Submetric Spaces - Part I¹

Adam Lecko Technical University of Rzeszów Mariusz Startek Technical University of Rzeszów

Summary. Definitions of pseudometric space, nonsymmetric metric space, semimetric space and ultrametric space are introduced. We find some relations between these spaces and prove that every ultrametric space is a metric space. We define the relation *is between*. Moreover we introduce the notions of the open segment and the closed segment.

MML Identifier: SUB_METR.

The terminology and notation used here are introduced in the following articles: [8], [2], [3], [1], [6], [4], [7], [9], and [5]. One can prove the following propositions:

- (1) For all elements x, y of \mathbb{R} such that $0 \le x$ and $0 \le y$ holds $\max(x, y) \le x + y$.
- (2) For every metric space M and for all elements x, y of the carrier of M such that $x \neq y$ holds $0 < \rho(x, y)$.
- (3) For every element x of $\{\emptyset\}$ holds $x = \emptyset$.
- (4) For all elements x, y of $\{\emptyset\}$ such that x = y holds $\{[\emptyset, \emptyset]\} \mapsto 0(x, y) = 0$.
- (5) For all elements x, y of $\{\emptyset\}$ such that $x \neq y$ holds $0 < \{[\emptyset, \emptyset]\} \mapsto 0(x, y)$.
- (6) For all elements x, y of $\{\emptyset\}$ holds $\{[\emptyset, \emptyset]\} \mapsto 0(x, y) = \{[\emptyset, \emptyset]\} \mapsto 0(y, x)$.
- (7) For all elements x, y, z of $\{\emptyset\}$ holds $\{[\emptyset, \emptyset]\} \mapsto 0(x, z) \leq \{[\emptyset, \emptyset]\} \mapsto 0(x, y) + \{[\emptyset, \emptyset]\} \mapsto 0(y, z).$
- (8) For all elements x, y, z of $\{\emptyset\}$ holds $\{[\emptyset, \emptyset]\} \mapsto 0(x, z) \le \max(\{[\emptyset, \emptyset]\} \mapsto 0(x, y), \{[\emptyset, \emptyset]\} \mapsto 0(y, z)).$
- A metric structure is called a pseudo metric space if:
- (Def.1) for all elements a, b, c of the carrier of it holds if a = b, then $\rho(a, b) = 0$ but $\rho(a, b) = \rho(b, a)$ and $\rho(a, c) \le \rho(a, b) + \rho(b, c)$.

Next we state four propositions:

¹Supported by RPBP-III.24.B3

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (10)² For every pseudo metric space M and for all elements a, b of the carrier of M such that a = b holds $\rho(a, b) = 0$.
- (11) For every pseudo metric space M and for all elements a, b of the carrier of M holds $\rho(a, b) = \rho(b, a)$.
- (12) For every pseudo metric space M and for all elements a, b, c of the carrier of M holds $\rho(a, c) \leq \rho(a, b) + \rho(b, c)$.
- (13) For every pseudo metric space M and for all elements a, b of the carrier of M holds $0 \le \rho(a, b)$.

A metric structure is said to be a semi metric space if:

(Def.2) for all elements a, b of the carrier of it holds if a = b, then $\rho(a, b) = 0$ but if $a \neq b$, then $0 < \rho(a, b)$ and $\rho(a, b) = \rho(b, a)$.

One can prove the following four propositions:

- (15)³ For every semi metric space M and for all elements a, b of the carrier of M such that a = b holds $\rho(a, b) = 0$.
- (16) For every semi metric space M and for all elements a, b of the carrier of M such that $a \neq b$ holds $0 < \rho(a, b)$.
- (17) For every semi metric space M and for all elements a, b of the carrier of M holds $\rho(a, b) = \rho(b, a)$.
- (18) For every semi metric space M and for all elements a, b of the carrier of M holds $0 \le \rho(a, b)$.

A metric structure is called a non-symmetric metric space if:

(Def.3) for all elements a, b, c of the carrier of it holds if a = b, then $\rho(a, b) = 0$ but if $a \neq b$, then $0 < \rho(a, b)$ and $\rho(a, c) \le \rho(a, b) + \rho(b, c)$.

One can prove the following four propositions:

- (20)⁴ For every non-symmetric metric space M and for all elements a, b of the carrier of M such that a = b holds $\rho(a, b) = 0$.
- (21) For every non-symmetric metric space M and for all elements a, b of the carrier of M such that $a \neq b$ holds $0 < \rho(a, b)$.
- (22) For every non-symmetric metric space M and for all elements a, b, c of the carrier of M holds $\rho(a, c) \leq \rho(a, b) + \rho(b, c)$.
- (23) For every non-symmetric metric space M and for all elements a, b of the carrier of M holds $0 \le \rho(a, b)$.

A metric structure is said to be a ultra metric space if:

(Def.4) for all elements a, b, c of the carrier of it holds if a = b, then $\rho(a, b) = 0$ but if $a \neq b$, then $0 < \rho(a, b)$ and $\rho(a, b) = \rho(b, a)$ and $\rho(a, c) \leq \max(\rho(a, b), \rho(b, c))$.

We now state a number of propositions:

²The proposition (9) was either repeated or obvious.

³The proposition (14) was either repeated or obvious.

⁴The proposition (19) was either repeated or obvious.

