On Projections in Projective Planes. Part II ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok
Wojciech Leończuk
Warsaw University
Białystok
Krzysztof Prażmowski
Warsaw University
Białystok

Abstract

Summary. We study in greater datail projectivities on Desarguesian projective planes. We are particularly interested in the situation when the composition of given two projectivities can be replaced by another two, with a given axis or centre of one of them.

MML Identifier: PROJRED2.

The articles [7], [9], [6], [8], [10], [11], [5], [4], [1], [2], and [3] provide the notation and terminology for this paper. In the sequel I_{1} will denote a projective space defined in terms of incidence and z will denote an element of the points of I_{1}. Let us consider I_{1}, and let A, B, C be elements of the lines of I_{1}. We say that A, B, C are concurrent if and only if:
(Def.1) there exists an element o of the points of I_{1} such that $o \mid A$ and $o \mid B$ and $o \mid C$.
Let us consider I_{1}, and let Z be an element of the lines of I_{1}. The functor chain (Z) yields a subset of the points of I_{1} and is defined by:

(Def.2) $\quad \operatorname{chain}(Z)=\{z: z \mid Z\}$.

We adopt the following rules: I_{2} will denote an Desarguesian 2-dimensional projective space defined in terms of incidence, $a, b, c, d, p, p_{1}^{\prime}, q, o, o^{\prime}, o^{\prime \prime}, o_{1}^{\prime}, r$, s, x, y, o_{1}, o_{2} will denote elements of the points of I_{2}, and $O_{1}, O_{2}, O_{3}, A, B, C$, O, Q, R, S will denote elements of the lines of I_{2}. Let us consider I_{2}. A partial function from the points of I_{2} to the points of I_{2} is said to be a projection of I_{2} if:
(Def.3) there exist a, A, B such that $a \nmid A$ and $a \nmid B$ and it $=\pi_{a}(A \rightarrow B)$.
The following propositions are true:

