Preliminaries to the Lambek Calculus

Wojciech Zielonka ${ }^{1}$
Adam Mickiewicz University
Poznań

Abstract

Summary. Some preliminary facts concerning completeness and decidability problems for the Lambek calculus [13] are proved as well as some theses and derived rules of the calculus itself.

MML Identifier: PRELAMB.

The articles [16], [7], [9], [10], [18], [6], [8], [12], [17], [15], [14], [5], [1], [11], [2], [3], and [4] provide the terminology and notation for this paper. We consider structures of the type algebra which are systems

〈types, a left quotient, a right quotient, a inner product〉,
where the types constitute a non-empty set and the left quotient, the right quotient, the inner product are a binary operation on the types.

Let s be a structure of the type algebra. A type of s is an element of the types of s.

We adopt the following rules: s will denote a structure of the type algebra, T, X, Y will denote finite sequences of elements of the types of s, and x, y, z will denote types of s. We now define three new functors. Let us consider s, x, y. The functor $x \backslash y$ yields a type of s and is defined by:
(Def.1) $\quad x \backslash y=$ (the left quotient of $s)(x, y)$.
The functor x / y yields a type of s and is defined as follows:
(Def.2) $\quad x / y=($ the right quotient of $s)(x, y)$.
The functor $x \cdot y$ yields a type of s and is defined by:
(Def.3) $\quad x \cdot y=($ the inner product of $s)(x, y)$.
Let T_{1} be a tree, and let v be an element of T_{1}. The branch degree of v is defined by:
(Def.4) the branch degree of $v=\operatorname{card} \operatorname{succ} v$.

[^0]Let us consider s. A preproof of s is a tree decorated by : : (the types of $s)^{*}$, the types of $s:, \mathbb{N}:$.

