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Université Catholique de Louvain

Real Function Differentiability - Part II

Jaros law Kotowicz

Warsaw University

Bia lystok

Konrad Raczkowski

Warsaw University

Bia lystok

Summary. A continuation of [18]. We prove an equivalent def-
inition of the derivative of the real function at the point and theorems
about derivative of composite functions, inverse function and derivative
of quotient of two functions. At the begining of the paper a few facts
which rather belong to [8], [10], [7] are proved.

MML Identifier: FDIFF 2.

The terminology and notation used in this paper have been introduced in the
following papers: [20], [5], [1], [2], [3], [22], [14], [8], [10], [16], [15], [4], [21],
[11], [12], [19], [13], [17], [18], [9], and [6]. For simplicity we adopt the following
convention: x0, r, r1, r2, g, p will be real numbers, n, m will be natural numbers,
a, b, d will be sequences of real numbers, h, h1, h2 will be real sequences
convergent to 0, c will be a constant real sequence, A will be a real open
subset, and f , f1, f2 will be partial functions from � to � . Let us consider h.
Then −h is a real sequence convergent to 0.

The following propositions are true:

(1) If a is convergent and b is convergent and lim a = lim b and for every
n holds d(2 · n) = a(n) and d(2 · n + 1) = b(n), then d is convergent and
lim d = lim a.

(2) If for every n holds a(n) = 2 · n, then a is an increasing sequence of
naturals.

(3) If for every n holds a(n) = 2 · n + 1, then a is an increasing sequence of
naturals.

(4) If rng c = {x0}, then c is convergent and lim c = x0 and h+ c is conver-
gent and lim(h + c) = x0.

(5) If rng a = {r} and rng b = {r}, then a = b.

(6) If a is a subsequence of h, then a is a real sequence convergent to 0.
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(7) Suppose for all h, c such that rng c = {g} and rng(h + c) ⊆ dom f and
{g} ⊆ dom f holds h−1(f · (h + c) − f · c) is convergent. Given h1, h2, c.
Suppose rng c = {g} and rng(h1 + c) ⊆ dom f and rng(h2 + c) ⊆ dom f

and {g} ⊆ dom f . Then lim(h1
−1(f · (h1 + c)−f · c)) = lim(h2

−1(f · (h2 +
c) − f · c)).

(8) If there exists a neighbourhood N of r such that N ⊆ dom f , then there
exist h, c such that rng c = {r} and rng(h+ c) ⊆ dom f and {r} ⊆ dom f .

(9) If rng a ⊆ dom(f2 · f1), then rng a ⊆ dom f1 and rng(f1 · a) ⊆ dom f2.

The scheme ExInc Seq of Nat concerns a sequence of real numbers A, and a
unary predicate P, and states that:

there exists an increasing sequence q of naturals such that for every n holds
P[(A · q)(n)] and for every n such that for every r such that r = A(n) holds
P[r] there exists m such that n = q(m)
provided the following requirement is met:

• for every n there exists m such that n ≤ m and P[A(m)].
One can prove the following propositions:

(10) If f(x0) 6= r and f is differentiable in x0, then there exists a neighbour-
hood N of x0 such that N ⊆ dom f and for every g such that g ∈ N holds
f(g) 6= r.

(11) f is differentiable in x0 if and only if there exists a neighbourhood N

of x0 such that N ⊆ dom f and for all h, c such that rng c = {x0} and
rng(h + c) ⊆ dom f holds h−1(f · (h + c) − f · c) is convergent.

(12) f is differentiable in x0 and f ′(x0) = g if and only if the following
conditions are satisfied:

(i) there exists a neighbourhood N of x0 such that N ⊆ dom f ,
(ii) for all h, c such that rng c = {x0} and rng(h + c) ⊆ dom f holds

h−1(f · (h + c) − f · c) is convergent and lim(h−1(f · (h + c) − f · c)) = g.

(13) If f1 is differentiable in x0 and f2 is differentiable in f1(x0), then f2 · f1

is differentiable in x0 and (f2 · f1)
′(x0) = f2

′(f1(x0)) · f1
′(x0).

