On Projections in Projective Planes. Part II¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. We study in greater datail projectivities on Desarguesian projective planes. We are particularly interested in the situation when the composition of given two projectivities can be replaced by another two, with a given axis or centre of one of them.

MML Identifier: PROJRED2.

The articles [7], [9], [6], [8], [10], [11], [5], [4], [1], [2], and [3] provide the notation and terminology for this paper. In the sequel I_1 will denote a projective space defined in terms of incidence and z will denote an element of the points of I_1 . Let us consider I_1 , and let A, B, C be elements of the lines of I_1 . We say that A, B, C are concurrent if and only if:

(Def.1) there exists an element o of the points of I_1 such that $o \mid A$ and $o \mid B$ and $o \mid C$.

Let us consider I_1 , and let Z be an element of the lines of I_1 . The functor chain(Z) yields a subset of the points of I_1 and is defined by:

 $(Def.2) \quad chain(Z) = \{z : z \mid Z\}.$

We adopt the following rules: I_2 will denote an Desarguesian 2-dimensional projective space defined in terms of incidence, $a, b, c, d, p, p'_1, q, o, o', o'', o'_1, r,$ s, x, y, o_1, o_2 will denote elements of the points of I_2 , and $O_1, O_2, O_3, A, B, C,$ O, Q, R, S will denote elements of the lines of I_2 . Let us consider I_2 . A partial function from the points of I_2 to the points of I_2 is said to be a projection of I_2 if:

(Def.3) there exist a, A, B such that $a \nmid A$ and $a \nmid B$ and it $= \pi_a(A \to B)$.

The following propositions are true:

323

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C6

- If A = B or B = C or C = A, then A, B, C are concurrent. (1)
- (2)If A, B, C are concurrent, then A, C, B are concurrent and B, A, Care concurrent and B, C, A are concurrent and C, A, B are concurrent and C, B, A are concurrent.
- If $o \nmid A$ and $o \nmid B$ and $y \mid B$, then there exists x such that $x \mid A$ and (3) $\pi_o(A \to B)(x) = y.$
- (4)If $o \nmid A$ and $o \nmid B$, then $\operatorname{rng} \pi_o(A \to B) \subseteq$ the points of I_2 .
- If $o \nmid A$ and $o \nmid B$, then dom $\pi_o(A \to B) = \text{chain}(A)$. (5)
- If $o \nmid A$ and $o \nmid B$, then $\operatorname{rng} \pi_o(A \to B) = \operatorname{chain}(B)$. (6)
- For an arbitrary x holds $x \in \text{chain}(A)$ if and only if there exists a such (7)that x = a and $a \mid A$.
- If $o \nmid A$ and $o \nmid B$, then $\pi_o(A \to B)$ is one-to-one. (8)
- If $o \nmid A$ and $o \nmid B$, then $\pi_o(A \to B)^{-1} = \pi_o(B \to A)$. (9)
- For every projection f of I_2 holds f^{-1} is a projection of I_2 . (10)
- If $o \nmid A$, then $\pi_o(A \to A) = \mathrm{id}_{\mathrm{chain}(A)}$. (11)
- (12) $id_{chain(A)}$ is a projection of I_2 .
- If $o \nmid A$ and $o \nmid B$ and $o \nmid C$, then $\pi_o(C \to B) \cdot \pi_o(A \to C) = \pi_o(A \to C)$ (13)B).
- Suppose $o_1 \nmid O_1$ and $o_1 \nmid O_2$ and $o_2 \nmid O_2$ and $o_2 \nmid O_3$ and O_1, O_2, O_3 (14)are concurrent and $O_1 \neq O_3$. Then there exists o such that $o \nmid O_1$ and $o \nmid O_3$ and $\pi_{o_2}(O_2 \to O_3) \cdot \pi_{o_1}(O_1 \to O_2) = \pi_o(O_1 \to O_3).$
- Suppose that (15)
 - (i) $a \nmid A$,
 - $b \nmid B$, (ii)
 - $a \nmid C$, (iii)
 - (iv) $b \nmid C$,
 - (v)A, B, C are not concurrent,
- $c \mid A$, (vi)
- (vii) $c \mid C,$
- (viii) $c \mid Q,$
- (ix) $b \nmid Q$,
- (\mathbf{x}) $A \neq Q$,
- (xi) $a \neq b$,
- $b \neq q$, (xii)
- $a \mid O,$ (xiii)
- (xiv) $b \mid O$,
- B, C, O are not concurrent, (xv)
- $d \mid C$,
- (xvi)
- $d \mid B$, (xvii)
- (xviii) $a \mid O_1,$
- (xix) $d \mid O_1,$
- (xx) $p \mid A$,
- (xxi) $p \mid O_1,$

