Schemes ¹

Stanisław T. Czuba Warsaw University Białystok

Summary. Some basic schemes of quantifier calculus are proved.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{SCHEMS_1}.$

In the sequel a, b will be arbitrary. In this article we present several logical schemes. The scheme *Schemat0* concerns a unary predicate \mathcal{P} , and states that: there exists a such that $\mathcal{P}[a]$

provided the parameter meets the following requirement:

• for every a holds $\mathcal{P}[a]$.

The scheme *Schemat1a* deals with Q, and a unary predicate P, and states that:

for every a holds $\mathcal{P}[a]$ and $\mathcal{Q}[]$

provided the parameters meet the following requirement:

• for every a holds $\mathcal{P}[a]$ and $\mathcal{Q}[]$.

The scheme *Schemat1b* concerns Q, and a unary predicate \mathcal{P} , and states that:

for every a holds $\mathcal{P}[a]$ and $\mathcal{Q}[]$

provided the parameters have the following property:

• for every a holds $\mathcal{P}[a]$ and $\mathcal{Q}[]$.

The scheme *Schemat2a* concerns Q, and a unary predicate \mathcal{P} , and states that:

there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[]$

provided the parameters meet the following requirement:

• there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[]$.

The scheme *Schemat2b* deals with Q, and a unary predicate \mathcal{P} , and states that:

there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[]$ provided the following condition is met:

¹Supported by RPBP.III-24.C10

385

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 • there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[]$.

The scheme *Schemat3* concerns a binary predicate \mathcal{P} , and states that: for every *b* there exists *a* such that $\mathcal{P}[a, b]$

provided the parameter has the following property:

• there exists a such that for every b holds $\mathcal{P}[a, b]$.

The scheme *Schemat4a* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that $\mathcal{P}[a]$ or there exists a such that $\mathcal{Q}[a]$ provided the following condition is satisfied:

• there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[a]$.

The scheme Schemat4b deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[a]$

provided the parameters meet the following requirement:

• there exists a such that $\mathcal{P}[a]$ or there exists a such that $\mathcal{Q}[a]$.

The scheme *Schemat5* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that $\mathcal{P}[a]$ and there exists a such that $\mathcal{Q}[a]$ provided the following condition is met:

• there exists a such that $\mathcal{P}[a]$ and $\mathcal{Q}[a]$.

The scheme *Schemat6a* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every a holds $\mathcal{P}[a]$ and for every a holds $\mathcal{Q}[a]$

provided the parameters satisfy the following condition:

• for every a holds $\mathcal{P}[a]$ and $\mathcal{Q}[a]$.

The scheme *Schemat6b* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every a holds $\mathcal{P}[a]$ and $\mathcal{Q}[a]$

provided the following requirement is met:

• for every a holds $\mathcal{P}[a]$ and for every a holds $\mathcal{Q}[a]$.

The scheme *Schemat7* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every a holds $\mathcal{P}[a]$ or $\mathcal{Q}[a]$

provided the following condition is satisfied:

• for every a holds $\mathcal{P}[a]$ or for every a holds $\mathcal{Q}[a]$.

The scheme *Schemat8* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

if for every a holds $\mathcal{P}[a]$, then for every a holds $\mathcal{Q}[a]$

provided the parameters satisfy the following condition:

• for every a such that $\mathcal{P}[a]$ holds $\mathcal{Q}[a]$.

The scheme *Schemat9* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every a holds $\mathcal{P}[a]$ if and only if for every a holds $\mathcal{Q}[a]$

provided the parameters have the following property:

• for every a holds $\mathcal{P}[a]$ if and only if $\mathcal{Q}[a]$.

The scheme *Schemat10a* concerns \mathcal{P} and states that: $\mathcal{P}[]$

provided the parameter satisfies the following condition:

• for every a holds $\mathcal{P}[]$.

The scheme *Schemat10b* concerns \mathcal{P} and states that: for every *a* holds $\mathcal{P}[]$

provided the parameter satisfies the following condition:

• $\mathcal{P}[].$

The scheme *Schemat11a* concerns Q, and a unary predicate \mathcal{P} , and states that:

for every a holds $\mathcal{P}[a]$ or $\mathcal{Q}[]$

provided the following requirement is met:

• for every a holds $\mathcal{P}[a]$ or $\mathcal{Q}[]$.

The scheme *Schemat11b* deals with Q, and a unary predicate P, and states that:

for every a holds $\mathcal{P}[a]$ or $\mathcal{Q}[]$

provided the parameters satisfy the following condition:

• for every a holds $\mathcal{P}[a]$ or $\mathcal{Q}[]$.

The scheme *Schemat12a* concerns Q, and a unary predicate \mathcal{P} , and states that:

there exists a such that $\mathcal{Q}[]$ and $\mathcal{P}[a]$

provided the following condition is satisfied:

• $\mathcal{Q}[]$ and there exists a such that $\mathcal{P}[a]$.

