# Elementary Variants of Affine Configurational Theorems ${ }^{1}$ 

Krzysztof Prażmowski<br>Warsaw University<br>Białystok

Krzysztof Radziszewski<br>Gdańsk University


#### Abstract

Summary. We present elementary versions of Pappus, Major Desargues and Minor Desargues Axioms (i.e. statements formulated entirely in the language of points and parallelism of segments). Evidently they are consequences of appropriate configurational axioms introduced in the article [2]. In particular it follows that there exists an affine plane satisfying all of them.


MML Identifier: PARDEPAP.

The terminology and notation used in this paper have been introduced in the following papers: [1], [3], [2], and [4]. In the sequel $S_{1}$ will be an affine plane. The following propositions are true:
(1) If $S_{1}$ satisfies PAP, then for all elements $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ of the points of $S_{1}$ such that $a_{1}, a_{2} \| a_{1}, a_{3}$ and $b_{1}, b_{2} \| b_{1}, b_{3}$ and $a_{1}, b_{2} \| a_{2}, b_{1}$ and $a_{2}, b_{3} \| a_{3}, b_{2}$ holds $a_{3}, b_{1} \| a_{1}, b_{3}$.
(2) Suppose $S_{1}$ satisfies DES. Let $o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}$ be elements of the points of $S_{1}$. Then if $o, a \nmid o, b$ and $o, a \nmid o, c$ and $o, a \| o, a^{\prime}$ and $o, b \| o, b^{\prime}$ and $o, c \| o, c^{\prime}$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$, then $b, c \| b^{\prime}, c^{\prime}$.
(3) Suppose $S_{1}$ satisfies des. Let $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}$ be elements of the points of $S_{1}$. Then if $a, a^{\prime} \nVdash a, b$ and $a, a^{\prime} \nVdash a, c$ and $a, a^{\prime} \| b, b^{\prime}$ and $a, a^{\prime} \| c, c^{\prime}$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$, then $b, c \| b^{\prime}, c^{\prime}$.
(4) If $S_{1}$ satisfies Fano Axiom, then for all elements $a, b, c, d$ of the points of $S_{1}$ such that $a, b \nVdash a, c$ and $a, b \| c, d$ and $a, c \| b, d$ holds $a, d \nVdash b, c$.
(5) There exists $S_{1}$ such that for all elements $o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}$ of the points of $S_{1}$ such that $o, a \nVdash o, b$ and $o, a \nmid o, c$ and $o, a \| o, a^{\prime}$ and $o, b \| o, b^{\prime}$ and $o, c \| o, c^{\prime}$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ holds $b, c \| b^{\prime}, c^{\prime}$ and for

[^0]all elements $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}$ of the points of $S_{1}$ such that $a, a^{\prime} \nVdash a, b$ and $a, a^{\prime} \nVdash a, c$ and $a, a^{\prime} \| b, b^{\prime}$ and $a, a^{\prime} \| c, c^{\prime}$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ holds $b, c \| b^{\prime}, c^{\prime}$ and for all elements $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ of the points of $S_{1}$ such that $a_{1}, a_{2} \| a_{1}, a_{3}$ and $b_{1}, b_{2} \| b_{1}, b_{3}$ and $a_{1}, b_{2} \| a_{2}, b_{1}$ and $a_{2}, b_{3} \| a_{3}, b_{2}$ holds $a_{3}, b_{1} \| a_{1}, b_{3}$ and for all elements $a, b, c, d$ of the points of $S_{1}$ such that $a, b \nVdash a, c$ and $a, b \| c, d$ and $a, c \| b, d$ holds $a, d \nmid b, c$.
(6) For every elements $o, a$ of the points of $S_{1}$ there exists an element $p$ of the points of $S_{1}$ such that for all elements $b, c$ of the points of $S_{1}$ holds $o, a \| o, p$ and there exists an element $d$ of the points of $S_{1}$ such that if $o, p \| o, b$, then $o, c \| o, d$ and $p, c \| b, d$.

## References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Classical configurations in affine planes. Formalized Mathematics, 1(4):625-633, 1990.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.
[4] Krzysztof Prażmowski. Fanoian, Pappian and Desarguesian affine spaces. Formalized Mathematics, 2(3):341-346, 1991.

Received November 30, 1990


[^0]:    ${ }^{1}$ Supported by RPBP.III-24.C2

