Algebra of Normal Forms Is a Heyting Algebra ${ }^{1}$

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We prove that the lattice of normal forms over an arbitrary set, introduced in [7], is an implicative lattice. The relative psedo-complement $\alpha \Rightarrow \beta$ is defined as $\bigsqcup_{\alpha_{1} \cup \alpha_{2}=\alpha}-\alpha_{1} \sqcap \alpha_{2} \mapsto \beta$, where $-\alpha$ is the pseudo-complement of α and $\alpha \longmapsto \beta$ is a rather strong implication introduced in this paper.

MML Identifier: HEYTING1.

The articles [13], [4], [5], [2], [14], [3], [8], [6], [15], [9], [16], [10], [11], [12], [7], and [1] provide the notation and terminology for this paper. One can prove the following proposition
(1) For all non-empty sets A, B, C and for every function f from A into B such that for every element x of A holds $f(x) \in C$ holds f is a function from A into C.
In the sequel A will be a non-empty set and a will be an element of A. Let us consider A, and let B, C be elements of Fin A. Let us note that one can characterize the predicate $B \subseteq C$ by the following (equivalent) condition:
(Def.1) for every a such that $a \in B$ holds $a \in C$.
Let A be a non-empty set, and let B be a non-empty subset of A. Then $\stackrel{B}{\hookrightarrow}$ is a function from B into A.

The following proposition is true
(2) For every non-empty set A and for every non-empty subset B of A and for every element x of B holds $(\underset{\hookrightarrow}{B})(x)=x$.
In the sequel A denotes a set. Let us consider A. Let us assume that A is non-empty. The functor $[A]$ yielding an non-empty set is defined by:

[^0](Def.2) $\quad[A]=A$.
We follow the rules: B, C will denote elements of $\operatorname{Fin} \operatorname{DP}(A), a, b, c, s, t_{1}, t_{2}$ will denote elements of $\mathrm{DP}(A)$, and u, v, w will denote elements of the carrier of the lattice of normal forms over A. The following propositions are true:
(3) If $B=\emptyset$, then $\mu B=\emptyset$.
(4) For an arbitrary x such that $x \in B$ holds x is an element of $\mathrm{DP}(A)$.

Let us consider A, a. Then $\{a\}$ is an element of the normal forms over A.
Let us consider A, and let u be an element of the carrier of the
lattice of normal forms over A.
The functor ${ }^{@} u$ yields an element of the normal forms over A and is defined as follows:
(Def.3) ${ }^{@} u=u$.
One can prove the following two propositions:
(5) $\quad \sqcap_{A}\left({ }^{@} u,{ }^{@} v\right)=($ the meet operation of the lattice of normal forms over $A)(u, v)$.
(6) $\sqcup_{A}\left({ }^{@} u,{ }^{@} v\right)=$ (the join operation of the lattice of normal forms over $A)(u, v)$.
In the sequel K, L will denote elements of the normal forms over A. One can prove the following propositions:
(7) $\quad \mu\left(K^{\wedge} K\right)=K$.
(8) For every set X such that $X \subseteq K$ holds $X \in$ the normal forms over A.
(9) \emptyset is an element of the normal forms over A.
(10) For every set X such that $X \subseteq u$ holds X is an element of the carrier of the lattice of normal forms over A.
Let us consider A. The functor $\{\square\}_{A}$ yields a function from $\operatorname{DP}(A)$ into the carrier of the lattice of normal forms over A and is defined by:
(Def.4) $\quad\{\square\}_{A}(a)=\{a\}$.
The following propositions are true:
(11) If $c \in\{\square\}_{A}(a)$, then $c=a$.
(12) $a \in\{\square\}_{A}(a)$.
(13) $\quad\{\square\}_{A}(a)=$ singleton $_{\operatorname{DP}(A)}(a)$.

$$
\left.\left.\begin{array}{l}
\bigsqcup_{K}^{\mathrm{f}}\left(\{\square\}_{A}\right)=\operatorname{FinUnion}(K, \text { singleton } \\
\left.u=\bigsqcup_{\left(@^{\mathrm{DP}}(A)\right.}^{\mathrm{f}}\right) \tag{15}
\end{array}\right) .\{\square\}_{A}\right) .
$$

In the sequel f will denote an element of $: \operatorname{Fin} A, \operatorname{Fin} A:]^{\operatorname{DP}(A)}$ and g will denote an element of $[A]^{\mathrm{DP}(A)}$. Let A be a set. The functor $\square \backslash A \square$ yielding a binary operation on $: \operatorname{Fin} A, \operatorname{Fin} A$: is defined as follows:
(Def.5) for all elements a, b of $:$ Fin A, Fin $A:$ holds $\square \backslash A \square(a, b)=a \backslash b$.
We now define two new functors. Let us consider A, B. The functor $-B$ yielding an element of $\operatorname{Fin} \operatorname{DP}(A)$ is defined by:
(Def.6)

$$
\begin{gathered}
-B=\mathrm{DP}(A) \cap\left\{\left\langle\left\{g\left(t_{1}\right): g\left(t_{1}\right) \in t_{1 \mathbf{2}} \wedge t_{1} \in B\right\},\right.\right. \\
\left.\left.\left\{g\left(t_{2}\right): g\left(t_{2}\right) \in t_{21} \wedge t_{2} \in B\right\}\right\rangle: s \in B \Rightarrow g(s) \in s_{\mathbf{1}} \cup s_{\mathbf{2}}\right\} .
\end{gathered}
$$

