A Projective Closure and Projective Horizon of an Affine Space

Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. With every affine space A we correlate two incidence structures. The first, called Inc-ProjSp(A), is the usual projective closure of A, i.e. the structure obtained from A by adding directions of lines and planes of A. The second, called projective horizon of A, is the structure build from directions. We prove that Inc-ProjSp(A) is always a projective space, and projective horizon of A is a projective space provided A is at least 3-dimensional. Some evident relationships between projective and affine configurational axioms that may hold in A and in Inc-ProjSp(A) are established.

MML Identifier: AFPROJ.

The notation and terminology used in this paper have been introduced in the following articles: [9], [11], [12], [8], [6], [13], [10], [3], [4], [5], [1], [7], and [2]. We adopt the following rules: A_1 will denote an affine space, A, K, M, X, Y will denote subsets of the points of A_1 , and x, y will be arbitrary. Next we state several propositions:

- (1) If A_1 is an affine plane and X = the points of A_1 , then X is a plane.
- (2) If A_1 is an affine plane and X is a plane, then X = the points of A_1 .
- (3) If A_1 is an affine plane and X is a plane and Y is a plane, then X = Y.
- (4) If X = the points of A_1 and X is a plane, then A_1 is an affine plane.
- (5) If $A \not\models K$ and $A \mid\mid X$ and $A \mid\mid Y$ and $K \mid\mid X$ and $K \mid\mid Y$ and A is a line and K is a line and X is a plane and Y is a plane, then $X \mid\mid Y$.
- (6) If A is a line and X is a plane and Y is a plane and A||X and X||Y, then A||Y.

Let D be a non-empty set, and let X be a set. Then $D \cup X$ is a non-empty set.

Let us consider A_1 . The lines of A_1 yields a family of subsets of the points of A_1 and is defined as follows:

377

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 (Def.1) the lines of $A_1 = \{A : A \text{ is a line }\}.$

Let us consider A_1 . The planes of A_1 yielding a family of subsets of the points of A_1 is defined as follows:

(Def.2) the planes of $A_1 = \{A : A \text{ is a plane }\}.$

The following two propositions are true:

- (7) For every x holds $x \in$ the lines of A_1 if and only if there exists X such that x = X and X is a line.
- (8) For every x holds $x \in$ the planes of A_1 if and only if there exists X such that x = X and X is a plane.

Let us consider A_1 . The parallelity of lines of A_1 yields an equivalence relation of the lines of A_1 and is defined by:

(Def.3) the parallelity of lines of $A_1 = \{\langle K, M \rangle : K \text{ is a line } \land M \text{ is a line } \land K || M \}.$

Let us consider A_1 . The parallelity of planes of A_1 yielding an equivalence relation of the planes of A_1 is defined as follows:

(Def.4) the parallelity of planes of $A_1 = \{\langle X, Y \rangle : X \text{ is a plane } \land Y \text{ is a plane } \land X || Y \}.$

Let us consider A_1 , X. Let us assume that X is a line. The direction of X yields a subset of the lines of A_1 and is defined by:

(Def.5) the direction of $X = [X]_{\text{the parallelity of lines of } A_1}$.

Let us consider A_1 , X. Let us assume that X is a plane. The direction of X yielding a subset of the planes of A_1 is defined as follows:

(Def.6) the direction of $X = [X]_{\text{the parallelity of planes of } A_1}$.

Next we state several propositions:

- (9) If X is a line, then for every x holds $x \in$ the direction of X if and only if there exists Y such that x = Y and Y is a line and X || Y.
- (10) If X is a plane, then for every x holds $x \in$ the direction of X if and only if there exists Y such that x = Y and Y is a plane and X||Y.
- (11) If X is a line and Y is a line, then the direction of X = the direction of Y if and only if $X \parallel Y$.
- (12) If X is a line and Y is a line, then the direction of X = the direction of Y if and only if X||Y.
- (13) If X is a plane and Y is a plane, then the direction of X = the direction of Y if and only if X||Y.

Let us consider A_1 . The directions of lines of A_1 yields a non-empty set and is defined as follows:

(Def.7) the directions of lines of A_1 = Classes(the parallelity of lines of A_1).

