Algebra of Normal Forms Is a Heyting Algebra ¹

Andrzej Trybulec Warsaw University Białystok

Summary. We prove that the lattice of normal forms over an arbitrary set, introduced in [7], is an implicative lattice. The relative psedo-complement $\alpha \Rightarrow \beta$ is defined as $\bigsqcup_{\alpha_1 \cup \alpha_2 = \alpha} -\alpha_1 \sqcap \alpha_2 \rightarrow \beta$, where $-\alpha$ is the pseudo-complement of α and $\alpha \rightarrow \beta$ is a rather strong implication introduced in this paper.

MML Identifier: HEYTING1.

The articles [13], [4], [5], [2], [14], [3], [8], [6], [15], [9], [16], [10], [11], [12], [7], and [1] provide the notation and terminology for this paper. One can prove the following proposition

(1) For all non-empty sets A, B, C and for every function f from A into B such that for every element x of A holds $f(x) \in C$ holds f is a function from A into C.

In the sequel A will be a non-empty set and a will be an element of A. Let us consider A, and let B, C be elements of Fin A. Let us note that one can characterize the predicate $B \subseteq C$ by the following (equivalent) condition:

(Def.1) for every a such that $a \in B$ holds $a \in C$.

Let A be a non-empty set, and let B be a non-empty subset of A. Then $\stackrel{B}{\hookrightarrow}$ is a function from B into A.

The following proposition is true

(2) For every non-empty set A and for every non-empty subset B of A and for every element x of B holds $\binom{B}{\frown}(x) = x$.

In the sequel A denotes a set. Let us consider A. Let us assume that A is non-empty. The functor [A] yielding an non-empty set is defined by:

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Partially supported by RPBP.III-24.B1

 $(Def.2) \quad [A] = A.$

We follow the rules: B, C will denote elements of Fin DP(A), a, b, c, s, t_1, t_2 will denote elements of DP(A), and u, v, w will denote elements of the carrier of the lattice of normal forms over A. The following propositions are true:

- (3) If $B = \emptyset$, then $\mu B = \emptyset$.
- (4) For an arbitrary x such that $x \in B$ holds x is an element of DP(A).

Let us consider A, a. Then $\{a\}$ is an element of the normal forms over A. Let us consider A, and let u be an element of the carrier of the lattice of normal forms over A.

The functor ${}^{@}u$ yields an element of the normal forms over A and is defined as follows:

(Def.3) $^{@}u = u.$

One can prove the following two propositions:

- (5) $\Box_A({}^{@}u, {}^{@}v) = (\text{the meet operation of the lattice of normal forms over } A)(u, v).$
- (6) $\sqcup_A({}^{@}u, {}^{@}v) = (\text{the join operation of the lattice of normal forms over } A)(u, v).$

In the sequel K, L will denote elements of the normal forms over A. One can prove the following propositions:

- (7) $\mu(K \cap K) = K.$
- (8) For every set X such that $X \subseteq K$ holds $X \in$ the normal forms over A.
- (9) \emptyset is an element of the normal forms over A.
- (10) For every set X such that $X \subseteq u$ holds X is an element of the carrier of the lattice of normal forms over A.

Let us consider A. The functor $\{\Box\}_A$ yields a function from DP(A) into the carrier of the lattice of normal forms over A and is defined by:

(Def.4) $\{\Box\}_A(a) = \{a\}.$

The following propositions are true:

- (11) If $c \in \{\Box\}_A(a)$, then c = a.
- $(12) \quad a \in \{\Box\}_A(a).$
- (13) $\{\Box\}_A(a) = \operatorname{singleton}_{\operatorname{DP}(A)}(a).$
- (14) $\bigsqcup_{K}^{\mathrm{f}}(\{\Box\}_{A}) = \operatorname{FinUnion}(K, \operatorname{singleton}_{\mathrm{DP}(A)}).$
- (15) $u = \bigsqcup_{(@u)}^{\mathsf{f}} (\{\Box\}_A).$

In the sequel f will denote an element of $[\operatorname{Fin} A, \operatorname{Fin} A]^{\operatorname{DP}(A)}$ and g will denote an element of $[A]^{\operatorname{DP}(A)}$. Let A be a set. The functor $\Box \setminus_A \Box$ yielding a binary operation on $[\operatorname{Fin} A, \operatorname{Fin} A]$ is defined as follows:

(Def.5) for all elements a, b of [Fin A, Fin A] holds $\Box \setminus_A \Box(a, b) = a \setminus b$.

