
FORMALIZED MATHEMATICS

Vol.2, No.3, May–August 1991
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Summary. Some preliminary facts concerning completeness and
decidability problems for the Lambek calculus [13] are proved as well as
some theses and derived rules of the calculus itself.

MML Identifier: PRELAMB.

The articles [16], [7], [9], [10], [18], [6], [8], [12], [17], [15], [14], [5], [1], [11], [2],
[3], and [4] provide the terminology and notation for this paper. We consider
structures of the type algebra which are systems
〈types, a left quotient, a right quotient, a inner product〉,

where the types constitute a non-empty set and the left quotient, the right
quotient, the inner product are a binary operation on the types.

Let s be a structure of the type algebra. A type of s is an element of the
types of s.

We adopt the following rules: s will denote a structure of the type algebra,
T , X, Y will denote finite sequences of elements of the types of s, and x, y, z
will denote types of s. We now define three new functors. Let us consider s, x,
y. The functor x \ y yields a type of s and is defined by:

(Def.1) x \ y = (the left quotient of s)(x, y).

The functor x/y yields a type of s and is defined as follows:

(Def.2) x/y = (the right quotient of s)(x, y).

The functor x · y yields a type of s and is defined by:

(Def.3) x · y = (the inner product of s)(x, y).

Let T1 be a tree, and let v be an element of T1. The branch degree of v is
defined by:

(Def.4) the branch degree of v = card succ v.

1This paper was written during author’s visit at the Warsaw University (Bia lystok) in
Winter 1991.
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Let us consider s. A preproof of s is a tree decorated by [: [: (the types of s)∗,
the types of s :], 
 :].

In the sequel T1 is a preproof of s. Let us consider s, T1, and let v be an
element of dom T1. We say that v is correct if and only if:

(Def.5) (i) the branch degree of v = 0 and there exists x such that T1(v)1 =
〈〈〈x〉, x〉〉 if T1(v)2 = 0,

(ii) the branch degree of v = 1 and there exist T , x, y such that T1(v)1 =
〈〈T, x/y〉〉 and T1(v � 〈0〉)1 = 〈〈T � 〈y〉, x〉〉 if T1(v)2 = 1,

(iii) the branch degree of v = 1 and there exist T , x, y such that T1(v)1 =
〈〈T, y \ x〉〉 and T1(v � 〈0〉)1 = 〈〈〈y〉 � T, x〉〉 if T1(v)2 = 2,

(iv) the branch degree of v = 2 and there exist T , X, Y , x, y, z such that
T1(v)1 = 〈〈X � 〈x/y〉 � T � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈T, y〉〉 and T1(v � 〈1〉)1 =
〈〈X � 〈x〉 � Y, z〉〉 if T1(v)2 = 3,

(v) the branch degree of v = 2 and there exist T , X, Y , x, y, z such that
T1(v)1 = 〈〈X � T � 〈y\x〉 � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈T, y〉〉 and T1(v � 〈1〉)1 =
〈〈X � 〈x〉 � Y, z〉〉 if T1(v)2 = 4,

(vi) the branch degree of v = 1 and there exist X, x, y, Y such that T1(v)1 =
〈〈X � 〈x · y〉 � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈X � 〈x〉 � 〈y〉 � Y, z〉〉 if T1(v)2 = 5,

(vii) the branch degree of v = 2 and there exist X, Y , x, y such that T1(v)1 =
〈〈X � Y, x · y〉〉 and T1(v � 〈0〉)1 = 〈〈X,x〉〉 and T1(v � 〈1〉)1 = 〈〈Y, y〉〉 if
T1(v)2 = 6,

(viii) the branch degree of v = 2 and there exist T , X, Y , y, z such that
T1(v)1 = 〈〈X � T � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈T, y〉〉 and T1(v � 〈1〉)1 =
〈〈X � 〈y〉 � Y, z〉〉 if T1(v)2 = 7.

We now define three new attributes. Let us consider s. A type of s is left if:

(Def.6) there exist x, y such that it = x \ y.

A type of s is right if:

(Def.7) there exist x, y such that it = x/y.

A type of s is middle if:

(Def.8) there exist x, y such that it = x · y.

Let us consider s. A type of s is primitive if:

(Def.9) neither it is left nor it is right nor it is middle.

Let us consider s, and let T1 be a tree decorated by the types of s, and let us
consider x. We say that T1 represents x if and only if the conditions (Def.10) is
satisfied.

(Def.10) (i) domT1 is finite,
(ii) for every element v of domT1 holds the branch degree of v = 0 or

the branch degree of v = 2 but if the branch degree of v = 0, then T1(v)
is primitive but if the branch degree of v = 2, then there exist y, z such
that T1(v) = y/z or T1(v) = y \ z or T1(v) = y · z but T1(v � 〈0〉) = y and
T1(v � 〈1〉) = z.

