A Projective Closure and Projective Horizon of an Affine Space

Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Summary. With every affine space A we correlate two incidence structures. The first, called $\operatorname{Inc}-\operatorname{ProjSp}(A)$, is the usual projective closure of A, i.e. the structure obtained from A by adding directions of lines and planes of A. The second, called projective horizon of A, is the structure build from directions. We prove that $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}(A)$ is always a projective space, and projective horizon of A is a projective space provided A is at least 3 -dimensional. Some evident relationships between projective and affine configurational axioms that may hold in A and in $\operatorname{Inc-ProjSp}(A)$ are established.

MML Identifier: AFPROJ.

The notation and terminology used in this paper have been introduced in the following articles: [9], [11], [12], [8], [6], [13], [10], [3], [4], [5], [1], [7], and [2]. We adopt the following rules: A_{1} will denote an affine space, A, K, M, X, Y will denote subsets of the points of A_{1}, and x, y will be arbitrary. Next we state several propositions:
(1) If A_{1} is an affine plane and $X=$ the points of A_{1}, then X is a plane.
(2) If A_{1} is an affine plane and X is a plane, then $X=$ the points of A_{1}.
(3) If A_{1} is an affine plane and X is a plane and Y is a plane, then $X=Y$.
(4) If $X=$ the points of A_{1} and X is a plane, then A_{1} is an affine plane.
(5) If $A \nVdash K$ and $A \| X$ and $A \| Y$ and $K \| X$ and $K \| Y$ and A is a line and K is a line and X is a plane and Y is a plane, then $X \| Y$.
(6) If A is a line and X is a plane and Y is a plane and $A \| X$ and $X \| Y$, then $A \| Y$.
Let D be a non-empty set, and let X be a set. Then $D \cup X$ is a non-empty set.

Let us consider A_{1}. The lines of A_{1} yields a family of subsets of the points of A_{1} and is defined as follows:
(Def.1) the lines of $A_{1}=\{A: A$ is a line $\}$.
Let us consider A_{1}. The planes of A_{1} yielding a family of subsets of the points of A_{1} is defined as follows:
(Def.2) the planes of $A_{1}=\{A: A$ is a plane $\}$.
The following two propositions are true:
(7) For every x holds $x \in$ the lines of A_{1} if and only if there exists X such that $x=X$ and X is a line.
(8) For every x holds $x \in$ the planes of A_{1} if and only if there exists X such that $x=X$ and X is a plane.
Let us consider A_{1}. The parallelity of lines of A_{1} yields an equivalence relation of the lines of A_{1} and is defined by:
(Def.3) the parallelity of lines of $A_{1}=\{\langle K, M\rangle: K$ is a line $\wedge M$ is a line $\wedge K|\mid M\}$.
Let us consider A_{1}. The parallelity of planes of A_{1} yielding an equivalence relation of the planes of A_{1} is defined as follows:
(Def.4) the parallelity of planes of $A_{1}=\{\langle X, Y\rangle: X$ is a plane $\wedge Y$ is a plane $\wedge X \| Y\}$.
Let us consider A_{1}, X. Let us assume that X is a line. The direction of X yields a subset of the lines of A_{1} and is defined by:
(Def.5) the direction of $X=[X]_{\text {the parallelity of lines of } A_{1}}$.
Let us consider A_{1}, X. Let us assume that X is a plane. The direction of X yielding a subset of the planes of A_{1} is defined as follows:
(Def.6) the direction of $X=[X]_{\text {the parallelity of planes of } A_{1}}$.
Next we state several propositions:
(9) If X is a line, then for every x holds $x \in$ the direction of X if and only if there exists Y such that $x=Y$ and Y is a line and $X \| Y$.
(10) If X is a plane, then for every x holds $x \in$ the direction of X if and only if there exists Y such that $x=Y$ and Y is a plane and $X \| Y$.
(11) If X is a line and Y is a line, then the direction of $X=$ the direction of Y if and only if $X \| Y$.
(12) If X is a line and Y is a line, then the direction of $X=$ the direction of Y if and only if $X \| Y$.
(13) If X is a plane and Y is a plane, then
the direction of $X=$ the direction of Y
if and only if $X \| Y$.
Let us consider A_{1}. The directions of lines of A_{1} yields a non-empty set and is defined as follows:
(Def.7) the directions of lines of $A_{1}=$ Classes(the parallelity of lines of A_{1}).
Let us consider A_{1}. The directions of planes of A_{1} yielding a non-empty set is defined by:
(Def.8) the directions of planes of $A_{1}=$ Classes(the parallelity of planes of A_{1}).
One can prove the following propositions:
(14) For every x holds $x \in$ the directions of lines of A_{1} if and only if there exists X such that $x=$ the direction of X and X is a line.
(15) For every x holds $x \in$ the directions of planes of A_{1} if and only if there exists X such that $x=$ the direction of X and X is a plane.
(16) (the points of $\left.A_{1}\right) \cap$ the directions of lines of $A_{1}=\emptyset$.

