the
tree has arbitrary long finite chains. Besides, the concept of decorated
trees is introduced and some concepts dealing with trees are applied to
decorated trees.

MML Identifier: TREES 2.

The articles [12], [7], [10], [4], [6], [9], [2], [1], [3], [8], [11], [13], and [5] provide the
notation and terminology for this paper. For simplicity we adopt the following
rules: x, y are arbitrary, W , W1, W2 denote trees, w denotes an element of W ,
X denotes a set, f , f1, f2 denote functions, D, D′ denote non-empty sets, k,
k1, k2, m, n denote natural numbers, v, v1, v2 denote finite sequences, and p, q,
r denote finite sequences of elements of 
 . The following propositions are true:

(1) For all v1, v2, v such that v1 � v and v2 � v holds v1 and v2 are
comparable.

(2) For all v1, v2, v such that v1 ≺ v and v2 � v holds v1 and v2 are
comparable and v2 and v1 are comparable.

(4)2 If len v1 = k + 1, then there exist v2, x such that v1 = v2 � 〈x〉 and
len v2 = k.

(5) (v1 � v2)
�
Seg len v1 = v1.

(6) Seg�(v � 〈x〉) = Seg�(v) ∪ {v}.

The scheme TreeStruct Ind concerns a tree A, and a unary predicate P, and
states that:

for every element t of A holds P[t]

1Partially supported by RPBP.III-24.C1
2The proposition (3) was either repeated or obvious.
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provided the following requirements are met:
• P[ε],
• for every element t of A and for every n such that P[t] and t � 〈n〉 ∈ A

holds P[t � 〈n〉].
We now state the proposition

(7) If for every p holds p ∈ W1 if and only if p ∈ W2, then W1 = W2.

Let us consider W1, W2. Let us note that one can characterize the predicate
W1 = W2 by the following (equivalent) condition:

(Def.1) for every p holds p ∈ W1 if and only if p ∈ W2.

One can prove the following propositions:

(8) If p ∈ W , then W = W (p/(W
�
p)).

(9) If p ∈ W and q ∈ W and p � q, then q ∈ W (p/W1).

(10) If p ∈ W and q ∈ W and p and q are not comparable, then
W (p/W1)(q/W2) = W (q/W2)(p/W1).

A tree is finite-order if:

(Def.2) there exists n such that for every element t of it holds t � 〈n〉 /∈ it.

We now define three new constructions. Let us consider W . A subset of W
is said to be a chain of W if:

(Def.3) for all p, q such that p ∈ it and q ∈ it holds p and q are comparable.

A subset of W is called a level of W if:

(Def.4) there exists n such that it = {w : len w = n}.

Let us consider w. The functor succ w yielding a subset of W is defined by:

(Def.5) succw = {w � 〈n〉 : w � 〈n〉 ∈ W}.

One can prove the following propositions:

(11) For every level L of W holds L is an antichain of prefixes of W .

(12) succw is an antichain of prefixes of W .

(13) For every antichain A of prefixes of W and for every chain C of W there
exists w such that A ∩ C ⊆ {w}.

Let us consider W , n. The functor nW yielding a level of W is defined by:

(Def.6) nW = {w : len w = n}.

We now state several propositions:

(14) w � 〈n〉 ∈ succw if and only if w � 〈n〉 ∈ W .

(15) If w = ε, then 1W = succw.

(16) W =
⋃
{nW}.

(17) For every finite tree W holds W =
⋃
{nW : n ≤ height W}.

(18) For every level L of W there exists n such that L = nW .

Now we present three schemes. The scheme AuxSch concerns a tree A, and
a unary predicate P, and states that:

{w : P[w]}, where w ranges over elements of A, is a subset of A
for all values of the parameters.
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The scheme FraenkelCard concerns a non-empty set A, a set B, and a unary
functor F and states that:

{F(w) : w ∈ B} ≤ B , where w ranges over elements of A
for all values of the parameters.

The scheme FraenkelFinCard concerns a non-empty set A, a set B, and a
unary functor F and states that:

card{F(w) : w ∈ B} ≤ cardB, where w ranges over elements of A
provided the parameters meet the following requirement:

• B is finite.
The following four propositions are true:

(19) If W is finite-order, then there exists n such that for every w holds
succw is finite and card succw ≤ n.

(20) If W is finite-order, then succ w is finite.

(21) ∅ is a chain of W .

(22) {ε} is a chain of W .

Let us consider W . A chain of W is said to be a branch of W if:

(Def.7) for every p such that p ∈ it holds Seg�(p) ⊆ it and for no p holds p ∈ W
and for every q such that q ∈ it holds q ≺ p.

Let us consider W . We see that the branch of W is an non-empty chain of
W .

In the sequel C will be a chain of W and B will be a branch of W . The
following propositions are true:

(23) If v1 ∈ C and v2 ∈ C, then v1 ∈ Seg�(v2) or v2 � v1.

(24) If v1 ∈ C and v2 ∈ C and v � v2, then v1 ∈ Seg�(v) or v � v1.

(25) If C is finite and card C > n, then there exists p such that p ∈ C and
len p ≥ n.

(26) For every C holds {w :
∨

p[p ∈ C ∧ w � p]} is a chain of W .

(27) If p � q and q ∈ B, then p ∈ B.

(28) ε ∈ B.

(29) If p ∈ C and q ∈ C and len p ≤ len q, then p � q.

(30) There exists B such that C ⊆ B.