Let us consider A_1 . The directions of planes of A_1 yielding a non-empty set is defined by: (Def.8) the directions of planes of $A_1 =$ Classes(the parallelity of planes of A_1).

One can prove the following propositions:

- (14) For every x holds $x \in$ the directions of lines of A_1 if and only if there exists X such that x = the direction of X and X is a line.
- (15) For every x holds $x \in$ the directions of planes of A_1 if and only if there exists X such that x = the direction of X and X is a plane.
- (16) (the points of A_1) \cap the directions of lines of $A_1 = \emptyset$.
- (17) If A_1 is an affine plane, then (the lines of A_1) \cap the directions of planes of $A_1 = \emptyset$.
- (18) For every x holds $x \in [$ the lines of $A_1, \{1\}]$ if and only if there exists X such that $x = \langle X, 1 \rangle$ and X is a line.
- (19) For every x holds $x \in [$ the directions of planes of $A_1, \{2\}$] if and only if there exists X such that $x = \langle$ the direction of $X, 2 \rangle$ and X is a plane.

Let us consider A_1 . The projective points over A_1 yielding a non-empty set is defined as follows:

(Def.9) the projective points over A_1 = (the points of A_1) \cup the directions of lines of A_1 .

Let us consider A_1 . The functor $L(A_1)$ yielding a non-empty set is defined as follows:

(Def.10) $L(A_1) = [$ the lines of $A_1, \{1\}] \cup [$ the directions of planes of $A_1, \{2\}].$

Let us consider A_1 . The functor I_{A_1} yielding a relation between the projective points over A_1 and $L(A_1)$ is defined by the condition (Def.11).

(Def.11) Given x, y. Then $\langle x, y \rangle \in \mathbf{I}_{A_1}$ if and only if there exists K such that K is a line and $y = \langle K, 1 \rangle$ but $x \in$ the points of A_1 and $x \in K$ or x = the direction of K or there exist K, X such that K is a line and X is a plane and x = the direction of K and $y = \langle$ the direction of $X, 2 \rangle$ and K || X.

Let us consider A_1 . The incidence of directions of A_1 yields a relation between the directions of lines of A_1 and the directions of planes of A_1 and is defined as follows:

(Def.12) for all x, y holds $\langle x, y \rangle \in$ the incidence of directions of A_1 if and only if there exist A, X such that x = the direction of A and y = the direction of X and A is a line and X is a plane and A || X.

Let us consider A_1 . The functor Inc-ProjSp (A_1) yielding a projective incidence structure is defined as follows:

(Def.13) Inc-ProjSp $(A_1) = \langle \text{the projective points over } A_1, L(A_1), \mathbf{I}_{A_1} \rangle.$

Let us consider A_1 . The projective horizon of A_1 yielding a projective incidence structure is defined as follows:

(Def.14) the projective horizon of $A_1 = \langle \text{the directions of lines of } A_1, \\ \text{the directions of planes of } A_1, \text{the incidence of directions of } A_1 \rangle.$

We now state several propositions:

- (20) For every x holds x is an element of the points of Inc-ProjSp (A_1) if and only if x is an element of the points of A_1 or there exists X such that x = the direction of X and X is a line.
- (21) x is an element of the points of the projective horizon of A_1 if and only if there exists X such that x = the direction of X and X is a line.
- (22) If x is an element of the points of the projective horizon of A_1 , then x is an element of the points of Inc-ProjSp (A_1) .
- (23) For every x holds x is an element of the lines of Inc-ProjSp (A_1) if and only if there exists X such that $x = \langle X, 1 \rangle$ and X is a line or $x = \langle$ the direction of $X, 2 \rangle$ and X is a plane.
- (24) x is an element of the lines of the projective horizon of A_1 if and only if there exists X such that x = the direction of X and X is a plane.
- (25) If x is an element of the lines of the projective horizon of A_1 , then $\langle x, 2 \rangle$ is an element of the lines of Inc-ProjSp (A_1) .