[^0](1) If $A=B$ or $B=C$ or $C=A$, then A, B, C are concurrent.
(2) If A, B, C are concurrent, then A, C, B are concurrent and B, A, C are concurrent and B, C, A are concurrent and C, A, B are concurrent and C, B, A are concurrent.
(3) If $o \nmid A$ and $o \nmid B$ and $y \mid B$, then there exists x such that $x \mid A$ and $\pi_{o}(A \rightarrow B)(x)=y$.
(4) If $o \nmid A$ and $o \nmid B$, then $\operatorname{rng} \pi_{o}(A \rightarrow B) \subseteq$ the points of I_{2}.
(5) If $o \nmid A$ and $o \nmid B$, then $\operatorname{dom} \pi_{o}(A \rightarrow B)=\operatorname{chain}(A)$.
(6) If $o \nmid A$ and $o \nmid B$, then $\operatorname{rng} \pi_{o}(A \rightarrow B)=\operatorname{chain}(B)$.
(7) For an arbitrary x holds $x \in \operatorname{chain}(A)$ if and only if there exists a such that $x=a$ and $a \mid A$.
(8) If $o \nmid A$ and $o \nmid B$, then $\pi_{o}(A \rightarrow B)$ is one-to-one.
(9) If $o \nmid A$ and $o \nmid B$, then $\pi_{o}(A \rightarrow B)^{-1}=\pi_{o}(B \rightarrow A)$.
(10) For every projection f of I_{2} holds f^{-1} is a projection of I_{2}.
(11) If $o \nmid A$, then $\pi_{o}(A \rightarrow A)=\operatorname{id}_{\text {chain }(A)}$.
(12) $\operatorname{id}_{\text {chain }(A)}$ is a projection of I_{2}.
(13) If $o \nmid A$ and $o \nmid B$ and $o \nmid C$, then $\pi_{o}(C \rightarrow B) \cdot \pi_{o}(A \rightarrow C)=\pi_{o}(A \rightarrow$ B).
(14) Suppose $o_{1} \nmid O_{1}$ and $o_{1} \nmid O_{2}$ and $o_{2} \nmid O_{2}$ and $o_{2} \nmid O_{3}$ and O_{1}, O_{2}, O_{3} are concurrent and $O_{1} \neq O_{3}$. Then there exists o such that $o \nmid O_{1}$ and $o \nmid O_{3}$ and $\pi_{o_{2}}\left(O_{2} \rightarrow O_{3}\right) \cdot \pi_{o_{1}}\left(O_{1} \rightarrow O_{2}\right)=\pi_{o}\left(O_{1} \rightarrow O_{3}\right)$.
(15) Suppose that
(i) $a \nmid A$,
(ii) $b \nmid B$,
(iii) $a \nmid C$,
(iv) $b \nmid C$,
(v) A, B, C are not concurrent,
(vi) $c \mid A$,
(vii) $c \mid C$,
(viii) $c \mid Q$,
(ix) $\quad b \nmid Q$,
(x) $\quad A \neq Q$,
(xi) $a \neq b$,
(xii) $b \neq q$,
(xiii) $a \mid O$,
(xiv) $\quad b \mid O$,
(xv) B, C, O are not concurrent,
(xvi) $d \mid C$,
(xvii) $\quad d \mid B$,
(xviii) $a \mid O_{1}$,
(xix) $d \mid O_{1}$,
(xx) $\quad p \mid A$,
(xxi) $p \mid O_{1}$,

```
(xxii) \(q \mid O\),
(xxiii) \(q \mid O_{2}\),
(xxiv) \(p \mid O_{2}\),
    (xxv) \(p_{1}^{\prime} \mid O_{2}\),
(xxvi) \(d \mid O_{3}\),
(xxvii) \(b \mid O_{3}\),
(xxviii) \(p_{1}^{\prime} \mid O_{3}\),
    (xxix) \(p_{1}^{\prime} \mid Q\),
    (xxx) \(Q \neq C\),
(xxxi) \(q \neq a\),
(xxxii) \(q \nmid A\),
(xxxiii) \(\quad q \nmid Q\).
Then \(\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{b}(Q \rightarrow B) \cdot \pi_{q}(A \rightarrow Q)\).
(16) Suppose that
(i) \(a \nmid A\),
(ii) \(a \nmid C\),
(iii) \(b \nmid B\),
(iv) \(b \nmid C\),
(v) \(b \nmid Q\),
(vi) \(A, B, C\) are not concurrent,
(vii) \(a \neq b\),
(viii) \(b \neq q\),
(ix) \(A \neq Q\),
(x) \(c, o \mid A\),
(xi) \(\quad o, o^{\prime \prime}, d \mid B\),
(xii) \(c, d, o^{\prime} \mid C\),
(xiii) \(a, b, d \mid O\),
(xiv) \(c, o_{1}^{\prime} \mid Q\),
(xv) \(a, o, o^{\prime} \mid O_{1}\),
(xvi) \(\quad b, o^{\prime}, o_{1}^{\prime} \mid O_{2}\),
(xvii) \(\quad o, o_{1}^{\prime}, q \mid O_{3}\),
(xviii) \(q \mid O\).
Then \(\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{b}(Q \rightarrow B) \cdot \pi_{q}(A \rightarrow Q)\).
(17) Suppose that
(i) \(a \nmid A\),
(ii) \(a \nmid C\),
(iii) \(b \nmid B\),
(iv) \(b \nmid C\),
(v) \(b \nmid Q\),
(vi) \(A, B, C\) are not concurrent,
(vii) \(B, C, O\) are not concurrent,
(viii) \(A \neq Q\),
(ix) \(Q \neq C\),
(x) \(a \neq b\),
```

```
    (xi) }c,p|A
    (xii) d d B,
    (xiii) c,d | C,
    (xiv) a,b,q|O,
    (xv) c, p
    (xvi) a,d, p|O}\mp@subsup{O}{1}{}
(xvii) }q,p,\mp@subsup{p}{1}{\prime}|\mp@subsup{O}{2}{}
(xviii) b,d, p
    Then }q\not=a\mathrm{ and }q\not=b\mathrm{ and }q\not|A\mathrm{ and }q\not|Q
    (18) Suppose that
    (i) }a\not|A\mathrm{ ,
    (ii) }a\not|C
    (iii) }b\notbB
    (iv) }b\notbC\mathrm{ ,
    (v) }b\not|Q\mathrm{ ,
    (vi) A,B,C are not concurrent,
    (vii) a\not=b,
    (viii) }A\not=Q\mathrm{ ,
    (ix) }c,o|A\mathrm{ ,
    (x) }o,\mp@subsup{o}{}{\prime\prime},d|B
    (xi) }c,d,\mp@subsup{o}{}{\prime}|C\mathrm{ ,
    (xii) a,b,d|O,
    (xiii) c,o,
    (xiv) a,o,o''| O ,
    (xv) b, o', ool}|\mp@subsup{O}{2}{\prime}\mathrm{ ,
    (xvi) o, os
(xvii) q|O.
    Then }q\not|A\mathrm{ and }q\not|Q\mathrm{ and }b\not=q
    (19) Suppose that
    (i) }a\not|A\mathrm{ ,
    (ii) }a\not}C
    (iii) }b\notbB\mathrm{ ,
    (iv) }b\notbC\mathrm{ ,
    (v) }q\not|A\mathrm{ ,
    (vi) A,B,C are not concurrent,
    (vii) B,C,O are not concurrent,
    (viii) a\not=b,
    (ix) }b\not=q
    (x) }\quadq\not=a
    (xi) }c,p|A
    (xii) d | B,
    (xiii) c,d|C,
    (xiv) a, b,q|O,
    (xv) c, p
```

(xvi) $\quad a, d, p \mid O_{1}$,
(xvii) $q, p, p_{1}^{\prime} \mid O_{2}$,
(xviii) $\quad b, d, p_{1}^{\prime} \mid O_{3}$.