The scheme *Schemat12b* concerns Q, and a unary predicate P, and states that:

 $\mathcal{Q}[]$ and there exists a such that $\mathcal{P}[a]$

provided the following condition is satisfied:

• there exists a such that $\mathcal{Q}[]$ and $\mathcal{P}[a]$.

The scheme *Schemat13a* concerns Q, and a unary predicate \mathcal{P} , and states that:

for every a such that $\mathcal{Q}[]$ holds $\mathcal{P}[a]$

provided the parameters satisfy the following condition:

• if $\mathcal{Q}[]$, then for every *a* holds $\mathcal{P}[a]$.

The scheme *Schemat13b* deals with Q, and a unary predicate \mathcal{P} , and states that:

if $\mathcal{Q}[]$, then for every *a* holds $\mathcal{P}[a]$

provided the parameters satisfy the following condition:

• for every a such that $\mathcal{Q}[]$ holds $\mathcal{P}[a]$.

The scheme Schemat14 concerns Q, and a unary predicate \mathcal{P} , and states that:

there exists a such that if $\mathcal{Q}[]$, then $\mathcal{P}[a]$

provided the parameters meet the following requirement:

• if $\mathcal{Q}[]$, then there exists a such that $\mathcal{P}[a]$.

The scheme *Schemat15* deals with Q, and a unary predicate \mathcal{P} , and states that:

for every a such that $\mathcal{P}[a]$ holds $\mathcal{Q}[]$ provided the following condition is met:

• if there exists a such that $\mathcal{P}[a]$, then $\mathcal{Q}[]$.

The scheme *Schemat16* deals with Q, and a unary predicate \mathcal{P} , and states that:

there exists a such that if $\mathcal{P}[a]$, then $\mathcal{Q}[]$

provided the parameters meet the following requirement:

• if for every a holds $\mathcal{P}[a]$, then $\mathcal{Q}[]$.

The scheme *Schemat17* concerns Q, and a unary predicate \mathcal{P} , and states that:

if for every a holds $\mathcal{P}[a]$, then $\mathcal{Q}[]$

provided the parameters meet the following requirement:

• for every a such that $\mathcal{P}[a]$ holds $\mathcal{Q}[]$.

The scheme *Schemat18a* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that for every b holds $\mathcal{P}[a]$ or $\mathcal{Q}[b]$

provided the following condition is satisfied:

• there exists a such that $\mathcal{P}[a]$ or for every b holds $\mathcal{Q}[b]$.

The scheme *Schemat18b* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that $\mathcal{P}[a]$ or for every b holds $\mathcal{Q}[b]$

provided the parameters meet the following condition:

• there exists a such that for every b holds $\mathcal{P}[a]$ or $\mathcal{Q}[b]$.

The scheme *Schemat19a* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every b there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[b]$

provided the following condition is met:

• there exists a such that $\mathcal{P}[a]$ or for every b holds $\mathcal{Q}[b]$.

The scheme *Schemat19b* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that $\mathcal{P}[a]$ or for every b holds $\mathcal{Q}[b]$

provided the following condition is met:

• for every b there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[b]$.

The scheme *Schemat20a* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every b there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[b]$

provided the following condition is met:

• there exists a such that for every b holds $\mathcal{P}[a]$ or $\mathcal{Q}[b]$.

The scheme *Schemat20b* concerns two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that for every b holds $\mathcal{P}[a]$ or $\mathcal{Q}[b]$

provided the following requirement is met:

• for every b there exists a such that $\mathcal{P}[a]$ or $\mathcal{Q}[b]$.

The scheme *Schemat21a* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that for every b holds $\mathcal{P}[a]$ and $\mathcal{Q}[b]$ provided the following condition is satisfied:

• there exists a such that $\mathcal{P}[a]$ and for every b holds $\mathcal{Q}[b]$.

The scheme Schemat21b deals with two unary predicates $\mathcal P$ and $\mathcal Q,$ and states that:

there exists a such that $\mathcal{P}[a]$ and for every b holds $\mathcal{Q}[b]$

provided the following condition is satisfied:

• there exists a such that for every b holds $\mathcal{P}[a]$ and $\mathcal{Q}[b]$.

The scheme *Schemat22a* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every b there exists a such that $\mathcal{P}[a]$ and $\mathcal{Q}[b]$

provided the parameters meet the following condition:

• there exists a such that $\mathcal{P}[a]$ and for every b holds $\mathcal{Q}[b]$.

The scheme *Schemat22b* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that $\mathcal{P}[a]$ and for every b holds $\mathcal{Q}[b]$

provided the following requirement is met:

• for every b there exists a such that $\mathcal{P}[a]$ and $\mathcal{Q}[b]$.

The scheme *Schemat23a* deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

for every b there exists a such that $\mathcal{P}[a]$ and $\mathcal{Q}[b]$

provided the following requirement is met:

• there exists a such that for every b holds $\mathcal{P}[a]$ and $\mathcal{Q}[b]$.