For simplicity we adopt the following rules: x will denote an element of the points of A_1 , X, Y, X' will denote subsets of the points of A_1 , a, p, q will denote elements of the points of Inc-ProjSp (A_1) , and A will denote an element of the lines of Inc-ProjSp (A_1) . We now state a number of propositions:

- (26) If x = a and $\langle X, 1 \rangle = A$, then $a \mid A$ if and only if X is a line and $x \in X$.
- (27) If x = a and \langle the direction of $X, 2 \rangle = A$ and X is a plane, then $a \nmid A$.
- (28) If a = the direction of Y and $\langle X, 1 \rangle = A$ and Y is a line and X is a line, then $a \mid A$ if and only if $Y \mid \mid X$.
- (29) If a = the direction of Y and $A = \langle$ the direction of X, 2 \rangle and Y is a line and X is a plane, then $a \mid A$ if and only if $Y \mid |X$.
- (30) If X is a line and a = the direction of X and $A = \langle X, 1 \rangle$, then $a \mid A$.
- (31) If X is a line and Y is a plane and $X \subseteq Y$ and a = the direction of X and $A = \langle$ the direction of $Y, 2 \rangle$, then $a \mid A$.
- (32) If Y is a plane and $X \subseteq Y$ and $X' \parallel X$ and a = the direction of X' and $A = \langle$ the direction of $Y, 2 \rangle$, then $a \mid A$.
- (33) If $A = \langle$ the direction of $X, 2 \rangle$ and X is a plane and $a \mid A$, then a is not an element of the points of A_1 .
- (34) If $A = \langle X, 1 \rangle$ and X is a line and $p \mid A$ and p is not an element of the points of A_1 , then p = the direction of X.
- (35) If $A = \langle X, 1 \rangle$ and X is a line and $p \mid A$ and $a \mid A$ and $a \neq p$ and p is not an element of the points of A_1 , then a is an element of the points of A_1 .
- (36) For every element a of the points of the projective horizon of A_1 and for every element A of the lines of the projective horizon of A_1 such that a = the direction of X and A = the direction of Y and X is a line and Yis a plane holds $a \mid A$ if and only if $X \mid \mid Y$.

(37) For every element a of the points of the projective horizon of A_1 and for every element a' of the points of Inc-ProjSp (A_1) and for every element A of the lines of the projective horizon of A_1 and for every element A' of the lines of Inc-ProjSp (A_1) such that a' = a and $A' = \langle A, 2 \rangle$ holds $a \mid A$ if and only if $a' \mid A'$.

In the sequel P, Q denote elements of the lines of Inc-ProjSp (A_1) . We now state several propositions:

- (38) For all elements a, b of the points of the projective horizon of A_1 and for all elements A, K of the lines of the projective horizon of A_1 such that $a \mid A$ and $a \mid K$ and $b \mid A$ and $b \mid K$ holds a = b or A = K.
- (39) For every element A of the lines of the projective horizon of A_1 there exist elements a, b, c of the points of the projective horizon of A_1 such that $a \mid A$ and $b \mid A$ and $c \mid A$ and $a \neq b$ and $b \neq c$ and $c \neq a$.
- (40) For every elements a, b of the points of the projective horizon of A_1 there exists an element A of the lines of the projective horizon of A_1 such that $a \mid A$ and $b \mid A$.
- (41) For all elements x, y of the points of the projective horizon of A_1 and for every element X of the lines of Inc-ProjSp (A_1) such that $x \neq y$ and $\langle x, X \rangle \in$ the incidence of Inc-ProjSp (A_1) and $\langle y, X \rangle \in$ the incidence of Inc-ProjSp (A_1) there exists an element Y of the lines of the projective horizon of A_1 such that $X = \langle Y, 2 \rangle$.
- (42) For every element x of the points of Inc-ProjSp (A_1) and for every element X of the lines of the projective horizon of A_1 such that $\langle x, \langle X, 2 \rangle \rangle \in$ the incidence of Inc-ProjSp (A_1) holds x is an element of the points of the projective horizon of A_1 .
- (43) If Y is a plane and X is a line and X' is a line and $X \subseteq Y$ and $X' \subseteq Y$ and $P = \langle X, 1 \rangle$ and $Q = \langle X', 1 \rangle$, then there exists q such that $q \mid P$ and $q \mid Q$.
- (44) Let a, b, c, d, p be elements of the points of the projective horizon of A_1 . Let M, N, P, Q be elements of the lines of the projective horizon of A_1 . Suppose that
 - (i) $a \mid M$,
 - (ii) $b \mid M$,
 - (iii) $c \mid N$,
 - (iv) $d \mid N$,
 - $(\mathbf{v}) \quad p \mid M,$
- (vi) $p \mid N$,
- (vii) $a \mid P$,
- (viii) $c \mid P$,
- (ix) $b \mid Q$,
- $(\mathbf{x}) \quad d \mid Q,$
- (xi) $p \nmid P$,
- (xii) $p \nmid Q$,

(xiii) $M \neq N$.