We now define two new functors. Let us consider A, B. The functor -B yielding an element of Fin DP(A) is defined by:

(Def.6) $-B = DP(A) \cap \{ \langle \{g(t_1) : g(t_1) \in t_{12} \land t_1 \in B \}, \}$

 $\{g(t_2): g(t_2) \in t_{21} \land t_2 \in B\} \rangle : s \in B \Rightarrow g(s) \in s_1 \cup s_2\}.$

Let us consider C. The functor $B \rightarrow C$ yielding an element of Fin DP(A) is defined by:

$$(\text{Def.7}) \quad B \rightarrowtail C = \text{DP}(A) \cap \left\{ \text{FinUnion}(B, \Box \setminus_A \Box^{\circ}(f, \bigcup_{\hookrightarrow} DP(A))) : f^{\circ} B \subseteq C \right\}$$

The following propositions are true:

(16) Suppose $c \in -B$. Then there exists g such that for every s such that $s \in B$ holds $g(s) \in s_1 \cup s_2$ and

$$c = \langle \{g(t_1) : g(t_1) \in t_{12} \land t_1 \in B\}, \{g(t_2) : g(t_2) \in t_{21} \land t_2 \in B\} \rangle.$$

- (17) $\langle \emptyset, \emptyset \rangle$ is an element of DP(A).
- (18) For every K such that $K = \emptyset$ holds $-K = \{\langle \emptyset, \emptyset \rangle\}.$
- (19) For all K, L such that $K = \emptyset$ and $L = \emptyset$ holds $K \rightarrow L = \{\langle \emptyset, \emptyset \rangle\}.$
- (20) For every element a of $DP(\emptyset)$ holds $a = \langle \emptyset, \emptyset \rangle$.
- (21) $DP(\emptyset) = \{\langle \emptyset, \emptyset \rangle\}.$
- (22) $\{\langle \emptyset, \emptyset \rangle\}$ is an element of the normal forms over A.
- (23) If $c \in B \to C$, then there exists f such that $f \circ B \subseteq C$ and $c = \text{FinUnion}(B, \Box \setminus_A \Box^{\circ}(f, \overset{\text{DP}(A)}{\smile})).$
- (24) If $K \cap \{a\} = \emptyset$, then there exists b such that $b \in -K$ and $b \subseteq a$.
- (25) If for every b such that $b \in u$ holds $b \cup a \in DP(A)$ and for every c such that $c \in u$ there exists b such that $b \in v$ and $b \subseteq c \cup a$, then there exists b such that $b \in ({}^{@}u) \rightarrow {}^{@}v$ and $b \subseteq a$.

$$(26) K^{\frown} - K = \emptyset.$$

We now define four new functors. Let us consider A. The functor $\Box^{c}{}_{A}$ yielding a unary operation on the carrier of the lattice of normal forms over A is defined by:

(Def.8) $\Box^{c}{}_{A}(u) = \mu(-{}^{@}u).$

The functor $\Box \rightarrow_A \Box$ yields a binary operation on the carrier of the lattice of normal forms over A and is defined by:

(Def.9) $(\Box \mapsto_A \Box)(u, v) = \mu((^{@}u) \mapsto ^{@}v).$

Let us consider u. The functor 2^u yielding an element of Fin (the carrier of the lattice of normal forms over A) is defined by:

(Def.10) $2^u = 2^u$.

The functor $\Box \setminus_u \Box$ yielding a unary operation on the carrier of the lattice of normal forms over A is defined as follows:

 $(\text{Def.11}) \quad (\Box \setminus_u \Box)(v) = u \setminus v.$

We now state several propositions:

 $(27) \qquad (\Box \setminus_u \Box)(v) \sqsubseteq u.$

(28) $u \sqcap \Box^{c}_{A}(u) = \bot_{\text{the lattice of normal forms over }A}.$

- $(29) \quad u \sqcap (\Box \rightarrowtail_A \Box)(u, v) \sqsubseteq v.$
- (30) If $(^{\textcircled{a}}u) \cap \{a\} = \emptyset$, then $\{\Box\}_A(a) \sqsubseteq \Box^c{}_A(u)$.
- (31) If for every b such that $b \in u$ holds $b \cup a \in DP(A)$ and $u \sqcap \{\Box\}_A(a) \sqsubseteq w$, then $\{\Box\}_A(a) \sqsubseteq (\Box \rightarrowtail_A \Box)(u, w)$.
- (32) The lattice of normal forms over A is an implicative lattice.
- (33) $u \Rightarrow v = \bigsqcup_{2^u}^{\mathrm{f}} (\text{ the meet operation of the lattice of normal forms over } A)^{\circ}(\Box^c_A, (\Box \rightarrowtail_A \Box)^{\circ}(\Box \setminus_u \Box, v))).$
- (34) $\top_{\text{The lattice of normal forms over }A} = \{ \langle \emptyset, \emptyset \rangle \}.$

References

- [1] Grzegorz Bancerek. Filters part I. Formalized Mathematics, 1(5):813–819, 1990.
- Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [7] Andrzej Trybulec. Algebra of normal forms. Formalized Mathematics, 2(2):237-242, 1991.
- [8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [10] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics, 1(5):983–988, 1990.
- [11] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [12] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [15] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [16] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215– 222, 1990.

Received January 3, 1991