In the sequel T_{1} is a preproof of s. Let us consider s, T_{1}, and let v be an element of $\operatorname{dom} T_{1}$. We say that v is correct if and only if:
(Def.5) (i) the branch degree of $v=0$ and there exists x such that $T_{1}(v)_{\mathbf{1}}=$ $\langle\langle x\rangle, x\rangle$ if $T_{1}(v)_{\mathbf{2}}=0$,
(ii) the branch degree of $v=1$ and there exist T, x, y such that $T_{1}(v)_{\mathbf{1}}=$ $\langle T, x / y\rangle$ and $T_{1}\left(v^{\wedge}\langle 0\rangle\right)_{\mathbf{1}}=\left\langle T^{\wedge}\langle y\rangle, x\right\rangle$ if $T_{1}(v)_{\mathbf{2}}=1$,
(iii) the branch degree of $v=1$ and there exist T, x, y such that $T_{1}(v)_{\mathbf{1}}=$ $\langle T, y \backslash x\rangle$ and $T_{1}\left(v^{\wedge}\langle 0\rangle\right)_{\mathbf{1}}=\left\langle\langle y\rangle{ }^{\wedge} T, x\right\rangle$ if $T_{1}(v)_{\mathbf{2}}=2$,
(iv) the branch degree of $v=2$ and there exist T, X, Y, x, y, z such that $T_{1}(v)_{\mathbf{1}}=\left\langle X^{\wedge}\langle x / y\rangle^{\wedge} T^{\wedge} Y, z\right\rangle$ and $T_{1}\left(v^{\wedge}\langle 0\rangle\right)_{\mathbf{1}}=\langle T, y\rangle$ and $T_{1}\left(v^{\wedge}\langle 1\rangle\right)_{\mathbf{1}}=$ $\left\langle X^{\wedge}\langle x\rangle \wedge Y, z\right\rangle$ if $T_{1}(v)_{\mathbf{2}}=3$,
(v) the branch degree of $v=2$ and there exist T, X, Y, x, y, z such that $T_{1}(v)_{\mathbf{1}}=\left\langle X^{\wedge} T^{\wedge}\langle y \backslash x\rangle \wedge Y, z\right\rangle$ and $T_{1}\left(v^{\wedge}\langle 0\rangle\right)_{\mathbf{1}}=\langle T, y\rangle$ and $T_{1}\left(v^{\wedge}\langle 1\rangle\right)_{\mathbf{1}}=$ $\left\langle X^{\wedge}\langle x\rangle \wedge Y, z\right\rangle$ if $T_{1}(v)_{\mathbf{2}}=4$,
(vi) the branch degree of $v=1$ and there exist X, x, y, Y such that $T_{1}(v)_{1}=$ $\langle X \vee\langle x \cdot y\rangle \wedge Y, z\rangle$ and $T_{1}\left(v^{\wedge}\langle 0\rangle\right)_{\mathbf{1}}=\langle X \vee\langle x\rangle \wedge\langle y\rangle \wedge Y, z\rangle$ if $T_{1}(v)_{\mathbf{2}}=5$,
(vii) the branch degree of $v=2$ and there exist X, Y, x, y such that $T_{1}(v)_{1}=$ $\left\langle X^{\wedge} Y, x \cdot y\right\rangle$ and $T_{1}\left(v^{\wedge}\langle 0\rangle\right)_{\mathbf{1}}=\langle X, x\rangle$ and $T_{1}\left(v^{\wedge}\langle 1\rangle\right)_{\mathbf{1}}=\langle Y, y\rangle$ if $T_{1}(v)_{\mathbf{2}}=6$,
(viii) the branch degree of $v=2$ and there exist T, X, Y, y, z such that $T_{1}(v)_{\mathbf{1}}=\left\langle X \wedge T^{\wedge} Y, z\right\rangle$ and $T_{1}\left(v^{\wedge}\langle 0\rangle\right)_{\mathbf{1}}=\langle T, y\rangle$ and $T_{1}\left(v^{\wedge}\langle 1\rangle\right)_{\mathbf{1}}=$ $\left\langle X^{\wedge}\langle y\rangle^{\wedge} Y, z\right\rangle$ if $T_{1}(v)_{\mathbf{2}}=7$.
We now define three new attributes. Let us consider s. A type of s is left if: (Def.6) there exist x, y such that it $=x \backslash y$.
A type of s is right if:
(Def.7) there exist x, y such that it $=x / y$.
A type of s is middle if:
(Def.8) there exist x, y such that it $=x \cdot y$.
Let us consider s. A type of s is primitive if:
(Def.9) neither it is left nor it is right nor it is middle.
Let us consider s, and let T_{1} be a tree decorated by the types of s, and let us consider x. We say that T_{1} represents x if and only if the conditions (Def.10) is satisfied.
(Def.10) (i) $\quad \operatorname{dom} T_{1}$ is finite,
(ii) for every element v of $\operatorname{dom} T_{1}$ holds the branch degree of $v=0$ or the branch degree of $v=2$ but if the branch degree of $v=0$, then $T_{1}(v)$ is primitive but if the branch degree of $v=2$, then there exist y, z such that $T_{1}(v)=y / z$ or $T_{1}(v)=y \backslash z$ or $T_{1}(v)=y \cdot z$ but $T_{1}\left(v^{\wedge}\langle 0\rangle\right)=y$ and $T_{1}\left(v^{\wedge}\langle 1\rangle\right)=z$.
A structure of the type algebra is free if:
(Def.11) for no type x of it holds x is left right or x is left middle or x is right middle and for every type x of it there exists a tree T_{1} decorated by the types of it such that for every tree T_{2} decorated by the types of it holds T_{2} represents x if and only if $T_{1}=T_{2}$.
Let us consider s, x. Let us assume that s is free. The representation of x yields a tree decorated by the types of s and is defined by:
(Def.12) for every tree T_{1} decorated by the types of s holds T_{1} represents x if and only if the representation of $x=T_{1}$.

Let us consider s, and let f be a finite sequence of elements of the types of s, and let t be a type of s. Then $\langle f, t\rangle$ is an element of : (the types of $s)^{*}$, the types of s].