If A_{1} is an affine plane, then
(the lines of A_{1}) \cap the directions of planes of $A_{1}=\emptyset$.
(18) For every x holds $x \in$: the lines of $A_{1},\{1\}:$ if and only if there exists X such that $x=\langle X, 1\rangle$ and X is a line.
(19) For every x holds $x \in\left\{\right.$ the directions of planes of $A_{1},\{2\}:$ if and only if there exists X such that $x=\langle$ the direction of $X, 2\rangle$ and X is a plane.
Let us consider A_{1}. The projective points over A_{1} yielding a non-empty set is defined as follows:
(Def.9) the projective points over $A_{1}=$ (the points of $\left.A_{1}\right) \cup$ the directions of lines of A_{1}.
Let us consider A_{1}. The functor $L\left(A_{1}\right)$ yielding a non-empty set is defined as follows:
(Def.10) $L\left(A_{1}\right)=$: the lines of $\left.A_{1},\{1\}:\right] \cup$: the directions of planes of $\left.A_{1},\{2\}:\right]$.
Let us consider A_{1}. The functor $\mathbf{I}_{A_{1}}$ yielding a relation between the projective points over A_{1} and $L\left(A_{1}\right)$ is defined by the condition (Def.11).
(Def.11) Given x, y. Then $\langle x, y\rangle \in \mathbf{I}_{A_{1}}$ if and only if there exists K such that K is a line and $y=\langle K, 1\rangle$ but $x \in$ the points of A_{1} and $x \in K$ or $x=$ the direction of K or there exist K, X such that K is a line and X is a plane and $x=$ the direction of K and $y=\langle$ the direction of $X, 2\rangle$ and $K|\mid X$.
Let us consider A_{1}. The incidence of directions of A_{1} yields a relation between the directions of lines of A_{1} and the directions of planes of A_{1} and is defined as follows:
(Def.12) for all x, y holds $\langle x, y\rangle \in$ the incidence of directions of A_{1} if and only if there exist A, X such that $x=$ the direction of A and $y=$ the direction of X and A is a line and X is a plane and $A \| X$.

Let us consider A_{1}. The functor $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$ yielding a projective incidence structure is defined as follows:
(Def.13) $\operatorname{Inc-ProjSp}\left(A_{1}\right)=\left\langle\right.$ the projective points over $\left.A_{1}, L\left(A_{1}\right), \mathbf{I}_{A_{1}}\right\rangle$.
Let us consider A_{1}. The projective horizon of A_{1} yielding a projective incidence structure is defined as follows:
(Def.14) the projective horizon of $A_{1}=\left\langle\right.$ the directions of lines of A_{1}, the directions of planes of A_{1}, the incidence of directions of $\left.A_{1}\right\rangle$.

We now state several propositions:
(20) For every x holds x is an element of the points of $\operatorname{Inc}-\operatorname{ProjSp}\left(A_{1}\right)$ if and only if x is an element of the points of A_{1} or there exists X such that $x=$ the direction of X and X is a line.
(21) x is an element of the points of the projective horizon of A_{1} if and only if there exists X such that $x=$ the direction of X and X is a line.
(22) If x is an element of the points of the projective horizon of A_{1}, then x is an element of the points of $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$.
(23) For every x holds x is an element of the lines of $\operatorname{Inc}-\operatorname{ProjSp}\left(A_{1}\right)$ if and only if there exists X such that $x=\langle X, 1\rangle$ and X is a line or $x=$ \langle the direction of $X, 2\rangle$ and X is a plane.
(24) x is an element of the lines of the projective horizon of A_{1} if and only if there exists X such that $x=$ the direction of X and X is a plane.
(25) If x is an element of the lines of the projective horizon of A_{1}, then $\langle x, 2\rangle$ is an element of the lines of $\operatorname{Inc}-\operatorname{ProjSp}\left(A_{1}\right)$.
For simplicity we adopt the following rules: x will denote an element of the points of A_{1}, X, Y, X^{\prime} will denote subsets of the points of A_{1}, a, p, q will denote elements of the points of $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$, and A will denote an element of the lines of $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$. We now state a number of propositions:
(26) If $x=a$ and $\langle X, 1\rangle=A$, then $a \mid A$ if and only if X is a line and $x \in X$.

