Opposite Categories and Contravariant Functors

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. The opposite category of a category, contravariant functors and duality functors are defined.

MML Identifier: OPPCAT_1.

The articles [6], [1], [2], [5], [4], and [3] provide the notation and terminology for this paper. In the sequel B, C, D will be categories. Let X be a set, and let C, D be non-empty sets, and let f be a function from X into C, and let g be a function from C into D. Then $g \cdot f$ is a function from X into D.

Let X, Y, Z be non-empty sets, and let f be a partial function from $: X, Y$: to Z. Then $\curvearrowleft f$ is a partial function from $[Y, X:$ to Z.

The following proposition is true
(1) SThe objects of C, the morphisms of C, the cod-map of C, the dom-map of $C, \curvearrowleft($ the composition of $C)$, the id-map of $C\rangle$ is a category.
Let us consider C. The functor $C^{\text {op }}$ yielding a category is defined as follows:
(Def.1) $C^{\text {op }}=\langle$ the objects of C, the morphisms of C, the cod-map of C, the dom-map of $C, \curvearrowleft($ the composition of $C)$, the id-map of $C\rangle$.
One can prove the following proposition
(2) $\left(C^{\mathrm{op}}\right)^{\mathrm{op}}=C$.

Let us consider C, and let c be an object of C. The functor c^{op} yields an object of C^{op} and is defined by:
(Def.2) $\quad c^{\mathrm{op}}=c$.
Let us consider C, and let c be an object of C^{op}. The functor ${ }^{\mathrm{op}} c$ yielding an object of C is defined by:
(Def.3) ${ }^{\mathrm{op}} c=c^{\mathrm{op}}$.

One can prove the following three propositions:
(3) For every object c of C holds $\left(c^{\mathrm{op}}\right)^{\mathrm{op}}=c$.
(4) For every object c of C holds ${ }^{\mathrm{op}}\left(c^{\mathrm{op}}\right)=c$.
(5) For every object c of C^{op} holds $\left({ }^{\mathrm{op}} c\right)^{\mathrm{op}}=c$.

Let us consider C, and let f be a morphism of C. The functor $f^{\text {op }}$ yields a morphism of C^{op} and is defined as follows:
(Def.4) $\quad f^{\mathrm{op}}=f$.
Let us consider C, and let f be a morphism of $C^{\text {op }}$. The functor ${ }^{\text {op }} f$ yields a morphism of C and is defined by:
(Def.5) $\quad{ }^{\mathrm{op}} f=f^{\mathrm{op}}$.
One can prove the following propositions:
(6) For every morphism f of C holds $\left(f^{\text {op }}\right)^{\text {op }}=f$.
(7) For every morphism f of C holds ${ }^{\text {op }}\left(f^{\mathrm{op}}\right)=f$.
(8) For every morphism f of C^{op} holds ($\left.{ }^{\mathrm{op}} f\right)^{\mathrm{op}}=f$.
(9) For every morphism f of C holds $\operatorname{dom}\left(f^{\text {op }}\right)=\operatorname{cod} f$ and $\operatorname{cod}\left(f^{\text {op }}\right)=$ $\operatorname{dom} f$.
(10) For every morphism f of $C^{\text {op }}$ holds $\operatorname{dom}^{\mathrm{op}} f=\operatorname{cod} f$ and $\operatorname{cod}^{\mathrm{op}} f=$ $\operatorname{dom} f$.
(11) For every morphism f of C holds $(\operatorname{dom} f)^{\mathrm{op}}=\operatorname{cod}\left(f^{\mathrm{op}}\right)$ and $(\operatorname{cod} f)^{\mathrm{op}}=$ $\operatorname{dom}\left(f^{\mathrm{op}}\right)$.
(12) For every morphism f of $C^{\text {op }}$ holds ${ }^{\text {op }} \operatorname{dom} f=\operatorname{cod}^{\mathrm{op}} f$ and ${ }^{\text {op }} \operatorname{cod} f=$ $\operatorname{dom}^{\mathrm{op}} f$.
(13) For all objects a, b of C and for every morphism f of C holds $f \in$ $\operatorname{hom}(a, b)$ if and only if $f^{\mathrm{op}} \in \operatorname{hom}\left(b^{\mathrm{op}}, a^{\mathrm{op}}\right)$.
(14) For all objects a, b of C^{op} and for every morphism f of C^{op} holds $f \in \operatorname{hom}(a, b)$ if and only if ${ }^{\mathrm{op}} f \in \operatorname{hom}\left({ }^{\mathrm{op}} b,{ }^{\mathrm{op}} a\right)$.
(15) For all objects a, b of C and for every morphism f from a to b such that $\operatorname{hom}(a, b) \neq \emptyset$ holds f^{op} is a morphism from b^{op} to a^{op}.
(16) For all objects a, b of C^{op} and for every morphism f from a to b such that $\operatorname{hom}(a, b) \neq \emptyset$ holds ${ }^{\mathrm{op}} f$ is a morphism from ${ }^{\mathrm{op}} b$ to ${ }^{\mathrm{op}} a$.
(17) For all morphisms f, g of C such that $\operatorname{dom} g=\operatorname{cod} f$ holds $(g \cdot f)^{\mathrm{op}}=$ $f^{\mathrm{op}} \cdot g^{\mathrm{op}}$.
(18) For all morphisms f, g of C such that $\operatorname{cod}\left(g^{\mathrm{op}}\right)=\operatorname{dom}\left(f^{\text {op }}\right)$ holds $(g \cdot f)^{\mathrm{op}}=f^{\mathrm{op}} \cdot g^{\mathrm{op}}$.
(19) For all morphisms f, g of C^{op} such that $\operatorname{dom} g=\operatorname{cod} f$ holds ${ }^{\mathrm{op}}(g \cdot f)=$ ${ }^{\mathrm{op}} f .{ }^{\mathrm{op}} g$.
(20) For all objects a, b, c of C and for every morphism f from a to b and for every morphism g from b to c such that $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$ holds $(g \cdot f)^{\mathrm{op}}=f^{\mathrm{op}} \cdot g^{\mathrm{op}}$.
(21) For every object a of C holds id $_{a}^{\text {op }}=\mathrm{id}_{a^{\text {op }}}$.