Let us consider s. A preproof of s is called a proof of s if:
(Def.13) dom it is a finite tree and for every element v of dom it holds v is correct.
In the sequel p is a proof of s and v is an element of $\operatorname{dom} p$. The following propositions are true:
(1) If the branch degree of $v=1$, then $v^{\wedge}\langle 0\rangle \in \operatorname{dom} p$.
(2) If the branch degree of $v=2$, then $v^{\frown}\langle 0\rangle \in \operatorname{dom} p$ and $v^{\wedge}\langle 1\rangle \in \operatorname{dom} p$.
(3) If $p(v)_{\mathbf{2}}=0$, then there exists x such that $p(v)_{\mathbf{1}}=\langle\langle x\rangle, x\rangle$.
(4) If $p(v)_{\mathbf{2}}=1$, then there exists an element w of $\operatorname{dom} p$ and there exist T, x, y such that $w=v^{\wedge}\langle 0\rangle$ and $p(v)_{\mathbf{1}}=\langle T, x / y\rangle$ and $p(w)_{1}=\left\langle T^{\wedge}\langle y\rangle, x\right\rangle$.
(5) If $p(v)_{\mathbf{2}}=2$, then there exists an element w of $\operatorname{dom} p$ and there exist T, x, y such that $w=v^{\wedge}\langle 0\rangle$ and $p(v)_{\mathbf{1}}=\langle T, y \backslash x\rangle$ and $p(w)_{\mathbf{1}}=\langle\langle y\rangle \wedge T, x\rangle$.
(6) Suppose $p(v)_{\mathbf{2}}=3$. Then there exist elements w, u of $\operatorname{dom} p$ and there exist T, X, Y, x, y, z such that $w=v^{\wedge}\langle 0\rangle$ and $u=v^{\wedge}\langle 1\rangle$ and $p(v)_{1}=$ $\left\langle X^{\wedge}\langle x / y\rangle \wedge T^{\wedge} Y, z\right\rangle$ and $p(w)_{\mathbf{1}}=\langle T, y\rangle$ and $p(u)_{\mathbf{1}}=\left\langle X^{\wedge}\langle x\rangle \wedge Y, z\right\rangle$.
(7) Suppose $p(v)_{\mathbf{2}}=4$. Then there exist elements w, u of $\operatorname{dom} p$ and there exist T, X, Y, x, y, z such that $w=v^{\wedge}\langle 0\rangle$ and $u=v^{\wedge}\langle 1\rangle$ and $p(v)_{1}=$ $\langle X \vee T \vee\langle y \backslash x\rangle \wedge Y, z\rangle$ and $p(w)_{\mathbf{1}}=\langle T, y\rangle$ and $p(u)_{\mathbf{1}}=\langle X \wedge\langle x\rangle \wedge Y, z\rangle$.
(8) Suppose $p(v)_{\mathbf{2}}=5$. Then there exists an element w of $\operatorname{dom} p$ and there exist X, x, y, Y such that $w=v^{\wedge}\langle 0\rangle$ and $p(v)_{\mathbf{1}}=\left\langle X^{\wedge}\langle x \cdot y\rangle^{\wedge} Y, z\right\rangle$ and $p(w)_{1}=\langle X \wedge\langle x\rangle \wedge\langle y\rangle \wedge Y, z\rangle$.
(9) Suppose $p(v)_{\mathbf{2}}=6$. Then there exist elements w, u of $\operatorname{dom} p$ and there exist X, Y, x, y such that $w=v^{\wedge}\langle 0\rangle$ and $u=v^{\wedge}\langle 1\rangle$ and $p(v)_{\mathbf{1}}=$ $\left\langle X^{\wedge} Y, x \cdot y\right\rangle$ and $p(w)_{\mathbf{1}}=\langle X, x\rangle$ and $p(u)_{\mathbf{1}}=\langle Y, y\rangle$.
(10) Suppose $p(v)_{2}=7$. Then there exist elements w, u of $\operatorname{dom} p$ and there exist T, X, Y, y, z such that $w=v^{\wedge}\langle 0\rangle$ and $u=v^{\wedge}\langle 1\rangle$ and $p(v)_{\mathbf{1}}=\left\langle X^{\wedge} T^{\wedge} Y, z\right\rangle$ and $p(w)_{\mathbf{1}}=\langle T, y\rangle$ and $p(u)_{\mathbf{1}}=\left\langle X^{\wedge}\langle y\rangle^{\wedge} Y, z\right\rangle$.
(11) (i) $p(v)_{\mathbf{2}}=0$, or
(ii) $p(v)_{2}=1$, or
(iii) $p(v)_{2}=2$, or
(iv) $p(v)_{\mathbf{2}}=3$, or
(v) $p(v)_{\mathbf{2}}=4$, or
(vi) $\quad p(v)_{\mathbf{2}}=5$, or
(vii) $\quad p(v)_{\mathbf{2}}=6$, or
(viii) $\quad p(v)_{\mathbf{2}}=7$.