If $x=a$ and \langle the direction of $X, 2\rangle=A$ and X is a plane, then $a \nmid A$.
If $a=$ the direction of Y and $\langle X, 1\rangle=A$ and Y is a line and X is a line, then $a \mid A$ if and only if $Y \| X$.
(29) If $a=$ the direction of Y and $A=\langle$ the direction of $X, 2\rangle$ and Y is a line and X is a plane, then $a \mid A$ if and only if $Y|\mid X$.
(30) If X is a line and $a=$ the direction of X and $A=\langle X, 1\rangle$, then $a \mid A$.
(31) If X is a line and Y is a plane and $X \subseteq Y$ and $a=$ the direction of X and $A=\langle$ the direction of $Y, 2\rangle$, then $a \mid A$.
(32) If Y is a plane and $X \subseteq Y$ and $X^{\prime} \| X$ and $a=$ the direction of X^{\prime} and $A=\langle$ the direction of $Y, 2\rangle$, then $a \mid A$.
(33) If $A=\langle$ the direction of $X, 2\rangle$ and X is a plane and $a \mid A$, then a is not an element of the points of A_{1}.
(34) If $A=\langle X, 1\rangle$ and X is a line and $p \mid A$ and p is not an element of the points of A_{1}, then $p=$ the direction of X.
(35) If $A=\langle X, 1\rangle$ and X is a line and $p \mid A$ and $a \mid A$ and $a \neq p$ and p is not an element of the points of A_{1}, then a is an element of the points of A_{1}.
For every element a of the points of the projective horizon of A_{1} and for every element A of the lines of the projective horizon of A_{1} such that $a=$ the direction of X and $A=$ the direction of Y and X is a line and Y is a plane holds $a \mid A$ if and only if $X \| Y$.
(37) For every element a of the points of the projective horizon of A_{1} and for every element a^{\prime} of the points of $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$ and for every element A of the lines of the projective horizon of A_{1} and for every element A^{\prime} of the lines of $\operatorname{Inc-Proj\operatorname {Sp}}\left(A_{1}\right)$ such that $a^{\prime}=a$ and $A^{\prime}=\langle A, 2\rangle$ holds $a \mid A$ if and only if $a^{\prime} \mid A^{\prime}$.
In the sequel P, Q denote elements of the lines of $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$. We now state several propositions:
(38) For all elements a, b of the points of the projective horizon of A_{1} and for all elements A, K of the lines of the projective horizon of A_{1} such that $a \mid A$ and $a \mid K$ and $b \mid A$ and $b \mid K$ holds $a=b$ or $A=K$.
(39) For every element A of the lines of the projective horizon of A_{1} there exist elements a, b, c of the points of the projective horizon of A_{1} such that $a \mid A$ and $b \mid A$ and $c \mid A$ and $a \neq b$ and $b \neq c$ and $c \neq a$.
(40) For every elements a, b of the points of the projective horizon of A_{1} there exists an element A of the lines of the projective horizon of A_{1} such that $a \mid A$ and $b \mid A$.
(41) For all elements x, y of the points of the projective horizon of A_{1} and for every element X of the lines of $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$ such that $x \neq y$ and $\langle x, X\rangle \in$ the incidence of $\operatorname{Inc}-\operatorname{ProjSp}\left(A_{1}\right)$ and $\langle y, X\rangle \in$ the incidence of $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$ there exists an element Y of the lines of the projective horizon of A_{1} such that $X=\langle Y, 2\rangle$.
(42) For every element x of the points of $\operatorname{Inc}-\operatorname{ProjSp}\left(A_{1}\right)$ and for every element X of the lines of the projective horizon of A_{1} such that $\langle x,\langle X, 2\rangle\rangle \in$ the incidence of $\operatorname{Inc-Proj\operatorname {Sp}(A_{1})\text {holds}x\text {isanelementofthepointsofthe}}$ projective horizon of A_{1}.
(43) If Y is a plane and X is a line and X^{\prime} is a line and $X \subseteq Y$ and $X^{\prime} \subseteq Y$ and $P=\langle X, 1\rangle$ and $Q=\left\langle X^{\prime}, 1\right\rangle$, then there exists q such that $q \mid P$ and $q \mid Q$.
(44) Let a, b, c, d, p be elements of the points of the projective horizon of A_{1}. Let M, N, P, Q be elements of the lines of the projective horizon of A_{1}. Suppose that
(i) $a \mid M$,
(ii) $b \mid M$,
(iii) $c \mid N$,
(iv) $d \mid N$,
(v) $p \mid M$,
(vi) $p \mid N$,
(vii) $a \mid P$,
(viii) $c \mid P$,
(ix) $b \mid Q$,
(x) $d \mid Q$,
(xi) $p \nmid P$,
(xii) $p \nmid Q$,
(xiii) $M \neq N$.