$$
\begin{equation*}
\text { For every object } a \text { of } C^{\mathrm{op}} \text { holds }{ }^{\mathrm{op}}\left(\mathrm{id}_{a}\right)=\operatorname{id}_{\left(\mathrm{op}_{a}\right)} \text {. } \tag{22}
\end{equation*}
$$

(23) For every morphism f of C holds $f^{\text {op }}$ is monic if and only if f is epi.
(25) For every morphism f of C holds $f^{\text {op }}$ is invertible if and only if f is invertible.
(26) For every object c of C holds c is an initial object if and only if $c^{\text {op }}$ is a terminal object.
(27) For every object c of C holds $c^{\text {op }}$ is an initial object if and only if c is a terminal object.
Let us consider C, B, and let S be a function from the morphisms of $C^{\text {op }}$ into the morphisms of B. The functor ${ }_{*} S$ yields a function from the morphisms of C into the morphisms of B and is defined by:
(Def.6) for every morphism f of C holds $\left({ }_{*} S\right)(f)=S\left(f^{\circ \mathrm{p}}\right)$.
One can prove the following propositions:
(28) For every function S from the morphisms of $C^{\text {op }}$ into the morphisms of B and for every morphism f of $C^{\text {op }}$ holds $\left({ }_{*} S\right)\left({ }^{\mathrm{op}} f\right)=S(f)$.
(29) For every functor S from C^{op} to B and for every object c of C holds $\left(\mathrm{Obj}_{*} S\right)(c)=(\mathrm{Obj} S)\left(c^{\mathrm{op}}\right)$.
(30) For every functor S from $C^{\text {op }}$ to B and for every object c of $C^{\text {op }}$ holds $\left(\mathrm{Obj}_{*} S\right)\left({ }^{\mathrm{op}} c\right)=(\operatorname{Obj} S)(c)$.
Let us consider C, D. A function from the morphisms of C into the morphisms of D is called a contravariant functor from C into D if it satisfies the conditions (Def.7).
(Def.7) (i) For every object c of C there exists an object d of D such that $\mathrm{it}\left(\mathrm{id}_{c}\right)=\mathrm{id}_{d}$,
(ii) for every morphism f of C holds $\operatorname{it}\left(\operatorname{id}_{\operatorname{dom} f}\right)=\operatorname{id}_{\operatorname{cod}(\operatorname{it}(f))}$ and $\operatorname{it}\left(\mathrm{id}_{\operatorname{cod} f}\right)=$ $\mathrm{id}_{\mathrm{dom}(\mathrm{it}(f))}$,
(iii) for all morphisms f, g of C such that $\operatorname{dom} g=\operatorname{cod} f$ holds $\operatorname{it}(g \cdot f)=$ $\operatorname{it}(f) \cdot \operatorname{it}(g)$.
The following propositions are true:
(31) For every contravariant functor S from C into D and for every object c of C and for every object d of D such that $S\left(\mathrm{id}_{c}\right)=\mathrm{id}_{d}$ holds $(\operatorname{Obj} S)(c)=d$.
(32) For every contravariant functor S from C into D and for every object c of C holds $S\left(\mathrm{id}_{c}\right)=\operatorname{id}_{(\mathrm{Obj} S)(c)}$.
(33) For every contravariant functor S from C into D and for every morphism f of C holds $(\operatorname{Obj} S)(\operatorname{dom} f)=\operatorname{cod}(S(f))$ and $(\operatorname{Obj} S)(\operatorname{cod} f)=$ $\operatorname{dom}(S(f))$.
(34) For every contravariant functor S from C into D and for all morphisms f, g of C such that $\operatorname{dom} g=\operatorname{cod} f$ holds dom $(S(f))=\operatorname{cod}(S(g))$.
(35) For every functor S from $C^{\text {op }}$ to B holds ${ }_{*} S$ is a contravariant functor from C into B.