We now define two new constructions. Let us consider s. A preproof of s is cut-free if:
(Def.14) for every element v of dom it holds $\operatorname{it}(v)_{\mathbf{2}} \neq 7$.
The size w.r.t. s yielding a function from the types of s into \mathbb{N} is defined by:
(Def.15) for every x holds
(the size w.r.t. $s)(x)=$ card dom(the representation of $x)$.
Let D be a non-empty set, and let T be a finite sequence of elements of D, and let f be a function from D into \mathbb{N}. Then $f \cdot T$ is a finite sequence of elements of \mathbb{R}.

Let D be a non-empty set, and let f be a function from D into \mathbb{N}, and let d be an element of D. Then $f(d)$ is a natural number.

Let us consider s, and let p be a proof of s. Let us assume that s is free. The cut degree of p yields a natural number and is defined by:
(Def.16) (i) there exist T, X, Y, y, z such that $p(\varepsilon)_{1}=\langle X \cap T \cap Y, z\rangle$ and $p(\langle 0\rangle)_{\mathbf{1}}=\langle T, y\rangle$ and $p(\langle 1\rangle)_{\mathbf{1}}=\left\langle X^{\wedge}\langle y\rangle \wedge Y, z\right\rangle$ and the cut degree of $p=$ $($ the size w.r.t. $s)(y)+($ the size w.r.t. $s)(z)+\sum\left((\right.$ the size w.r.t. $s) \cdot\left(X^{\wedge} T^{\wedge}\right.$ $Y)$) if $p(\varepsilon)_{\mathbf{2}}=7$,
(ii) the cut degree of $p=0$, otherwise.

We adopt the following convention: A denotes an non-empty set and a, a_{1}, a_{2}, b denote elements of A^{*}. Let us consider s, A. A function from the types of s into $2^{A^{*}}$ is said to be a model of s if it satisfies the condition (Def.17).
(Def.17) Given x, y. Then
(i) $\operatorname{it}(x \cdot y)=\left\{a^{\wedge} b: a \in \operatorname{it}(x) \wedge b \in \operatorname{it}(y)\right\}$,
(ii) $\operatorname{it}(x / y)=\left\{a_{1}: \bigwedge_{b}\left[b \in \operatorname{it}(y) \Rightarrow a_{1} \wedge b \in \operatorname{it}(x)\right]\right\}$,
(iii) $\operatorname{it}(y \backslash x)=\left\{a_{2}: \bigwedge_{b}\left[b \in \operatorname{it}(y) \Rightarrow b^{\wedge} a_{2} \in \operatorname{it}(x)\right]\right\}$.