Then there exists an element q of the points of the projective horizon of A_{1} such that $q \mid P$ and $q \mid Q$.
Let us consider A_{1}. Then $\operatorname{Inc-} \operatorname{ProjSp}\left(A_{1}\right)$ is a projective space defined in terms of incidence.

Let A_{1} be an affine plane. Then $\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)$ is a 2 -dimensional projective space defined in terms of incidence.

The following propositions are true:
(45) If $\operatorname{Inc}-\operatorname{ProjSp}\left(A_{1}\right)$ is 2-dimensional, then A_{1} is an affine plane.
(46) If A_{1} is not an affine plane, then the projective horizon of A_{1} is a projective space defined in terms of incidence.
(47) If the projective horizon of A_{1} is a projective space defined in terms of incidence, then A_{1} is not an affine plane.
(48) Let M, N be subsets of the points of A_{1}. Let $o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ be elements of the points of A_{1}. Suppose that
(i) $\quad M$ is a line,
(ii) N is a line,
(iii) $M \neq N$,
(iv) $o \in M$,
(v) $o \in N$,
(vi) $o \neq a$,
(vii) $o \neq a^{\prime}$,
(viii) $o \neq b$,
(ix) $o \neq b^{\prime}$,
(x) $o \neq c$,
(xi) $\quad o \neq c^{\prime}$,
(xii) $a \in M$,
(xiii) $b \in M$,
(xiv) $c \in M$,
(xv) $a^{\prime} \in N$,
(xvi) $b^{\prime} \in N$,
(xvii) $c^{\prime} \in N$,
(xviii) $a, b^{\prime} \| b, a^{\prime}$,
(xix) $b, c^{\prime} \| c, b^{\prime}$,
(xx) $a=b$ or $b=c$ or $a=c$.

Then $a, c^{\prime} \| c, a^{\prime}$.
(49) If Inc-ProjSp $\left(A_{1}\right)$ is Pappian, then A_{1} is Pappian.
(50) Let A, P, C be subsets of the points of A_{1}. Let $o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ be elements of the points of A_{1}. Suppose that
(i) $o \in A$,
(ii) $o \in P$,
(iii) $o \in C$,
(iv) $o \neq a$,

```
    (v) \(o \neq b\),
    (vi) \(o \neq c\),
    (vii) \(a \in A\),
(viii) \(a^{\prime} \in A\),
    (ix) \(b \in P\),
    (x) \(b^{\prime} \in P\),
    (xi) \(c \in C\),
    (xii) \(c^{\prime} \in C\),
(xiii) \(A\) is a line,
(xiv) \(P\) is a line,
(xv) \(C\) is a line,
(xvi) \(A \neq P\),
(xvii) \(A \neq C\),
(xviii) \(\quad a, b \| a^{\prime}, b^{\prime}\),
(xix) \(a, c \| a^{\prime}, c^{\prime}\),
(xx) \(\quad o=a^{\prime}\) or \(a=a^{\prime}\).
Then \(b, c \| b^{\prime}, c^{\prime}\).
(51) If \(\operatorname{Inc}-\operatorname{Proj} \operatorname{Sp}\left(A_{1}\right)\) is Desarguesian, then \(A_{1}\) is Desarguesian.
(52) If \(\operatorname{Inc-ProjSp}\left(A_{1}\right)\) is Fanoian, then \(A_{1}\) is Fanoian.
```


References

[1] Wojciech Leoñczuk, Henryk Oryszczyszyn, and Krzysztof Prażmowski. Planes in affine spaces. Formalized Mathematics, 2(3):357-363, 1991.
[2] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity - part I. Formalized Mathematics, 1(3):611-615, 1990.
[5] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.
[6] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[7] Krzysztof Prażmowski. Fanoian, Pappian and Desarguesian affine spaces. Formalized Mathematics, 2(3):341-346, 1991.
[8] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[13] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received December 17, 1990