(xxii)	$q \mid O,$	
(xxiii)	$q \mid O_2,$	
(xxiv)	$p \mid O_2,$	
(xxv)	$p_1' \mid O_2,$	
(xxvi)	$d \mid O_3,$	
(xxvii)	$b \mid O_3,$	
(xxviii)	$p'_1 \mid O_3,$	
(xxix)	$p_1^{\overline{i}} \mid Q,$	
(xxx)	$Q \neq C,$	
(xxxi)	$q \neq a,$	
(xxxii)	$q \nmid A,$	
(xxxiii)	$q \nmid Q.$	
Then $\pi_b(C \to B) \cdot \pi_a(A \to C) = \pi_b(Q \to B) \cdot \pi_q(A \to Q).$		
(16)	Suppose that	
(i)	$a \nmid A$,	
(ii)	$a \nmid C$,	
(iii)	$b \nmid B$,	
(iv)	b mid C,	
(\mathbf{v})	$b \nmid Q,$	
(vi)	A, B, C are not concurrent,	
(vii)	$a \neq b$,	
(viii)	b eq q,	
(ix)	$A \neq Q,$	
(x)	$c, o \mid A,$	
(xi)	$o, o'', d \mid B,$	
(xii)	$c, d, o' \mid C,$	
(xiii)	$a, b, d \mid O,$	
(xiv)	$c, o'_1 \mid Q,$	
(xv)	$a, o, o' \mid O_1,$	
(xvi)	$b, o', o'_1 \mid O_2,$	
(xvii)	$o, o_1', q \mid O_3,$	
(xviii)	$q \mid O.$	
<u>_</u>	Then $\pi_b(C \to B) \cdot \pi_a(A \to C) = \pi_b(Q \to B) \cdot \pi_q(A \to Q).$	
(17)	Suppose that	
(i)	$a \nmid A,$	
(ii)	$a \nmid C,$	
(iii)	$b \nmid B$,	
(iv)	$b \nmid C$,	
(\mathbf{v})	$b \nmid Q,$	
(vi)	A, B, C are not concurrent,	
(vii)	B, C, O are not concurrent,	
(viii)	$A \neq Q,$	
$(\mathbf{i}\mathbf{v})$	$O \neq C$	

(ix) $Q \neq C$, (x) $a \neq b$,

(xi) $c, p \mid A,$ $d \mid B$, (xii) (xiii) $c, d \mid C,$ (xiv) $a, b, q \mid O,$ (xv) $c, p_1' \mid Q,$ $a, d, p \mid O_1,$ (xvi) $q, p, p_1' \mid O_2,$ (xvii) (xviii) $b, d, p_1' \mid O_3.$ Then $q \neq a$ and $q \neq b$ and $q \nmid A$ and $q \nmid Q$. (18)Suppose that (i) $a \nmid A$, (ii) $a \nmid C$, $b \nmid B$, (iii) (iv) $b \nmid C$, (\mathbf{v}) $b \nmid Q$, (vi)A, B, C are not concurrent, (vii) $a \neq b$, (viii) $A \neq Q$, $c, o \mid A,$ (ix)(x) $o, o'', d \mid B,$ $c, d, o' \mid C,$ (xi)(xii) $a, b, d \mid O,$ $c, o'_1 \mid Q,$ (xiii) $a, o, o' \mid O_1,$ (xiv) $b, o', o'_1 \mid O_2,$ (xv)(xvi) $o, o'_1, q \mid O_3,$ (xvii) $q \mid O.$ Then $q \nmid A$ and $q \nmid Q$ and $b \neq q$. (19)Suppose that (i) $a \nmid A$, (ii) $a \nmid C$, $b \nmid B$, (iii) (iv) $b \nmid C$, (v) $q \nmid A$, A, B, C are not concurrent, (vi)(vii) B, C, O are not concurrent, $a \neq b$, (viii) $b \neq q$, (ix) $q \neq a$, (x)

- (xi) $c, p \mid A,$
- (xii) $d \mid B$,
- $(\text{xiii}) \quad c,d \mid C,$
- $({\rm xiv}) \quad a,b,q \mid O,$
- $(\mathbf{x}\mathbf{v}) \quad c, p_1' \mid Q,$

