Opposite Categories and Contravariant Functors

Czesław Byliński Warsaw University Białystok

Summary. The opposite category of a category, contravariant functors and duality functors are defined.

MML Identifier: OPPCAT_1.

The articles [6], [1], [2], [5], [4], and [3] provide the notation and terminology for this paper. In the sequel B, C, D will be categories. Let X be a set, and let C, D be non-empty sets, and let f be a function from X into C, and let g be a function from C into D. Then $g \cdot f$ is a function from X into D.

Let X, Y, Z be non-empty sets, and let f be a partial function from [X, Y] to Z. Then $\frown f$ is a partial function from [Y, X] to Z.

The following proposition is true

(1) (The objects of C, the morphisms of C, the cod-map of C, the dom-map of C, \uparrow (the composition of C), the id-map of C) is a category.

Let us consider C. The functor C^{op} yielding a category is defined as follows:

(Def.1) $C^{\text{op}} = \langle \text{ the objects of } C, \text{ the morphisms of } C, \text{ the cod-map of } C, \text{ the dom-map of } C, \land \text{ (the composition of } C), \text{ the id-map of } C \rangle.$

One can prove the following proposition

 $(2) \quad (C^{\mathrm{op}})^{\mathrm{op}} = C.$

Let us consider C, and let c be an object of C. The functor c^{op} yields an object of C^{op} and is defined by:

(Def.2) $c^{\text{op}} = c.$

Let us consider C, and let c be an object of C^{op} . The functor ${}^{\text{op}}c$ yielding an object of C is defined by:

$$(Def.3) \quad {}^{\rm op}c = c^{\rm op}.$$

419

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 One can prove the following three propositions:

- (3) For every object c of C holds $(c^{\text{op}})^{\text{op}} = c$.
- (4) For every object c of C holds $^{\text{op}}(c^{\text{op}}) = c$.
- (5) For every object c of C^{op} holds $({}^{\text{op}}c){}^{\text{op}} = c$.

Let us consider C, and let f be a morphism of C. The functor f^{op} yields a morphism of C^{op} and is defined as follows:

$$(Def.4) \quad f^{\rm op} = f.$$

Let us consider C, and let f be a morphism of C^{op} . The functor ${}^{\text{op}}f$ yields a morphism of C and is defined by:

(Def.5) $^{\mathrm{op}}f = f^{\mathrm{op}}.$

One can prove the following propositions:

- (6) For every morphism f of C holds $(f^{op})^{op} = f$.
- (7) For every morphism f of C holds $^{\mathrm{op}}(f^{\mathrm{op}}) = f$.
- (8) For every morphism f of C^{op} holds $({}^{\text{op}}f)^{\text{op}} = f$.
- (9) For every morphism f of C holds $\operatorname{dom}(f^{\operatorname{op}}) = \operatorname{cod} f$ and $\operatorname{cod}(f^{\operatorname{op}}) = \operatorname{dom} f$.
- (10) For every morphism f of C^{op} holds $\dim^{\text{op}} f = \operatorname{cod} f$ and $\operatorname{cod}^{\text{op}} f = \operatorname{dom} f$.
- (11) For every morphism f of C holds $(\operatorname{dom} f)^{\operatorname{op}} = \operatorname{cod}(f^{\operatorname{op}})$ and $(\operatorname{cod} f)^{\operatorname{op}} = \operatorname{dom}(f^{\operatorname{op}})$.
- (12) For every morphism f of C^{op} holds ${}^{\text{op}} \operatorname{dom} f = \operatorname{cod} {}^{\text{op}} f$ and ${}^{\text{op}} \operatorname{cod} f = \operatorname{dom} {}^{\text{op}} f$.
- (13) For all objects a, b of C and for every morphism f of C holds $f \in hom(a, b)$ if and only if $f^{op} \in hom(b^{op}, a^{op})$.
- (14) For all objects a, b of C^{op} and for every morphism f of C^{op} holds $f \in \text{hom}(a, b)$ if and only if ${}^{\text{op}}f \in \text{hom}({}^{\text{op}}b, {}^{\text{op}}a)$.
- (15) For all objects a, b of C and for every morphism f from a to b such that $hom(a, b) \neq \emptyset$ holds f^{op} is a morphism from b^{op} to a^{op} .
- (16) For all objects a, b of C^{op} and for every morphism f from a to b such that $\text{hom}(a, b) \neq \emptyset$ holds ${}^{\text{op}}f$ is a morphism from ${}^{\text{op}}b$ to ${}^{\text{op}}a$.
- (17) For all morphisms f, g of C such that dom $g = \operatorname{cod} f$ holds $(g \cdot f)^{\operatorname{op}} = f^{\operatorname{op}} \cdot g^{\operatorname{op}}$.
- (18) For all morphisms f, g of C such that $\operatorname{cod}(g^{\operatorname{op}}) = \operatorname{dom}(f^{\operatorname{op}})$ holds $(g \cdot f)^{\operatorname{op}} = f^{\operatorname{op}} \cdot g^{\operatorname{op}}$.
- (19) For all morphisms f, g of C^{op} such that dom $g = \operatorname{cod} f$ holds ${}^{\operatorname{op}}(g \cdot f) = {}^{\operatorname{op}} f \cdot {}^{\operatorname{op}} g$.
- (20) For all objects a, b, c of C and for every morphism f from a to b and for every morphism g from b to c such that $hom(a, b) \neq \emptyset$ and $hom(b, c) \neq \emptyset$ holds $(g \cdot f)^{\text{op}} = f^{\text{op}} \cdot g^{\text{op}}$.
- (21) For every object a of C holds $\mathrm{id}_a^{\mathrm{op}} = \mathrm{id}_{a^{\mathrm{op}}}$.
- (22) For every object a of C^{op} holds ${}^{\text{op}}(\text{id}_a) = \text{id}_{({}^{\text{op}}a)}$.