(36) For every contravariant functor S_{1} from C into B and for every contravariant functor S_{2} from B into D holds $S_{2} \cdot S_{1}$ is a functor from C to D.
(37) For every contravariant functor S from $C^{\text {op }}$ into B and for every object c of C holds $\left(\mathrm{Obj}_{*} S\right)(c)=(\mathrm{Obj} S)\left(c^{\mathrm{op}}\right)$.
(38) For every contravariant functor S from $C^{\text {op }}$ into B and for every object c of C^{op} holds $\left(\mathrm{Obj}_{*} S\right)\left({ }^{\mathrm{op}_{c}}\right)=(\mathrm{Obj} S)(c)$.
(39) For every contravariant functor S from $C^{\text {op }}$ into B holds ${ }_{*} S$ is a functor from C to B.
We now define two new functors. Let us consider C, B, and let S be a function from the morphisms of C into the morphisms of B. The functor ${ }^{*} S$ yielding a function from the morphisms of $C^{\text {op }}$ into the morphisms of B is defined as follows:
(Def.8) for every morphism f of $C^{\text {op }}$ holds $\left({ }^{*} S\right)(f)=S\left({ }^{\text {op }} f\right)$.
The functor S^{*} yields a function from the morphisms of C into the morphisms of $B^{\text {op }}$ and is defined by:
(Def.9) for every morphism f of C holds $S^{*}(f)=S(f)^{\text {op }}$.
The following propositions are true:
(40) For every function S from the morphisms of C into the morphisms of B and for every morphism f of C holds $\left({ }^{*} S\right)\left(f^{\circ \mathrm{p}}\right)=S(f)$.
(41) For every functor S from C to B and for every object c of $C^{\text {op }}$ holds $\left(\mathrm{Obj}^{*} S\right)(c)=(\mathrm{Obj} S)\left({ }^{\mathrm{op}} c\right)$.
(42) For every functor S from C to B and for every object c of C holds $\left(\mathrm{Obj}^{*} S\right)\left(c^{\mathrm{op}}\right)=(\operatorname{Obj} S)(c)$.
(43) For every functor S from C to B and for every object c of C holds $\left(\operatorname{Obj}\left(S^{*}\right)\right)(c)=(\operatorname{Obj} S)(c)^{\mathrm{op}}$.
(44) For every contravariant functor S from C into B and for every object c of $C^{\text {op }}$ holds $\left(\mathrm{Obj}^{*} S\right)(c)=(\mathrm{Obj} S)\left({ }^{\mathrm{op}} c\right)$.
(45) For every contravariant functor S from C into B and for every object c of C holds $\left(\mathrm{Obj}^{*} S\right)\left(c^{\mathrm{op}}\right)=(\mathrm{Obj} S)(c)$.
(46) For every contravariant functor S from C into B and for every object c of C holds $\left(\operatorname{Obj}\left(S^{*}\right)\right)(c)=(\operatorname{Obj} S)(c)^{\mathrm{op}}$.
(47) For every function F from the morphisms of C into the morphisms of D and for every morphism f of C holds $\left({ }^{*} F\right)^{*}\left(f^{\circ \mathrm{op}}\right)=F(f)^{\mathrm{op}}$.
(48) For every function S from the morphisms of C into the morphisms of D holds ${ }_{*}^{*} S=S$.
(49) For every function S from the morphisms of $C^{\text {op }}$ into the morphisms of D holds ${ }^{*}{ }_{*} S=S$.
(50) For every function S from the morphisms of C into the morphisms of D holds $\left({ }^{*} S\right)^{*}={ }^{*}\left(S^{*}\right)$.
(51) For every function S from the morphisms of C into the morphisms of D holds $\left(S^{*}\right)^{*}=S$.
(52) For every function S from the morphisms of C into the morphisms of D holds ${ }^{*}\left({ }^{*} S\right)=S$.