A structure of the type algebra is free if:
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(Def.11) for no type x of it holds x is left right or x is left middle or x is right
middle and for every type x of it there exists a tree T1 decorated by the
types of it such that for every tree T2 decorated by the types of it holds
T2 represents x if and only if T1 = T2.

Let us consider s, x. Let us assume that s is free. The representation of x
yields a tree decorated by the types of s and is defined by:

(Def.12) for every tree T1 decorated by the types of s holds T1 represents x if
and only if the representation of x = T1.

Let us consider s, and let f be a finite sequence of elements of the types of
s, and let t be a type of s. Then 〈〈f, t〉〉 is an element of [: (the types of s)∗, the
types of s :].

Let us consider s. A preproof of s is called a proof of s if:

(Def.13) dom it is a finite tree and for every element v of dom it holds v is correct.

In the sequel p is a proof of s and v is an element of dom p. The following
propositions are true:

(1) If the branch degree of v = 1, then v � 〈0〉 ∈ dom p.

(2) If the branch degree of v = 2, then v � 〈0〉 ∈ dom p and v � 〈1〉 ∈ dom p.

(3) If p(v)2 = 0, then there exists x such that p(v)1 = 〈〈〈x〉, x〉〉.

(4) If p(v)2 = 1, then there exists an element w of dom p and there exist T ,
x, y such that w = v � 〈0〉 and p(v)1 = 〈〈T, x/y〉〉 and p(w)1 = 〈〈T � 〈y〉, x〉〉.

(5) If p(v)2 = 2, then there exists an element w of dom p and there exist T ,
x, y such that w = v � 〈0〉 and p(v)1 = 〈〈T, y \x〉〉 and p(w)1 = 〈〈〈y〉 � T, x〉〉.

(6) Suppose p(v)2 = 3. Then there exist elements w, u of dom p and there
exist T , X, Y , x, y, z such that w = v � 〈0〉 and u = v � 〈1〉 and p(v)1 =
〈〈X � 〈x/y〉 � T � Y, z〉〉 and p(w)1 = 〈〈T, y〉〉 and p(u)1 = 〈〈X � 〈x〉 � Y, z〉〉.

(7) Suppose p(v)2 = 4. Then there exist elements w, u of dom p and there
exist T , X, Y , x, y, z such that w = v � 〈0〉 and u = v � 〈1〉 and p(v)1 =
〈〈X � T � 〈y \ x〉 � Y, z〉〉 and p(w)1 = 〈〈T, y〉〉 and p(u)1 = 〈〈X � 〈x〉 � Y, z〉〉.

(8) Suppose p(v)2 = 5. Then there exists an element w of dom p and there
exist X, x, y, Y such that w = v � 〈0〉 and p(v)1 = 〈〈X � 〈x · y〉 � Y, z〉〉 and
p(w)1 = 〈〈X � 〈x〉 � 〈y〉 � Y, z〉〉.

(9) Suppose p(v)2 = 6. Then there exist elements w, u of dom p and there
exist X, Y , x, y such that w = v � 〈0〉 and u = v � 〈1〉 and p(v)1 =
〈〈X � Y, x · y〉〉 and p(w)1 = 〈〈X,x〉〉 and p(u)1 = 〈〈Y, y〉〉.

(10) Suppose p(v)2 = 7. Then there exist elements w, u of dom p and
there exist T , X, Y , y, z such that w = v � 〈0〉 and u = v � 〈1〉 and
p(v)1 = 〈〈X � T � Y, z〉〉 and p(w)1 = 〈〈T, y〉〉 and p(u)1 = 〈〈X � 〈y〉 � Y, z〉〉.

(11) (i) p(v)2 = 0, or
(ii) p(v)2 = 1, or
(iii) p(v)2 = 2, or
(iv) p(v)2 = 3, or
(v) p(v)2 = 4, or
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(vi) p(v)2 = 5, or
(vii) p(v)2 = 6, or
(viii) p(v)2 = 7.

We now define two new constructions. Let us consider s. A preproof of s is
cut-free if:

(Def.14) for every element v of dom it holds it(v)2 6= 7.

The size w.r.t. s yielding a function from the types of s into 
 is defined by:

(Def.15) for every x holds
(the size w.r.t. s)(x) = card dom(the representation of x).

Let D be a non-empty set, and let T be a finite sequence of elements of D,
and let f be a function from D into 
 . Then f ·T is a finite sequence of elements
of � .

Let D be a non-empty set, and let f be a function from D into 
 , and let d
be an element of D. Then f(d) is a natural number.