- (23) For every morphism f of C holds f^{op} is monic if and only if f is epi.
- (24) For every morphism f of C holds f^{op} is epi if and only if f is monic.
- (25) For every morphism f of C holds f^{op} is invertible if and only if f is invertible.
- (26) For every object c of C holds c is an initial object if and only if c^{op} is a terminal object.
- (27) For every object c of C holds c^{op} is an initial object if and only if c is a terminal object.

Let us consider C, B, and let S be a function from the morphisms of C^{op} into the morphisms of B. The functor *S yields a function from the morphisms of C into the morphisms of B and is defined by:

(Def.6) for every morphism f of C holds $(*S)(f) = S(f^{op})$.

One can prove the following propositions:

- (28) For every function S from the morphisms of C^{op} into the morphisms of B and for every morphism f of C^{op} holds $(*S)(^{\text{op}}f) = S(f)$.
- (29) For every functor S from C^{op} to B and for every object c of C holds $(\text{Obj}_*S)(c) = (\text{Obj} S)(c^{\text{op}}).$
- (30) For every functor S from C^{op} to B and for every object c of C^{op} holds $(\text{Obj}_*S)(^{\text{op}}c) = (\text{Obj}S)(c).$

Let us consider C, D. A function from the morphisms of C into the morphisms of D is called a contravariant functor from C into D if it satisfies the conditions (Def.7).

- (Def.7) (i) For every object c of C there exists an object d of D such that $it(id_c) = id_d$,
 - (ii) for every morphism f of C holds it $(id_{\text{dom }f}) = id_{\text{cod}(it(f))}$ and it $(id_{\text{cod }f}) = id_{\text{dom}(it(f))}$,
 - (iii) for all morphisms f, g of C such that dom $g = \operatorname{cod} f$ holds $\operatorname{it}(g \cdot f) = \operatorname{it}(f) \cdot \operatorname{it}(g)$.

The following propositions are true:

- (31) For every contravariant functor S from C into D and for every object c of C and for every object d of D such that $S(id_c) = id_d$ holds (Obj S)(c) = d.
- (32) For every contravariant functor S from C into D and for every object c of C holds $S(\operatorname{id}_c) = \operatorname{id}_{(\operatorname{Obj} S)(c)}$.
- (33) For every contravariant functor S from C into D and for every morphism f of C holds (Obj S)(dom f) = cod(S(f)) and (Obj S)(cod f) = dom(S(f)).
- (34) For every contravariant functor S from C into D and for all morphisms f, g of C such that dom $g = \operatorname{cod} f$ holds $\operatorname{dom}(S(f)) = \operatorname{cod}(S(g))$.
- (35) For every functor S from C^{op} to B holds *S is a contravariant functor from C into B.

- (36) For every contravariant functor S_1 from C into B and for every contravariant functor S_2 from B into D holds $S_2 \cdot S_1$ is a functor from C to D.
- (37) For every contravariant functor S from C^{op} into B and for every object c of C holds $(\text{Obj}_*S)(c) = (\text{Obj} S)(c^{\text{op}}).$
- (38) For every contravariant functor S from C^{op} into B and for every object c of C^{op} holds $(\text{Obj}_*S)({}^{\text{op}}c) = (\text{Obj} S)(c)$.
- (39) For every contravariant functor S from C^{op} into B holds *S is a functor from C to B.

We now define two new functors. Let us consider C, B, and let S be a function from the morphisms of C into the morphisms of B. The functor *S yielding a function from the morphisms of C^{op} into the morphisms of B is defined as follows:

(Def.8) for every morphism f of C^{op} holds $(*S)(f) = S(^{\text{op}}f)$.

The functor S^* yields a function from the morphisms of C into the morphisms of B^{op} and is defined by:

(Def.9) for every morphism f of C holds $S^*(f) = S(f)^{\text{op}}$.