The scheme Schemat23b deals with two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a such that for every b holds $\mathcal{P}[a]$ and $\mathcal{Q}[b]$

provided the parameters satisfy the following condition:

• for every b there exists a such that $\mathcal{P}[a]$ and $\mathcal{Q}[b]$.

The scheme *Schemat24a* concerns a unary predicate Q, and a binary predicate P, and states that:

for every a there exists b such that if $\mathcal{P}[a, b]$, then $\mathcal{Q}[a]$

provided the parameters satisfy the following condition:

• for every a such that for every b holds $\mathcal{P}[a, b]$ holds $\mathcal{Q}[a]$.

The scheme *Schemat24b* deals with a unary predicate \mathcal{Q} , and a binary predicate \mathcal{P} , and states that:

for every a such that for every b holds $\mathcal{P}[a, b]$ holds $\mathcal{Q}[a]$

provided the following requirement is met:

• for every a there exists b such that if $\mathcal{P}[a, b]$, then $\mathcal{Q}[a]$.

The scheme *Schemat25a* concerns a unary predicate Q, and a binary predicate P, and states that:

for all a, b such that $\mathcal{P}[a, b]$ holds $\mathcal{Q}[a]$

provided the parameters have the following property:

• for every a such that there exists b such that $\mathcal{P}[a, b]$ holds $\mathcal{Q}[a]$.

The scheme *Schemat25b* concerns a unary predicate Q, and a binary predicate P, and states that:

for every a such that there exists b such that $\mathcal{P}[a, b]$ holds $\mathcal{Q}[a]$ provided the following condition is met:

• for all a, b such that $\mathcal{P}[a, b]$ holds $\mathcal{Q}[a]$.

The scheme *Schemat26* deals with a binary predicate \mathcal{P} , and states that: there exists a such that for every b holds $\mathcal{P}[a, b]$

provided the following condition is met:

• for all a, b holds $\mathcal{P}[a, b]$.

The scheme *Schemat27* deals with a binary predicate \mathcal{P} , and states that: for every *a* holds $\mathcal{P}[a, a]$

provided the parameter meets the following condition:

• for all a, b holds $\mathcal{P}[a, b]$.

The scheme *Schemat28* concerns a binary predicate \mathcal{P} , and states that: there exists *b* such that for every *a* holds $\mathcal{P}[a, b]$

provided the following requirement is met:

• for all a, b holds $\mathcal{P}[a, b]$.

The scheme *Schemat29* deals with a binary predicate \mathcal{P} , and states that: for every *b* there exists *a* such that $\mathcal{P}[a, b]$

provided the parameter has the following property:

• there exists a such that for every b holds $\mathcal{P}[a, b]$.

The scheme *Schemat30* deals with a binary predicate \mathcal{P} , and states that: there exists a such that $\mathcal{P}[a, a]$

provided the parameter meets the following requirement:

• there exists a such that for every b holds $\mathcal{P}[a, b]$.

The scheme *Schemat31* concerns a binary predicate \mathcal{P} , and states that: for every *a* there exists *b* such that $\mathcal{P}[b, a]$

provided the following condition is satisfied:

• for every a holds $\mathcal{P}[a, a]$.

The scheme *Schemat32* concerns a binary predicate \mathcal{P} , and states that: there exists a such that $\mathcal{P}[a, a]$

provided the parameter meets the following condition:

• for every a holds $\mathcal{P}[a, a]$.

The scheme *Schemat33* deals with a binary predicate \mathcal{P} , and states that: for every *a* there exists *b* such that $\mathcal{P}[a, b]$

provided the following condition is satisfied:

• for every a holds $\mathcal{P}[a, a]$.

The scheme *Schemat34* concerns a binary predicate \mathcal{P} , and states that: there exists *b* such that $\mathcal{P}[b, b]$

provided the parameter meets the following requirement:

• there exists b such that for every a holds $\mathcal{P}[a, b]$.

The scheme *Schemat35* deals with a binary predicate \mathcal{P} , and states that: for every *a* there exists *b* such that $\mathcal{P}[a, b]$

provided the parameter meets the following condition:

• there exists b such that for every a holds $\mathcal{P}[a, b]$.

The scheme *Schemat36* deals with a binary predicate \mathcal{P} , and states that: there exist a, b such that $\mathcal{P}[a, b]$

Schemes

provided the parameter meets the following requirement:

• for every b there exists a such that $\mathcal{P}[a, b]$.

The scheme *Schemat37* deals with a binary predicate \mathcal{P} , and states that: there exist a, b such that $\mathcal{P}[a, b]$

provided the following condition is satisfied:

• there exists a such that $\mathcal{P}[a, a]$.

The scheme *Schemat38* concerns a binary predicate \mathcal{P} , and states that: there exist a, b such that $\mathcal{P}[a, b]$

provided the parameter satisfies the following condition:

• for every a there exists b such that $\mathcal{P}[a, b]$.

Received December 17, 1990