Then $Q \neq A$ and $Q \neq C$ and $q \nmid Q$ and $b \nmid Q$.
(20) Suppose that
(i) $a \nmid A$,
(ii) $a \nmid C$,
(iii) $b \nmid B$,
(iv) $b \nmid C$,
(v) $q \nmid A$,
(vi) A, B, C are not concurrent,
(vii) $a \neq b$,
(viii) $b \neq q$,
(ix) $c, o \mid A$,
(x) $o, o^{\prime \prime}, d \mid B$,
(xi) $c, d, o^{\prime} \mid C$,
(xii) $a, b, d \mid O$,
(xiii) $c, o_{1}^{\prime} \mid Q$,
(xiv) $a, o, o^{\prime} \mid O_{1}$,
(xv) $b, o^{\prime}, o_{1}^{\prime} \mid O_{2}$,
(xvi) $\quad o, o_{1}^{\prime}, q \mid O_{3}$,
(xvii) $q \mid O$.

Then $b \nmid Q$ and $q \nmid Q$ and $A \neq Q$.
(21) Suppose that
(i) $a \nmid A$,
(ii) $b \nmid B$,
(iii) $a \nmid C$,
(iv) $b \nmid C$,
(v) A, B, C are not concurrent,
(vi) A, C, Q are concurrent,
(vii) $b \nmid Q$,
(viii) $A \neq Q$,
(ix) $a \neq b$,
(x) $a \mid O$,
(xi) $b \mid O$.

Then there exists q such that $q \mid O$ and $q \nmid A$ and $q \nmid Q$ and $\pi_{b}(C \rightarrow$ $B) \cdot \pi_{a}(A \rightarrow C)=\pi_{b}(Q \rightarrow B) \cdot \pi_{q}(A \rightarrow Q)$.
(22) Suppose that
(i) $a \nmid A$,
(ii) $b \nmid B$,
(iii) $a \nmid C$,
(iv) $b \nmid C$,
(v) A, B, C are not concurrent,
(vi) B, C, Q are concurrent,
$\begin{aligned} \text { (vii) } & a \nmid Q, \\ \text { (viii) } & B \neq Q, \\ \text { (ix) } & a \neq b, \\ \text { (x) } & a \mid O, \\ \text { (xi) } & b \mid O .\end{aligned}$
Then there exists q such that $q \mid O$ and $q \nmid B$ and $q \nmid Q$ and $\pi_{b}(C \rightarrow$ $B) \cdot \pi_{a}(A \rightarrow C)=\pi_{q}(Q \rightarrow B) \cdot \pi_{a}(A \rightarrow Q)$.
(23) Suppose that
(i) $a \nmid A$,
(ii) $b \nmid B$,
(iii) $a \nmid C$,
(iv) $b \nmid C$,
(v) $a \nmid B$,
(vi) $b \nmid A$,
(vii) $c \mid A$,
(viii) $c \mid C$,
(ix) $d \mid B$,
(x) $d \mid C$,
(xi) $a \mid S$,
(xii) $d \mid S$,
(xiii) $c \mid R$,
(xiv) $\quad b \mid R$,
(xv) $s \mid A$,
(xvi) $s \mid S$,
(xvii) $r \mid B$,
(xviii) $\quad r \mid R$,
(xix) $s \mid Q$,
(xx) $r \mid Q$,
(xxi) A, B, C are not concurrent.

Then $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{a}(Q \rightarrow B) \cdot \pi_{b}(A \rightarrow Q)$.
(24) Suppose $a \nmid A$ and $b \nmid B$ and $a \nmid C$ and $b \nmid C$ and $a \neq b$ and $a \mid O$ and $b \mid O$ and $q \mid O$ and $q \nmid A$ and $q \neq b$ and A, B, C are not concurrent. Then there exists Q such that A, C, Q are concurrent and $b \nmid Q$ and $q \nmid Q$ and $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{b}(Q \rightarrow B) \cdot \pi_{q}(A \rightarrow Q)$.
(25) Suppose $a \nmid A$ and $b \nmid B$ and $a \nmid C$ and $b \nmid C$ and $a \neq b$ and $a \mid O$ and $b \mid O$ and $q \mid O$ and $q \nmid B$ and $q \neq a$ and A, B, C are not concurrent. Then there exists Q such that B, C, Q are concurrent and $a \nmid Q$ and $q \nmid Q$ and $\pi_{b}(C \rightarrow B) \cdot \pi_{a}(A \rightarrow C)=\pi_{q}(Q \rightarrow B) \cdot \pi_{a}(A \rightarrow Q)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[3] Eugeniusz Kusak and Wojciech Leończuk. Incidence projective space (a reduction theorem in a plane). Formalized Mathematics, 2(2):271-274, 1991.
[4] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[5] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[6] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[9] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 31, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6

