Metric-Affine Configurations in Metric Affine Planes - Part II

Jolanta Świerzyńska Bogdan Świerzyński
Warsaw University Warsaw University
Białystok
Białystok

Abstract

Summary. A continuation of [5]. We introduce more configurational axioms i.e. orthogonalizations of "scherungssatzes" (direct and indirect), "Scherungssatz" with orthogonal axes, Pappus axiom with orthogonal axes; we also consider the affine Major Pappus Axiom and affine minor Desargues Axiom. We prove a number of implications which hold between the above axioms.

MML Identifier: CONMETR.

The articles [2], [4], [1], [3], and [5] provide the notation and terminology for this paper. We adopt the following rules: X will denote a metric affine plane, $o, a, a_{1}, a_{2}, a_{3}, a_{4}, b, b_{1}, b_{2}, b_{3}, b_{4}, c, c_{1}, d$ will denote elements of the points of X, and A, K, M, N will denote subsets of the points of X. Let us consider X. We say that Pappos Axiom with orthogonal axes holds in X if and only if the condition (Def.1) is satisfied.
(Def.1) Given $o, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, M, N$. Suppose that
(i) $o \in M$,
(ii) $a_{1} \in M$,
(iii) $a_{2} \in M$,
(iv) $a_{3} \in M$,
(v) $o \in N$,
(vi) $b_{1} \in N$,
(vii) $b_{2} \in N$,
(viii) $b_{3} \in N$,
(ix) $b_{2} \notin M$,
(x) $a_{3} \notin N$,
(xi) $M \perp N$,
(xii) $o \neq a_{1}$,
(xiii) $\quad o \neq a_{2}$,
(xiv) $o \neq a_{3}$,
(xv) $o \neq b_{1}$,
(xvi) $\quad o \neq b_{2}$,
(xvii) $o \neq b_{3}$,
(xviii) $a_{3}, b_{2} \| a_{2}, b_{1}$,
(xix) $a_{3}, b_{3} \| a_{1}, b_{1}$.

Then $a_{1}, b_{2} \| a_{2}, b_{3}$.
Let us consider X. We say that Pappos Axiom holds in X if and only if the condition (Def.2) is satisfied.
(Def.2) Given $o, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, M, N$. Suppose that
(i) M is a line,
(ii) N is a line,
(iii) $o \in M$,
(iv) $a_{1} \in M$,
(v) $a_{2} \in M$,
(vi) $a_{3} \in M$,
(vii) $o \in N$,
(viii) $b_{1} \in N$,
(ix) $b_{2} \in N$,
(x) $\quad b_{3} \in N$,
(xi) $\quad b_{2} \notin M$,
(xii) $a_{3} \notin N$,
(xiii) $\quad o \neq a_{1}$,
(xiv) $\quad o \neq a_{2}$,
(xv) $o \neq a_{3}$,
(xvi) $\quad o \neq b_{1}$,
(xvii) $\quad o \neq b_{2}$,
(xviii) $\quad o \neq b_{3}$,
(xix) $a_{3}, b_{2} \| a_{2}, b_{1}$,
(xx) $a_{3}, b_{3} \| a_{1}, b_{1}$.

Then $a_{1}, b_{2} \| a_{2}, b_{3}$.
Let us consider X. We say that MH1 holds in X if and only if the condition (Def.3) is satisfied.
(Def.3) Given $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}, M, N$. Suppose that
(i) $M \perp N$,
(ii) $a_{1} \in M$,
(iii) $a_{3} \in M$,
(iv) $b_{1} \in M$,
(v) $b_{3} \in M$,
(vi) $a_{2} \in N$,
(vii) $a_{4} \in N$,
(viii) $b_{2} \in N$,
(ix) $b_{4} \in N$,
(x) $a_{2} \notin M$,
(xi) $a_{4} \notin M$,
(xii) $a_{1}, a_{2} \perp b_{1}, b_{2}$,
(xiii) $a_{2}, a_{3} \perp b_{2}, b_{3}$,
(xiv) $a_{3}, a_{4} \perp b_{3}, b_{4}$.