(53) For every function S from the morphisms of C into the morphisms of B and for every function T from the morphisms of B into the morphisms of D holds ${ }^{*}(T \cdot S)=T \cdot{ }^{*} S$.
(54) For every function S from the morphisms of C into the morphisms of B and for every function T from the morphisms of B into the morphisms of D holds $(T \cdot S)^{*}=T^{*} \cdot S$.
(55) For every function F_{1} from the morphisms of C into the morphisms of B and for every function F_{2} from the morphisms of B into the morphisms of D holds $\left({ }^{*}\left(F_{2} \cdot F_{1}\right)\right)^{*}=\left({ }^{*} F_{2}\right)^{*} \cdot\left({ }^{*} F_{1}\right)^{*}$.
(56) For every contravariant functor S from C into D holds ${ }^{*} S$ is a functor from C^{op} to D.
(57) For every contravariant functor S from C into D holds S^{*} is a functor from C to D^{op}.
(58) For every functor S from C to D holds ${ }^{*} S$ is a contravariant functor from C^{op} into D.
(59) For every functor S from C to D holds S^{*} is a contravariant functor from C into D^{op}.
(60) For every contravariant functor S_{1} from C into B and for every functor S_{2} from B to D holds $S_{2} \cdot S_{1}$ is a contravariant functor from C into D.
(61) For every functor S_{1} from C to B and for every contravariant functor S_{2} from B into D holds $S_{2} \cdot S_{1}$ is a contravariant functor from C into D.
(62) For every functor F from C to D and for every object c of C holds $\left(\operatorname{Obj}\left(\left(^{*} F\right)^{*}\right)\right)\left(c^{\mathrm{op}}\right)=(\operatorname{Obj} F)(c)^{\mathrm{op}}$.
(63) For every contravariant functor F from C into D and for every object c of C holds $\left(\operatorname{Obj}\left(\left(^{*} F\right)^{*}\right)\right)\left(c^{\mathrm{op}}\right)=(\operatorname{Obj} F)(c)^{\mathrm{op}}$.
(64) For every functor F from C to D holds $\left({ }^{*} F\right)^{*}$ is a functor from $C^{\text {op }}$ to D^{op}.
(65) For every contravariant functor F from C into D holds $\left({ }^{*} F\right)^{*}$ is a contravariant functor from C^{op} into D^{op}.
We now define two new functors. Let us consider C. The functor $\mathrm{id}^{\mathrm{op}}(C)$ yielding a contravariant functor from C into C^{op} is defined as follows:
(Def.10) $\quad \operatorname{id}^{\mathrm{op}}(C)=\mathrm{id}_{C}^{*}$.
The functor ${ }^{\text {op }} \mathrm{id}(C)$ yielding a contravariant functor from C^{op} into C is defined as follows:
(Def.11) $\quad{ }^{\mathrm{op}} \mathrm{id}(C)={ }^{*}\left(\mathrm{id}_{C}\right)$.
One can prove the following propositions:
(66) For every morphism f of C holds $\operatorname{id}^{\mathrm{op}}(C)(f)=f^{\mathrm{op}}$.
(67) For every object c of C holds $\left(\operatorname{Obj}^{\mathrm{idp}}(C)\right)(c)=c^{\mathrm{op}}$.
(68) For every morphism f of C op holds $\left({ }^{\mathrm{o}} \mathrm{P} \mathrm{id}(C)\right)(f)={ }^{\mathrm{op}} f$.
(69) For every object c of $C{ }^{\text {op }}$ holds $\left(\mathrm{Obj}^{\mathrm{op}} \mathrm{id}(C)\right)(c)={ }^{\mathrm{op}} c$.
(70) For every function S from the morphisms of C into the morphisms of D holds ${ }^{*} S=S \cdot{ }^{\circ} \mathrm{pid}(C)$ and $S^{*}=\operatorname{id}^{\mathrm{op}}(D) \cdot S$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received February 13, 1991