Now we present two schemes. The scheme FuncExOfMinNat concerns a set
A, and a binary predicate P, and states that:

there exists f such that dom f = A and for every x such that x ∈ A there
exists n such that f(x) = n and P[x, n] and for every m such that P[x,m] holds
n ≤ m
provided the following condition is met:

• for every x such that x ∈ A there exists n such that P[x, n].
The scheme InfiniteChain concerns a set A, a constant B, a unary predicate

P, and a binary predicate Q, and states that:
there exists f such that dom f = 
 and rng f ⊆ A and f(0) = B and for

every k holds Q[f(k), f(k + 1)] and P[f(k)]
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provided the parameters meet the following conditions:
• B ∈ A and P[B],
• for every x such that x ∈ A and P[x] there exists y such that y ∈ A

and Q[x, y] and P[y].
The following two propositions are true:

(31) For every tree T such that for every n there exists a chain C of T such
that C is finite and card C = n and for every element t of T holds succ t
is finite there exists a chain B of T such that B is not finite.

(32) For every finite-order tree T such that for every n there exists a chain
C of T such that C is finite and card C = n there exists a chain B of T
such that B is not finite.

A function is said to be a decorated tree if:

(Def.8) dom it is a tree.

In the sequel T , T1, T2 are decorated trees. Let us consider T . Then domT
is a tree.

Let us consider D. A decorated tree is said to be a tree decorated by D if:

(Def.9) rng it ⊆ D.

Let D be a non-empty set, and let T be a tree decorated by D, and let t be
an element of dom T . Then T (t) is an element of D.

One can prove the following proposition

(33) If domT1 = domT2 and for every p such that p ∈ dom T1 holds T1(p) =
T2(p), then T1 = T2.

Now we present two schemes. The scheme DTreeEx concerns a tree A, and
a binary predicate P, and states that:

there exists T such that domT = A and for every p such that p ∈ A holds
P[p, T (p)]
provided the following condition is satisfied:

• for every p such that p ∈ A there exists x such that P[p, x].
The scheme DTreeLambda deals with a tree A and a unary functor F and

states that:
there exists T such that domT = A and for every p such that p ∈ A holds

T (p) = F(p)
for all values of the parameters.

We now define two new functors. Let us consider T . The functor Leaves T
yielding a set is defined by:

(Def.10) Leaves T = T ◦ Leaves dom T .

Let us consider p. The functor T
�
p yielding a decorated tree is defined by:

(Def.11) dom(T
�
p) = domT

�
p and for every q such that q ∈ domT

�
p holds

(T
�
p)(q) = T (p � q).

The following proposition is true

(34) If p ∈ dom T , then rng(T
�
p) ⊆ rng T .
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Let us consider D, and let T be a tree decorated by D. Then Leaves T is a
subset of D. Let p be an element of domT . Then T

�
p is a tree decorated by

D.

Let us consider T , p, T1. Let us assume that p ∈ dom T . The functor T (p/T1)
yielding a decorated tree is defined by the conditions (Def.12).

(Def.12) (i) dom(T (p/T1)) = (domT )(p/dom T1),

(ii) for every q such that

q ∈ (domT )(p/dom T1)

holds p � q and T (p/T1)(q) = T (q) or there exists r such that r ∈ dom T1

and q = p � r and T (p/T1)(q) = T1(r).

Let us consider W , x. Then W 7−→ x is a decorated tree.

Let D be a non-empty set, and let us consider W , and let d be an element
of D. Then W 7−→ d is a tree decorated by D.

Next we state four propositions:

(35) If for every x such that x ∈ D holds x is a tree, then
⋃

D is a tree.

(36) If for every x such that x ∈ X holds x is a function and for all f1, f2 such
that f1 ∈ X and f2 ∈ X holds graph f1 ⊆ graph f2 or graph f2 ⊆ graph f1,
then

⋃
X is a function.

(37) If for every x such that x ∈ D holds x is a decorated tree and for
all T1, T2 such that T1 ∈ D and T2 ∈ D holds graph T1 ⊆ graph T2 or
graphT2 ⊆ graph T1, then

⋃
D is a decorated tree.

(38) If for every x such that x ∈ D′ holds x is a tree decorated by D and for
all T1, T2 such that T1 ∈ D′ and T2 ∈ D′ holds graph T1 ⊆ graphT2 or
graphT2 ⊆ graph T1, then

⋃
D′ is a tree decorated by D.

Now we present two schemes. The scheme DTreeStructEx deals with a non-
empty set A, an element B of A, a unary functor F yielding a set, and a function
C from [:A, 
 :] into A and states that:

there exists a tree T decorated by A such that T (ε) = B and for every
element t of domT holds succ t = {t � 〈k〉 : k ∈ F(T (t))} and for all n, x such
that x = T (t) and n ∈ F(x) holds T (t � 〈n〉) = C(〈〈x, n〉〉)

provided the following condition is satisfied:

• for every element d of A and for all k1, k2 such that k1 ≤ k2 and
k2 ∈ F(d) holds k1 ∈ F(d).

The scheme DTreeStructFinEx deals with a non-empty set A, an element B
of A, a unary functor F yielding a natural number, and a function C from [:A,


 :] into A and states that:

there exists a tree T decorated by A such that T (ε) = B and for every
element t of domT holds succ t = {t � 〈k〉 : k < F(T (t))} and for all n, x such
that x = T (t) and n < F(x) holds T (t � 〈n〉) = C(〈〈x, n〉〉)

for all values of the parameters.
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