Then $a_{1}, a_{4} \perp b_{1}, b_{4}$.
Let us consider X. We say that MH2 holds in X if and only if the condition (Def.4) is satisfied.
(Def.4) Given $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}, M, N$. Suppose that
(i) $M \perp N$,
(ii) $a_{1} \in M$,
(iii) $a_{3} \in M$,
(iv) $b_{2} \in M$,
(v) $b_{4} \in M$,
(vi) $a_{2} \in N$,
(vii) $a_{4} \in N$,
(viii) $b_{1} \in N$,
(ix) $b_{3} \in N$,
(x) $a_{2} \notin M$,
(xi) $a_{4} \notin M$,
(xii) $a_{1}, a_{2} \perp b_{1}, b_{2}$,
(xiii) $a_{2}, a_{3} \perp b_{2}, b_{3}$,
(xiv) $a_{3}, a_{4} \perp b_{3}, b_{4}$.

Then $a_{1}, a_{4} \perp b_{1}, b_{4}$.
Let us consider X. We say that trapezium variant of Desargues Axiom holds in X if and only if the condition (Def.5) is satisfied.
(Def.5) Given $o, a, a_{1}, b, b_{1}, c, c_{1}$. Suppose that
(i) $o \neq a$,
(ii) $o \neq a_{1}$,
(iii) $o \neq b$,
(iv) $o \neq b_{1}$,
(v) $o \neq c$,
(vi) $o \neq c_{1}$,
(vii) $\operatorname{not} \mathbf{L}\left(b, b_{1}, a\right)$,
(viii) $\operatorname{not} \mathbf{L}\left(b, b_{1}, c\right)$,
(ix) $\mathbf{L}\left(o, a, a_{1}\right)$,
(x) $\mathbf{L}\left(o, b, b_{1}\right)$,
(xi) $\mathbf{L}\left(o, c, c_{1}\right)$,
(xii) $a, b \| a_{1}, b_{1}$,
(xiii) $a, b \| o, c$,
(xiv) $\quad b, c \| b_{1}, c_{1}$.

Then $a, c \| a_{1}, c_{1}$.

Let us consider X. We say that Scherungssatz holds in X if and only if the condition (Def.6) is satisfied.
(Def.6) Given $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}, M, N$. Suppose that
(i) $\quad M$ is a line,
(ii) N is a line,
(iii) $a_{1} \in M$,
(iv) $a_{3} \in M$,
(v) $b_{1} \in M$,
(vi) $b_{3} \in M$,
(vii) $a_{2} \in N$,
(viii) $a_{4} \in N$,
(ix) $b_{2} \in N$,
(x) $\quad b_{4} \in N$,
(xi) $\quad a_{4} \notin M$,
(xii) $a_{2} \notin M$,
(xiii) $b_{2} \notin M$,
(xiv) $b_{4} \notin M$,
(xv) $a_{1} \notin N$,
(xvi) $a_{3} \notin N$,
(xvii) $\quad b_{1} \notin N$,
(xviii) $\quad b_{3} \notin N$,
(xix) $\quad a_{3}, a_{2} \| b_{3}, b_{2}$,
(xx) $a_{2}, a_{1} \| b_{2}, b_{1}$,
(xxi) $a_{1}, a_{4} \| b_{1}, b_{4}$.