(xvi)	$a, d, p \mid O_1,$
(xvii)	$q, p, p_1' \mid O_2,$
(xviii)	$b, d, p'_1 \mid O_3.$
J	Then $Q \neq A$ and $Q \neq C$ and $q \nmid Q$ and $b \nmid Q$.
(20)	Suppose that
(i)	$a \nmid A$,
(ii)	$a \nmid C$,
(iii)	$b \nmid B$,
(iv)	$b \nmid C$,
(v)	$q \nmid A$,
(vi)	A, B, C are not concurrent,
(vii)	a eq b,
(viii)	b eq q,
(ix)	$c, o \mid A,$
(x)	$o, o'', d \mid B,$
(xi)	$c,d,o' \mid C,$
(xii)	$a, b, d \mid O,$
(xiii)	$c, o'_1 \mid Q,$
(xiv)	$a, o, o' \mid O_1,$
(xv)	$b, o', o'_1 \mid O_2,$
(xvi)	$o, o_1', q \mid O_3,$
(xvii)	$q \mid O.$
Then $b \nmid Q$ and $q \nmid Q$ and $A \neq Q$.	
(21)	Suppose that
(i)	$a \nmid A,$
(ii)	$b \nmid B$,
(iii)	$a \nmid C,$
(iv)	$b \nmid C$,
(v)	A, B, C are not concurrent,
(vi)	A, C, Q are concurrent,
(vii)	$b \nmid Q,$
(viii)	$A \neq Q,$
(ix)	$a \neq b$,
(x)	$a \mid O,$
(xi)	$b \mid O.$
Then there exists q such that $q \mid O$ and $q \nmid A$ and $q \nmid Q$ and $\pi_b(C \rightarrow$	
$B) \cdot \pi_a(A \to C) = \pi_b(Q \to B) \cdot \pi_q(A \to Q).$	
(22)	Suppose that
(i)	$a \nmid A$,
(ii)	$b \nmid B$,
(iii)	$a \nmid C$.

- (iii) $a \nmid C$, (iv) $b \nmid C$,
- (v) A, B, C are not concurrent,
- (vi) B, C, Q are concurrent,

 $a \nmid Q$, (vii) $B \neq Q$, (viii) (ix) $a \neq b$, $a \mid O,$ (\mathbf{x}) (xi) $b \mid O$. Then there exists q such that $q \mid O$ and $q \nmid B$ and $q \nmid Q$ and $\pi_b(C \rightarrow$ $B) \cdot \pi_a(A \to C) = \pi_q(Q \to B) \cdot \pi_a(A \to Q).$ (23)Suppose that (i) $a \nmid A$, (ii) $b \nmid B$, (iii) $a \nmid C$, (iv) $b \nmid C$, (v) $a \nmid B$, (vi) $b \nmid A$, $c \mid A,$ (vii) (viii) $c \mid C,$ (ix) $d \mid B$, (\mathbf{x}) $d \mid C$, $a \mid S,$ (xi)(xii) $d \mid S,$ (xiii) $c \mid R,$ $b \mid R$, (xiv) $s \mid A$, (xv) $s \mid S$, (xvi) (xvii) $r \mid B,$ (xviii) $r \mid R$ (xix) $s \mid Q,$ (xx) $r \mid Q,$ A, B, C are not concurrent. (xxi) Then $\pi_b(C \to B) \cdot \pi_a(A \to C) = \pi_a(Q \to B) \cdot \pi_b(A \to Q).$ Suppose $a \nmid A$ and $b \nmid B$ and $a \nmid C$ and $b \nmid C$ and $a \neq b$ and $a \mid O$ and (24) $b \mid O$ and $q \mid O$ and $q \nmid A$ and $q \neq b$ and A, B, C are not concurrent.

- Then there exists Q such that A, C, Q are concurrent and $b \nmid Q$ and $q \nmid Q$ and $\pi_b(C \to B) \cdot \pi_a(A \to C) = \pi_b(Q \to B) \cdot \pi_q(A \to Q)$. (25) Suppose $a \nmid A$ and $b \nmid B$ and $a \nmid C$ and $b \nmid C$ and $a \neq b$ and $a \mid O$ and
- (25) Suppose $a \nmid A$ and $b \restriction B$ and $a \restriction C$ and $b \restriction C$ and $a \neq b$ and $a \restriction O$ and $b \mid O$ and $q \mid O$ and $q \nmid B$ and $q \neq a$ and A, B, C are not concurrent. Then there exists Q such that B, C, Q are concurrent and $a \nmid Q$ and $q \nmid Q$ and $\pi_b(C \to B) \cdot \pi_a(A \to C) = \pi_q(Q \to B) \cdot \pi_a(A \to Q)$.

References

- [1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

- [3] Eugeniusz Kusak and Wojciech Leończuk. Incidence projective space (a reduction theorem in a plane). Formalized Mathematics, 2(2):271–274, 1991.
- Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225–232, 1991.
- [5] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [6] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received October 31, 1990