(14) If f2(x0) 6= 0 and f1 is differentiable in x0 and f2 is differentiable in x0,

then f1

f2
is differentiable in x0 and (f1

f2
)′(x0) = f1

′(x0)·f2(x0)−f2
′(x0)·f1(x0)

f2(x0)2
.

(15) If f(x0) 6= 0 and f is differentiable in x0, then 1
f

is differentiable in x0

and ( 1
f
)′(x0) = − f ′(x0)

f(x0)2
.

(16) If f is differentiable on A, then f
�
A is differentiable on A and f ′�

A =
(f

�
A)′�

A .

(17) If f1 is differentiable on A and f2 is differentiable on A, then f1 + f2 is
differentiable on A and (f1 + f2)

′�
A = f1

′�
A + f2

′�
A .

(18) If f1 is differentiable on A and f2 is differentiable on A, then f1 − f2 is
differentiable on A and (f1 − f2)

′�
A = f1

′�
A − f2

′�
A .

(19) If f is differentiable on A, then rf is differentiable on A and (rf)′�
A =

rf ′�
A .
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(20) If f1 is differentiable on A and f2 is differentiable on A, then f1f2 is
differentiable on A and (f1f2)

′�
A = f1

′�
Af2 + f1f2

′�
A .

(21) If f1 is differentiable on A and f2 is differentiable on A and for every

x0 such that x0 ∈ A holds f2(x0) 6= 0, then f1

f2
is differentiable on A and

(f1

f2
)′�

A =
f1

′�
A

f2−f2
′�
A

f1

f2f2
.

(22) If f is differentiable on A and for every x0 such that x0 ∈ A holds

f(x0) 6= 0, then 1
f

is differentiable on A and ( 1
f
)′�

A = −
f ′�

A

ff
.

(23) If f1 is differentiable on A and f1
◦ A is a real open subset and f2 is

differentiable on f1
◦ A, then f2 · f1 is differentiable on A and (f2 · f1)

′�
A =

(f2
′�
f1

◦A · f1)f1
′�
A .

(24) If A ⊆ dom f and for all r, p such that r ∈ A and p ∈ A holds |f(r) −
f(p)| ≤ (r − p)2, then f is differentiable on A and for every x0 such that
x0 ∈ A holds f ′(x0) = 0.

(25) Suppose for all r1, r2 such that r1 ∈ ]p, g[ and r2 ∈ ]p, g[ holds |f(r1) −
f(r2)| ≤ (r1 − r2)

2 and p < g and ]p, g[ ⊆ dom f . Then f is differentiable
on ]p, g[ and f is a constant on ]p, g[.

(26) If ]−∞, r[ ⊆ dom f and for all r1, r2 such that r1 ∈ ]−∞, r[ and r2 ∈
]−∞, r[ holds |f(r1) − f(r2)| ≤ (r1 − r2)

2, then f is differentiable on
]−∞, r[ and f is a constant on ]−∞, r[.

(27) If ]r,+∞[ ⊆ dom f and for all r1, r2 such that r1 ∈ ]r,+∞[ and r2 ∈
]r,+∞[ holds |f(r1) − f(r2)| ≤ (r1 − r2)

2, then f is differentiable on
]r,+∞[ and f is a constant on ]r,+∞[.

(28) If f is total and for all r1, r2 holds |f(r1) − f(r2)| ≤ (r1 − r2)
2, then f

is differentiable on Ω  and f is a constant on Ω  .

(29) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds 0 < f ′(x0), then f is increasing on ]−∞, r[ and f

�
]−∞, r[ is one-

to-one.

(30) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds f ′(x0) < 0, then f is decreasing on ]−∞, r[ and f

�
]−∞, r[ is one-

to-one.

(31) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds 0 ≤ f ′(x0), then f is non-decreasing on ]−∞, r[.

(32) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds f ′(x0) ≤ 0, then f is non-increasing on ]−∞, r[.

(33) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[
holds 0 < f ′(x0), then f is increasing on ]r,+∞[ and f

�
]r,+∞[ is one-

to-one.

(34) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[
holds f ′(x0) < 0, then f is decreasing on ]r,+∞[ and f

�
]r,+∞[ is one-

to-one.