Then $a_{3}, a_{4} \| b_{3}, b_{4}$.
Let us consider X. We say that Scherungssatz with orthogonal axes holds in X if and only if the condition (Def.7) is satisfied.
(Def.7) Given $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}, M, N$. Suppose that
(i) $M \perp N$,
(ii) $a_{1} \in M$,
(iii) $a_{3} \in M$,
(iv) $b_{1} \in M$,
(v) $b_{3} \in M$,
(vi) $a_{2} \in N$,
(vii) $a_{4} \in N$,
(viii) $b_{2} \in N$,
(ix) $b_{4} \in N$,
(x) $a_{4} \notin M$,
(xi) $a_{2} \notin M$,
(xii) $b_{2} \notin M$,
(xiii) $\quad b_{4} \notin M$,
(xiv) $a_{1} \notin N$,
(xv) $a_{3} \notin N$,
(xvi) $\quad b_{1} \notin N$,

$$
\begin{aligned}
\text { (xvii) } & b_{3} \notin N, \\
\text { (xviii) } & a_{3}, a_{2} \| b_{3}, b_{2}, \\
\text { (xix) } & a_{2}, a_{1} \| b_{2}, b_{1}, \\
\text { (xx) } & a_{1}, a_{4} \| b_{1}, b_{4} .
\end{aligned}
$$

Then $a_{3}, a_{4} \| b_{3}, b_{4}$.
Let us consider X. We say that minor Desargues Axiom holds in X if and only if:
(Def.8) for all $a, a_{1}, b, b_{1}, c, c_{1}$ such that not $\mathbf{L}\left(a, a_{1}, b\right)$ and $\operatorname{not} \mathbf{L}\left(a, a_{1}, c\right)$ and $a, a_{1} \| b, b_{1}$ and $a, a_{1} \| c, c_{1}$ and $a, b \| a_{1}, b_{1}$ and $a, c \| a_{1}, c_{1}$ holds $b, c \| b_{1}, c_{1}$.

One can prove the following propositions:
(1) There exist a, b, c such that $\mathbf{L}(a, b, c)$ and $a \neq b$ and $b \neq c$ and $c \neq a$.
(2) For all a, b such that $a \neq b$ there exists c such that $\mathbf{L}(a, b, c)$ and $a \neq c$ and $b \neq c$.
(3) For all A, a such that A is a line there exists K such that $a \in K$ and $A \perp K$.
(4) If A is a line and $a \in A$ and $b \in A$ and $c \in A$, then $\mathbf{L}(a, b, c)$.
(5) If A is a line and M is a line and $a \in A$ and $b \in A$ and $a \in M$ and $b \in M$, then $a=b$ or $A=M$.
(6) For all a, b, c, d, M and for every subset M^{\prime} of the points of the affine reduct of X
and for all elements c^{\prime}, d^{\prime} of the points of the affine reduct of X such that $c=c^{\prime}$ and $d=d^{\prime}$ and $M=M^{\prime}$ and $a \in M$ and $b \in M$ and $c^{\prime}, d^{\prime} \| M^{\prime}$ holds $c, d \| a, b$.
(7) If trapezium variant of Desargues Axiom holds in X, then the affine reduct of X satisfies TDES.
(8) If the affine reduct of X satisfies des, then minor Desargues Axiom holds in X.
(9) If MH1 holds in X, then Scherungssatz with orthogonal axes holds in X.
(10) If MH2 holds in X, then Scherungssatz with orthogonal axes holds in X.
(11) If AH holds in X, then trapezium variant of Desargues Axiom holds in X.
(12) If Scherungssatz with orthogonal axes holds in X and trapezium variant of Desargues Axiom holds in X, then Scherungssatz holds in X.
(13) If Pappos Axiom with orthogonal axes holds in X and Desargues Axiom holds in X, then Pappos Axiom holds in X.
(14) If MH1 holds in X and MH2 holds in X, then Pappos Axiom with orthogonal axes holds in X.
(15) If theorem on three perpendiculars holds in X, then Pappos Axiom with orthogonal axes holds in X.

References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical metric affine spaces and planes. Formalized Mathematics, 1(5):891-899, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Classical configurations in affine planes. Formalized Mathematics, 1(4):625-633, 1990.
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity - part I. Formalized Mathematics, 1(3):611-615, 1990.
[5] Jolanta Świerzyńska and Bogdan Świerzyński. Metric-affine configurations in metric affine planes - Part I. Formalized Mathematics, 2(3):331-334, 1991.

Received October 31, 1990