We consider type structures which are systems〈structures of the type algebra; a derivability〉, where the derivability is a non-empty relation between
(the types of the structure of the type algebra)*
and the types of the structure of the type algebra.
In the sequel s will denote a type structure and x will denote a type of s. Let us consider s, and let f be a finite sequence of elements of the types of s, and let us consider x. The predicate $f \longrightarrow x$ is defined by:
(Def.18) $\langle f, x\rangle \in$ the derivability of s.
A type structure is called a calculus of syntactic types if it satisfies the conditions (Def.19).
(Def.19) (i) For every type x of it holds $\langle x\rangle \longrightarrow x$,
(ii) for every finite sequence T of elements of the types of it and for all types x, y of it such that $T^{\cap}\langle y\rangle \longrightarrow x$ holds $T \longrightarrow x / y$,
(iii) for every finite sequence T of elements of the types of it and for all types x, y of it such that $\langle y\rangle \sim T \longrightarrow x$ holds $T \longrightarrow y \backslash x$,
(iv) for all finite sequences T, X, Y of elements of the types of it and for all types x, y, z of it such that $T \longrightarrow y$ and $X^{\wedge}\langle x\rangle^{\wedge} Y \longrightarrow z$ holds $X^{\wedge}\langle x / y\rangle \wedge T \wedge Y \longrightarrow z$,
(v) for all finite sequences T, X, Y of elements of the types of it and for all types x, y, z of it such that $T \longrightarrow y$ and $X^{\wedge}\langle x\rangle{ }^{\wedge} Y \longrightarrow z$ holds $X \vee T \wedge\langle y \backslash x\rangle \wedge Y \longrightarrow z$,
(vi) for all finite sequences X, Y of elements of the types of it and for all types x, y, z of it such that $X^{\wedge}\langle x\rangle \wedge\langle y\rangle \wedge Y \longrightarrow z$ holds $X^{\wedge}\langle x \cdot y\rangle \wedge Y \longrightarrow z$,
(vii) for all finite sequences X, Y of elements of the types of it and for all types x, y of it such that $X \longrightarrow x$ and $Y \longrightarrow y$ holds $X^{\wedge} Y \longrightarrow x \cdot y$.

In the sequel s will be a calculus of syntactic types and x, y, z will be types of s. The following propositions are true:
(12) $\langle x / y\rangle \wedge\langle y\rangle \longrightarrow x$ and $\langle y\rangle \wedge\langle y \backslash x\rangle \longrightarrow x$.
(15) $\langle y \backslash x\rangle \longrightarrow z \backslash y \backslash(z \backslash x)$.
(16) If $\langle x\rangle \longrightarrow y$, then $\langle x / z\rangle \longrightarrow y / z$ and $\langle z \backslash x\rangle \longrightarrow z \backslash y$.
(17) If $\langle x\rangle \longrightarrow y$, then $\langle z / y\rangle \longrightarrow z / x$ and $\langle y \backslash z\rangle \longrightarrow x \backslash z$.
(18) $\langle y /(y / x \backslash y)\rangle \longrightarrow y / x$.
(19) If $\langle x\rangle \longrightarrow y$, then $\varepsilon_{\text {(the types of } s)} \longrightarrow y / x$ and $\varepsilon_{\text {(the types of } s)} \longrightarrow x \backslash y$.
(20) $\quad \varepsilon_{(\text {the types of } s)} \longrightarrow x / x$ and $\varepsilon_{(\text {the types of } s)} \longrightarrow x \backslash x$.
(22) $\varepsilon_{\text {(the types of } s)} \longrightarrow x / z /(y / z) /(x / y)$ and $\varepsilon_{\text {(the types of } s)} \longrightarrow y \backslash x \backslash(z \backslash$ $y \backslash(z \backslash x))$.
If $\varepsilon_{(\text {the types of } s)} \longrightarrow x$, then $\varepsilon_{(\text {the types of } s)} \longrightarrow y /(y / x)$ and
$\varepsilon_{\text {(the types of } s)} \longrightarrow x \backslash y \backslash y$.
$\langle x /(y / y)\rangle \longrightarrow x$.
Let us consider s, x, y. The predicate $x \longleftrightarrow y$ is defined as follows:
(Def.20) $\quad\langle x\rangle \longrightarrow y$ and $\langle y\rangle \longrightarrow x$.
Next we state several propositions:
(29) $\quad\langle x\rangle \longrightarrow(x \cdot y) / y$ and $\langle x\rangle \longrightarrow y \backslash y \cdot x$.
(30) $x \cdot y \cdot z \longleftrightarrow x \cdot(y \cdot z)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Joachim Lambek. The mathematics of sentence structure. American Mathetical Monthly, (65):154-170, 1958.
[14] Michał Muzalewski. Midpoint algebras. Formalized Mathematics, 1(3):483-488, 1990.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received February 13, 1991

[^0]: ${ }^{1}$ This paper was written during author's visit at the Warsaw University (Bialystok) in Winter 1991.