Then there exists an element q of the points of the projective horizon of A_1 such that $q \mid P$ and $q \mid Q$.

Let us consider A_1 . Then Inc-ProjSp (A_1) is a projective space defined in terms of incidence.

Let A_1 be an affine plane. Then Inc-ProjSp (A_1) is a 2-dimensional projective space defined in terms of incidence.

The following propositions are true:

- (45) If Inc-ProjSp (A_1) is 2-dimensional, then A_1 is an affine plane.
- (46) If A_1 is not an affine plane, then the projective horizon of A_1 is a projective space defined in terms of incidence.
- (47) If the projective horizon of A_1 is a projective space defined in terms of incidence, then A_1 is not an affine plane.
- (48) Let M, N be subsets of the points of A_1 . Let o, a, b, c, a', b', c' be elements of the points of A_1 . Suppose that
 - (i) M is a line,
 - (ii) N is a line,
- (iii) $M \neq N$,
- (iv) $o \in M$,
- $(\mathbf{v}) \quad o \in N,$
- (vi) $o \neq a$,
- (vii) $o \neq a'$,
- (viii) $o \neq b$,
- (ix) $o \neq b'$,
- (x) $o \neq c$,
- (xi) $o \neq c'$,
- (xii) $a \in M$,
- (xiii) $b \in M$,
- $(\mathrm{xiv}) \quad c \in M,$
- $(\mathbf{x}\mathbf{v}) \quad a' \in N,$
- (xvi) $b' \in N$,
- (xvii) $c' \in N$,
- $(xviii) \quad a, b' \parallel b, a',$
- $(\mathbf{xix}) \quad b, c' \parallel c, b',$
- (xx) a = b or b = c or a = c. Then $a, c' \parallel c, a'$.
- (49) If Inc-ProjSp (A_1) is Pappian, then A_1 is Pappian.
- (50) Let A, P, C be subsets of the points of A_1 . Let o, a, b, c, a', b', c' be elements of the points of A_1 . Suppose that
 - (i) $o \in A$,
 - (ii) $o \in P$,
 - (iii) $o \in C$,
 - (iv) $o \neq a$,

- (v) $o \neq b$,
- (vi) $o \neq c$,
- (vii) $a \in A$,
- (viii) $a' \in A$,
- (ix) $b \in P$,
- $(\mathbf{x}) \quad b' \in P,$
- $(\mathrm{xi}) \quad c \in C,$
- (xii) $c' \in C$,
- (xiii) A is a line,
- (xiv) P is a line,
- (xv) C is a line,
- (xvi) $A \neq P$,
- (xvii) $A \neq C$,
- (xviii) $a, b \parallel a', b',$
- $(\mathbf{xix}) \quad a, c \parallel a', c',$
- $(\mathbf{x}\mathbf{x}) \quad o = a' \text{ or } a = a'.$

Then $b, c \parallel b', c'$.

- (51) If Inc-ProjSp (A_1) is Desarguesian, then A_1 is Desarguesian.
- (52) If Inc-ProjSp (A_1) is Fanoian, then A_1 is Fanoian.

References

- [1] Wojciech Leończuk, Henryk Oryszczyszyn, and Krzysztof Prażmowski. Planes in affine spaces. *Formalized Mathematics*, 2(3):357–363, 1991.
- Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225–232, 1991.
- Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601–605, 1990.
- Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity - part I. Formalized Mathematics, 1(3):611–615, 1990.
- [5] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617–621, 1990.
- [6] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- Krzysztof Prażmowski. Fanoian, Pappian and Desarguesian affine spaces. Formalized Mathematics, 2(3):341–346, 1991.
- [8] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

[13] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received December 17, 1990