- $(25)^5$ For every ultra metric space M and for all elements a, b of the carrier of M such that a = b holds $\rho(a, b) = 0$.
- (26) For every ultra metric space M and for all elements a, b of the carrier of M such that $a \neq b$ holds $0 < \rho(a, b)$.
- (27) For every ultra metric space M and for all elements a, b of the carrier of M holds $\rho(a, b) = \rho(b, a)$.
- (28) For every ultra metric space M and for all elements a, b, c of the carrier of M holds $\rho(a, c) \leq \max(\rho(a, b), \rho(b, c))$.
- (29) For every ultra metric space M and for all elements a, b of the carrier of M holds $0 \le \rho(a, b)$.
- (30) For every metric space M holds M is a pseudo metric space.
- (31) For every metric space M holds M is a semi metric space.
- (32) For every metric space M holds M is a non-symmetric metric space.
- (33) For every ultra metric space M holds M is a metric space.
- (34) For every ultra metric space M holds M is a pseudo metric space.
- (35) For every ultra metric space M holds M is a semi metric space.
- (36) For every ultra metric space M holds M is a non-symmetric metric space.

In the sequel x, y will be arbitrary. Let us consider x, y. Then $\{x, y\}$ is a non-empty set.

The function $(2^2 \to 0)$ from $[\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}]$ into \mathbb{R} is defined by:

 $(\text{Def.5}) \quad (2^2 \to 0) = [\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}] \longmapsto 0.$

Next we state several propositions:

- $(37) \quad (2^2 \to 0) = [\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}] \longmapsto 0.$
- (38) For every element x of $\{\emptyset, \{\emptyset\}\}$ holds $x = \emptyset$ or $x = \{\emptyset\}$.
- (39) (i) $\langle \emptyset, \emptyset \rangle \in [\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}],$
- (ii) $\langle \emptyset, \{\emptyset\} \rangle \in [\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}],$
- (iii) $\langle \{\emptyset\}, \emptyset \rangle \in [\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}],$
- (iv) $\langle \{\emptyset\}, \{\emptyset\} \rangle \in [\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}].$
- (40) For all elements x, y of $\{\emptyset, \{\emptyset\}\}$ holds $(2^2 \to 0)(x, y) = 0$.
- (41) For all elements x, y of $\{\emptyset, \{\emptyset\}\}$ such that x = y holds $(2^2 \to 0)(x, y) = 0$.
- (42) For all elements x, y of $\{\emptyset, \{\emptyset\}\}$ holds $(2^2 \to 0)(x, y) = (2^2 \to 0)(y, x)$.
- (43) For all elements x, y, z of $\{\emptyset, \{\emptyset\}\}$ holds $(2^2 \to 0)(x, z) \le (2^2 \to 0)(x, y) + (2^2 \to 0)(y, z)$.

The pseudo metric space \odot is defined as follows:

(Def.6)
$$\odot = \langle \{\emptyset, \{\emptyset\}\}, (2^2 \to 0) \rangle.$$

The following proposition is true

 $(44) \quad \bigcirc = \langle \{\emptyset, \{\emptyset\}\}, (2^2 \to 0) \rangle.$

⁵The proposition (24) was either repeated or obvious.

Let S be a metric space, and let p, q, r be elements of the carrier of S. We say that q is between p and r if and only if:

(Def.7) $p \neq q$ and $p \neq r$ and $q \neq r$ and $\rho(p, r) = \rho(p, q) + \rho(q, r)$.

Next we state three propositions:

- $(47)^6$ For every metric space S and for all elements p, q, r of the carrier of S such that q is between p and r holds q is between r and p.
- (48) For every metric space S and for all elements p, q, r of the carrier of S such that q is between p and r holds p is not between q and r and r is not between p and q.
- (49) For every metric space S and for all elements p, q, r, s of the carrier of S such that q is between p and r and r is between p and s holds q is between p and s and r is between q and s.

Let M be a metric space, and let p, r be elements of the carrier of M. The functor IntSeg(p,r) yielding a subset of the carrier of M is defined as follows:

(Def.8) IntSeg $(p, r) = \{q : q \text{ is between } p \text{ and } r \}$, where q ranges over elements of the carrier of M.

One can prove the following two propositions:

- (50) For every metric space M and for all elements p, r of the carrier of M holds $IntSeg(p,r) = \{q : q \text{ is between } p \text{ and } r\}$, where q ranges over elements of the carrier of M.
- (51) For every metric space M and for all elements p, r, x of the carrier of M holds $x \in \text{IntSeg}(p, r)$ if and only if x is between p and r.

Let M be a metric space, and let p, r be elements of the carrier of M. The functor ClSeg(p, r) yielding a subset of the carrier of M is defined by:

(Def.9) $\operatorname{ClSeg}(p,r) = \{q : q \text{ is between } p \text{ and } r \} \cup \{p,r\}, \text{ where } q \text{ ranges over elements of the carrier of } M.$

We now state three propositions:

- (52) For every metric space M and for all elements p, r of the carrier of M holds $\operatorname{ClSeg}(p,r) = \{q : q \text{ is between } p \text{ and } r \} \cup \{p,r\}$, where q ranges over elements of the carrier of M.
- (53) For every metric space M and for all elements p, r, x of the carrier of M holds $x \in \text{ClSeg}(p, r)$ if and only if x is between p and r or x = p or x = r.
- (54) For every metric space M and for all elements p, r of the carrier of M holds $\operatorname{IntSeg}(p,r) \subseteq \operatorname{ClSeg}(p,r)$.

References

- [1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.

⁶The propositions (45)–(46) were either repeated or obvious.

- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35–40, 1990.
- [5] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [6] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [7] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115-122, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received September 27, 1990