Let us consider C. The functor $B \mapsto C$ yielding an element of $\operatorname{Fin} \operatorname{DP}(A)$ is defined by:

$$
\begin{equation*}
B \mapsto C=\operatorname{DP}(A) \cap\left\{\operatorname{FinUnion}\left(B, \square \backslash_{A} \square^{\circ}(f, \underset{\hookrightarrow}{\operatorname{DP}(A)})\right): f^{\circ} B \subseteq C\right\} . \tag{Def.7}
\end{equation*}
$$

The following propositions are true:
(16) Suppose $c \in-B$. Then there exists g such that for every s such that $s \in B$ holds $g(s) \in s_{\mathbf{1}} \cup s_{\mathbf{2}}$ and
$c=\left\langle\left\{g\left(t_{1}\right): g\left(t_{1}\right) \in t_{12} \wedge t_{1} \in B\right\},\left\{g\left(t_{2}\right): g\left(t_{2}\right) \in t_{21} \wedge t_{2} \in B\right\}\right\rangle$.
(17) $\langle\emptyset, \emptyset\rangle$ is an element of $\operatorname{DP}(A)$.
(18) For every K such that $K=\emptyset$ holds $-K=\{\langle\emptyset, \emptyset\rangle\}$.
(19) For all K, L such that $K=\emptyset$ and $L=\emptyset$ holds $K \mapsto L=\{\langle\emptyset, \emptyset\rangle\}$.
(20) For every element a of $\operatorname{DP}(\emptyset)$ holds $a=\langle\emptyset, \emptyset\rangle$.
(21) $\operatorname{DP}(\emptyset)=\{\langle\emptyset, \emptyset\rangle\}$.
(22) $\quad\{\langle\emptyset, \emptyset\rangle\}$ is an element of the normal forms over A.
(23) If $c \in B \mapsto C$, then there exists f such that $f^{\circ} B \subseteq C$ and $c=$ $\operatorname{Fin} \operatorname{Union}\left(B, \square \backslash_{A} \square^{\circ}(f, \stackrel{\mathrm{DP}(A)}{\hookrightarrow})\right)$.
(24) If $K^{\wedge}\{a\}=\emptyset$, then there exists b such that $b \in-K$ and $b \subseteq a$.
(25) If for every b such that $b \in u$ holds $b \cup a \in \operatorname{DP}(A)$ and for every c such that $c \in u$ there exists b such that $b \in v$ and $b \subseteq c \cup a$, then there exists b such that $b \in\left({ }^{@} u\right) \hookrightarrow{ }^{@} v$ and $b \subseteq a$.
(26) $\quad K^{\wedge}-K=\emptyset$.

We now define four new functors. Let us consider A. The functor $\square^{\mathrm{c}}{ }_{A}$ yielding a unary operation on the carrier of the lattice of normal forms over A is defined by:
(Def.8) $\quad \square^{\mathrm{c}}{ }_{A}(u)=\mu\left(-{ }^{@} u\right)$.
The functor $\square \rightarrow_{A} \square$ yields a binary operation on the carrier of the
lattice of normal forms over A
and is defined by:
(Def.9) $\quad\left(\square \mapsto_{A} \square\right)(u, v)=\mu\left(\left({ }^{@} u\right) \longmapsto{ }^{@} v\right)$.
Let us consider u. The functor 2^{u} yielding an element of Fin (the carrier of the lattice of normal forms over A) is defined by:
(Def.10) $2^{u}=2^{u}$.
The functor $\square \backslash_{u} \square$ yielding a unary operation on the carrier of the lattice of normal forms over A
is defined as follows:
(Def.11) $\quad\left(\square \backslash_{u} \square\right)(v)=u \backslash v$.
We now state several propositions:
(27) $\quad\left(\square \backslash_{u} \square\right)(v) \sqsubseteq u$.

$$
\begin{equation*}
u \sqcap \square^{\mathrm{C}}{ }_{A}(u)=\perp_{\text {the lattice of normal forms over } A} . \tag{28}
\end{equation*}
$$

$u \sqcap\left(\square \mapsto{ }_{A} \square\right)(u, v) \sqsubseteq v$.
If $\left({ }^{@} u\right)^{\wedge}\{a\}=\emptyset$, then $\{\square\}_{A}(a) \sqsubseteq \square^{\mathrm{c}}{ }_{A}(u)$.
If for every b such that $b \in u$ holds $b \cup a \in \operatorname{DP}(A)$ and $u \sqcap\{\square\}_{A}(a) \sqsubseteq w$, then $\{\square\}_{A}(a) \sqsubseteq\left(\square \rightarrow_{A} \square\right)(u, w)$.
(32) The lattice of normal forms over A is an implicative lattice.
$u \Rightarrow v=\bigsqcup_{2^{u}}$ ((the meet operation of
the lattice of normal forms over $A)^{\circ}\left(\square^{\mathrm{c}} A,\left(\square \mapsto_{A} \square\right)^{\circ}\left(\square \backslash_{u} \square, v\right)\right)$).
$\mathrm{T}_{\text {The lattice of normal forms over } A}=\{\langle\emptyset, \emptyset\rangle\}$.

References

[1] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
[2] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Andrzej Trybulec. Algebra of normal forms. Formalized Mathematics, 2(2):237-242, 1991.
[8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[10] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics, 1(5):983-988, 1990.
[11] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[12] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[15] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[16] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received January 3, 1991

[^0]: ${ }^{1}$ Partially supported by RPBP.III-24.B1