(35) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[



410 Jaros law Kotowicz and Konrad Raczkowski

holds 0 ≤ f ′(x0), then f is non-decreasing on ]r,+∞[.

(36) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[
holds f ′(x0) ≤ 0, then f is non-increasing on ]r,+∞[.

(37) If f is differentiable on Ω  and for every x0 holds 0 < f ′(x0), then f is
increasing on Ω  and f is one-to-one.

(38) If f is differentiable on Ω  and for every x0 holds f ′(x0) < 0, then f is
decreasing on Ω  and f is one-to-one.

(39) If f is differentiable on Ω  and for every x0 holds 0 ≤ f ′(x0), then f is
non-decreasing on Ω  .

(40) If f is differentiable on Ω  and for every x0 holds f ′(x0) ≤ 0, then f is
non-increasing on Ω  .

One can prove the following propositions:

(41) If f is differentiable on ]p, g[ but for every x0 such that x0 ∈ ]p, g[ holds
0 < f ′(x0) or for every x0 such that x0 ∈ ]p, g[ holds f ′(x0) < 0, then
rng(f

�
]p, g[) is open.

(42) If f is differentiable on ]−∞, p[ but for every x0 such that x0 ∈ ]−∞, p[
holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]−∞, p[ holds f ′(x0) < 0,
then rng(f

�
]−∞, p[) is open.

(43) If f is differentiable on ]p,+∞[ but for every x0 such that x0 ∈ ]p,+∞[
holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]p,+∞[ holds f ′(x0) < 0,
then rng(f

�
]p,+∞[) is open.

(44) If f is differentiable on Ω  but for every x0 holds 0 < f ′(x0) or for every
x0 holds f ′(x0) < 0, then rng f is open.

(45) Suppose f is differentiable on Ω  but for every x0 holds 0 < f ′(x0) or for
every x0 holds f ′(x0) < 0. Then f is one-to-one and f−1 is differentiable
on dom(f−1) and for every x0 such that x0 ∈ dom(f−1) holds (f−1)′(x0) =

1
f ′(f−1(x0)) .

(46) Suppose f is differentiable on ]−∞, p[ but for every x0 such that x0 ∈
]−∞, p[ holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]−∞, p[ holds
f ′(x0) < 0. Then f

�
]−∞, p[ is one-to-one and (f

�
]−∞, p[)−1 is dif-

ferentiable on dom((f
�
]−∞, p[)−1) and for every x0 such that x0 ∈

dom((f
�
]−∞, p[)−1) holds ((f

�
]−∞, p[)−1)′(x0) = 1

f ′((f
�
]−∞,p[)−1(x0)) .

(47) Suppose f is differentiable on ]p,+∞[ but for every x0 such that x0 ∈
]p,+∞[ holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]p,+∞[ holds
f ′(x0) < 0. Then f

�
]p,+∞[ is one-to-one and (f

�
]p,+∞[)−1 is dif-

ferentiable on dom((f
�
]p,+∞[)−1) and for every x0 such that x0 ∈

dom((f
�
]p,+∞[)−1) holds ((f

�
]p,+∞[)−1)′(x0) = 1

f ′((f
�
]p,+∞[)−1(x0)) .

(48) Suppose f is differentiable on ]p, g[ but for every x0 such that x0 ∈ ]p, g[
holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]p, g[ holds f ′(x0) < 0.
Then

(i) f
�
]p, g[ is one-to-one,

(ii) (f
�
]p, g[)−1 is differentiable on dom((f

�
]p, g[)−1),
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(iii) for every x0 such that x0 ∈ dom((f
�
]p, g[)−1) holds ((f

�
]p, g[)−1)′(x0) =

1
f ′((f

�
]p,g[)−1(x0))

.

(49) Suppose f is differentiable in x0. Given h, c. Suppose rng c = {x0} and
rng(h + c) ⊆ dom f and rng(−h + c) ⊆ dom f . Then (2h)−1(f · (c + h) −
f · (c−h)) is convergent and lim((2h)−1(f · (c+h)− f · (c−h))) = f ′(x0).
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