Let us consider s, and let p be a proof of s. Let us assume that s is free. The
cut degree of p yields a natural number and is defined by:

(Def.16) (i) there exist T , X, Y , y, z such that p(ε)1 = 〈〈X � T � Y, z〉〉 and
p(〈0〉)1 = 〈〈T, y〉〉 and p(〈1〉)1 = 〈〈X � 〈y〉 � Y, z〉〉 and the cut degree of p =
(the size w.r.t. s)(y)+(the size w.r.t. s)(z)+

∑
((the size w.r.t. s) · (X � T �

Y )) if p(ε)2 = 7,
(ii) the cut degree of p = 0, otherwise.

We adopt the following convention: A denotes an non-empty set and a, a1,
a2, b denote elements of A∗. Let us consider s, A. A function from the types of
s into 2A∗

is said to be a model of s if it satisfies the condition (Def.17).

(Def.17) Given x, y. Then
(i) it(x · y) = {a � b : a ∈ it(x) ∧ b ∈ it(y)},
(ii) it(x/y) = {a1 :

∧
b[b ∈ it(y)⇒ a1 � b ∈ it(x)]},

(iii) it(y \ x) = {a2 :
∧

b[b ∈ it(y)⇒ b � a2 ∈ it(x)]}.

We consider type structures which are systems
〈structures of the type algebra; a derivability〉,

where the derivability is a non-empty relation between
(the types of the structure of the type algebra)∗

and the types of the structure of the type algebra.

In the sequel s will denote a type structure and x will denote a type of s.
Let us consider s, and let f be a finite sequence of elements of the types of s,
and let us consider x. The predicate f −→ x is defined by:

(Def.18) 〈〈f, x〉〉 ∈ the derivability of s.

A type structure is called a calculus of syntactic types if it satisfies the
conditions (Def.19).

(Def.19) (i) For every type x of it holds 〈x〉 −→ x,
(ii) for every finite sequence T of elements of the types of it and for all

types x, y of it such that T � 〈y〉 −→ x holds T −→ x/y,
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(iii) for every finite sequence T of elements of the types of it and for all
types x, y of it such that 〈y〉 � T −→ x holds T −→ y \ x,

(iv) for all finite sequences T , X, Y of elements of the types of it and for
all types x, y, z of it such that T −→ y and X � 〈x〉 � Y −→ z holds
X � 〈x/y〉 � T � Y −→ z,

(v) for all finite sequences T , X, Y of elements of the types of it and for
all types x, y, z of it such that T −→ y and X � 〈x〉 � Y −→ z holds
X � T � 〈y \ x〉 � Y −→ z,

(vi) for all finite sequences X, Y of elements of the types of it and for all
types x, y, z of it such that X � 〈x〉 � 〈y〉 � Y −→ z holds X � 〈x·y〉 � Y −→ z,

(vii) for all finite sequences X, Y of elements of the types of it and for all
types x, y of it such that X −→ x and Y −→ y holds X � Y −→ x · y.

In the sequel s will be a calculus of syntactic types and x, y, z will be types
of s. The following propositions are true:

(12) 〈x/y〉 � 〈y〉 −→ x and 〈y〉 � 〈y \ x〉 −→ x.

(13) 〈x〉 −→ y/(x \ y) and 〈x〉 −→ y/x \ y.

(14) 〈x/y〉 −→ x/z/(y/z).

(15) 〈y \ x〉 −→ z \ y \ (z \ x).

(16) If 〈x〉 −→ y, then 〈x/z〉 −→ y/z and 〈z \ x〉 −→ z \ y.

(17) If 〈x〉 −→ y, then 〈z/y〉 −→ z/x and 〈y \ z〉 −→ x \ z.

(18) 〈y/(y/x \ y)〉 −→ y/x.

(19) If 〈x〉 −→ y, then ε(the types of s) −→ y/x and ε(the types of s) −→ x \ y.

(20) ε(the types of s) −→ x/x and ε(the types of s) −→ x \ x.

(21) ε(the types of s) −→ y/(x \ y)/x and ε(the types of s) −→ x \ (y/x \ y).

(22) ε(the types of s) −→ x/z/(y/z)/(x/y) and ε(the types of s) −→ y \ x \ (z \
y \ (z \ x)).

(23) If ε(the types of s) −→ x, then ε(the types of s) −→ y/(y/x) and

ε(the types of s) −→ x \ y \ y.

(24) 〈x/(y/y)〉 −→ x.

Let us consider s, x, y. The predicate x←→ y is defined as follows:

(Def.20) 〈x〉 −→ y and 〈y〉 −→ x.

Next we state several propositions:

(25) x←→ x.

(26) x/y ←→ x/(x/y \ x).

(27) x/(z · y)←→ x/y/z.

(28) 〈x · (y/z)〉 −→ (x · y)/z.

(29) 〈x〉 −→ (x · y)/y and 〈x〉 −→ y \ y · x.

(30) x · y · z ←→ x · (y · z).
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[10] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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