The following propositions are true:

- (40) For every function S from the morphisms of C into the morphisms of B and for every morphism f of C holds $(*S)(f^{\text{op}}) = S(f)$.
- (41) For every functor S from C to B and for every object c of C^{op} holds $(\text{Obj} * S)(c) = (\text{Obj} S)(^{\text{op}}c).$
- (42) For every functor S from C to B and for every object c of C holds $(\operatorname{Obj} *S)(c^{\operatorname{op}}) = (\operatorname{Obj} S)(c).$
- (43) For every functor S from C to B and for every object c of C holds $(\operatorname{Obj}(S^*))(c) = (\operatorname{Obj} S)(c)^{\operatorname{op}}.$
- (44) For every contravariant functor S from C into B and for every object c of C^{op} holds $(\text{Obj}^*S)(c) = (\text{Obj} S)(^{\text{op}}c)$.
- (45) For every contravariant functor S from C into B and for every object c of C holds $(Obj^*S)(c^{op}) = (Obj S)(c)$.
- (46) For every contravariant functor S from C into B and for every object c of C holds $(\text{Obj}(S^*))(c) = (\text{Obj} S)(c)^{\text{op}}$.
- (47) For every function F from the morphisms of C into the morphisms of D and for every morphism f of C holds $({}^*F)^*(f^{\mathrm{op}}) = F(f)^{\mathrm{op}}$.
- (48) For every function S from the morphisms of C into the morphisms of D holds $*^{*}S = S$.
- (49) For every function S from the morphisms of C^{op} into the morphisms of D holds $*_*S = S$.
- (50) For every function S from the morphisms of C into the morphisms of D holds $(*S)^* = *(S^*)$.

- (51) For every function S from the morphisms of C into the morphisms of D holds $(S^*)^* = S$.
- (52) For every function S from the morphisms of C into the morphisms of D holds *(*S) = S.
- (53) For every function S from the morphisms of C into the morphisms of B and for every function T from the morphisms of B into the morphisms of D holds $*(T \cdot S) = T \cdot *S$.
- (54) For every function S from the morphisms of C into the morphisms of B and for every function T from the morphisms of B into the morphisms of D holds $(T \cdot S)^* = T^* \cdot S$.
- (55) For every function F_1 from the morphisms of C into the morphisms of B and for every function F_2 from the morphisms of B into the morphisms of D holds $(*(F_2 \cdot F_1))^* = (*F_2)^* \cdot (*F_1)^*$.
- (56) For every contravariant functor S from C into D holds *S is a functor from C^{op} to D.
- (57) For every contravariant functor S from C into D holds S^* is a functor from C to D^{op} .
- (58) For every functor S from C to D holds *S is a contravariant functor from C^{op} into D.
- (59) For every functor S from C to D holds S^* is a contravariant functor from C into D^{op} .
- (60) For every contravariant functor S_1 from C into B and for every functor S_2 from B to D holds $S_2 \cdot S_1$ is a contravariant functor from C into D.
- (61) For every functor S_1 from C to B and for every contravariant functor S_2 from B into D holds $S_2 \cdot S_1$ is a contravariant functor from C into D.
- (62) For every functor F from C to D and for every object c of C holds $(\operatorname{Obj}(({}^*F){}^*))(c^{\operatorname{op}}) = (\operatorname{Obj} F)(c)^{\operatorname{op}}.$
- (63) For every contravariant functor F from C into D and for every object c of C holds $(Obj((*F)^*))(c^{op}) = (Obj F)(c)^{op}$.
- (64) For every functor F from C to D holds $({}^*F)^*$ is a functor from C^{op} to D^{op} .
- (65) For every contravariant functor F from C into D holds $(*F)^*$ is a contravariant functor from C^{op} into D^{op} .

We now define two new functors. Let us consider C. The functor $\mathrm{id}^{\mathrm{op}}(C)$ yielding a contravariant functor from C into C^{op} is defined as follows:

 $(\text{Def.10}) \quad \text{id}^{\text{op}}(C) = \text{id}_C^*.$

The functor $\operatorname{opid}(C)$ yielding a contravariant functor from C^{op} into C is defined as follows:

(Def.11) $\operatorname{opid}(C) = *(\operatorname{id}_C).$

One can prove the following propositions:

(66) For every morphism f of C holds $id^{op}(C)(f) = f^{op}$.

- (67) For every object c of C holds $(Objid^{op}(C))(c) = c^{op}$.
- (68) For every morphism f of C^{op} holds $({}^{\text{op}}\text{id}(C))(f) = {}^{\text{op}}f$.
- (69) For every object c of C^{op} holds $(\text{Obj}^{\text{op}}\text{id}(C))(c) = {}^{\text{op}}c.$
- (70) For every function S from the morphisms of C into the morphisms of D holds $*S = S \cdot {}^{\text{op}}\text{id}(C)$ and $S^* = \text{id}^{\text{op}}(D) \cdot S$.

References

- [1] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
- [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.

Received February 13, 1991