Incidence Projective Space (a reduction theorem in a plane) ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok

Wojciech Leończuk
Warsaw University
Białystok

Abstract

Summary. The article begins with basic facts concernig arbitrary projective spaces. Further we are concerned with Fano projective spaces (we prove it has a rank of at least four). Finally we confine ourselves to Desarguesian planes; we define the notion of perspectivity and we prove the reduction theorem for projectivities with concurrent axes.

MML Identifier: PROJRED1.

The articles [6], [8], [5], [7], [9], [10], [4], [3], [1], and [2] provide the terminology and notation for this paper. We adopt the following convention: I_{1} will be a projective space defined in terms of incidence, $a, b, c, d, p, q, o, r, s$ will be elements of the points of I_{1}, and A, B, C, P, Q will be elements of the lines of I_{1}. We now state a number of propositions:
(1) There exists a such that $a \nmid A$.
(2) There exists A such that $a \nmid A$.
(3) If $A \neq B$, then there exist a, b such that $a \mid A$ and $a \nmid B$ and $b \mid B$ and $b \nmid A$.
(4) If $a \neq b$, then there exist A, B such that $a \mid A$ and $a \nmid B$ and $b \mid B$ and $b \nmid A$.
(5) There exist A, B, C such that $a \mid A$ and $a \mid B$ and $a \mid C$ and $A \neq B$ and $B \neq C$ and $C \neq A$.
(6) There exists a such that $a \nmid A$ and $a \nmid B$.
(7) There exists a such that $a \mid A$.
(8) If $a \mid A$ and $b \mid A$, then there exists c such that $c \mid A$ and $c \neq a$ and $c \neq b$.

[^0](9) There exists A such that $a \nmid A$ and $b \nmid A$.
(10) If $A \neq B$ and $o \mid A$ and $o \mid B$ and $p \mid A$ and $p \neq o$ and $q \mid B$, then $p \neq q$.
(11) If $o \neq a$ and $o \neq b$ and $A \neq B$ and $o \mid A$ and $o \mid B$ and $a \mid A$ and $a \mid C$ and $b \mid B$ and $b \mid C$, then $A \neq C$.
(12) Suppose $o \mid A$ and $o \mid B$ and $A \neq B$ and $a \mid A$ and $o \neq a$ and $b \mid B$ and $c \mid B$ and $b \neq c$ and $a \mid P$ and $b \mid P$ and $a \mid Q$ and $c \mid Q$. Then $P \neq Q$.
(13) If $a, b, c \mid A$, then $a, c, b \mid A$ and $b, a, c \mid A$ and $b, c, a \mid A$ and $c, a, b \mid A$ and $c, b, a \mid A$.
(14) Let I_{1} be a Desarguesian projective space defined in terms of incidence. Let $o, b_{1}, a_{1}, b_{2}, a_{2}, b_{3}, a_{3}, r, s, t$ be elements of the points of I_{1}. Let C_{1}, $C_{2}, C_{3}, A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ be elements of the lines of I_{1}. Suppose that
(i) $o, b_{1}, a_{1} \mid C_{1}$,
(ii) $o, a_{2}, b_{2} \mid C_{2}$,
(iii) $o, a_{3}, b_{3} \mid C_{3}$,
(iv) $a_{3}, a_{2}, t \mid A_{1}$,
(v) $a_{3}, r, a_{1} \mid A_{2}$,
(vi) $a_{2}, s, a_{1} \mid A_{3}$,
(vii) $t, b_{2}, b_{3} \mid B_{1}$,
(viii) $b_{1}, r, b_{3} \mid B_{2}$,
(ix) $b_{1}, s, b_{2} \mid B_{3}$,
(x) C_{1}, C_{2}, C_{3} are mutually different,
(xi) $o \neq a_{3}$,
(xii) $o \neq b_{1}$,
(xiii) $o \neq b_{2}$,
(xiv) $a_{2} \neq b_{2}$.

Then there exists an element O of the lines of I_{1} such that $r, s, t \mid O$.
(15) Suppose there exist A, a, b, c, d such that $a \mid A$ and $b \mid A$ and $c \mid A$ and $d \mid A$ and a, b, c, d are mutually different. Then for every B there exist p, q, r, s such that $p \mid B$ and $q \mid B$ and $r \mid B$ and $s \mid B$ and p, q, r, s are mutually different.
We follow a convention: I_{1} will be a Fanoian projective space defined in terms of incidence, a, b, c, d, p, q, r, s will be elements of the points of I_{1}, and A, B, C, D, L, Q, R, S will be elements of the lines of I_{1}. The following propositions are true:
(16) There exist $p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D$ such that $q \nmid L$ and $r \nmid L$ and $p \nmid Q$ and $s \nmid Q$ and $p \nmid R$ and $r \nmid R$ and $q \nmid S$ and $s \nmid S$ and $a, p, s \mid L$ and $a, q, r \mid Q$ and $b, q, s \mid R$ and $b, p, r \mid S$ and $c, p, q \mid A$ and $c, r, s \mid B$ and $a, b \mid C$ and $c \nmid C$.
(17) There exist a, A, B, C, D such that $a \mid A$ and $a \mid B$ and $a \mid C$ and $a \mid D$ and A, B, C, D are mutually different.
(18) There exist a, b, c, d, A such that $a \mid A$ and $b \mid A$ and $c \mid A$ and $d \mid A$ and a, b, c, d are mutually different.

There exist p, q, r, s such that $p \mid B$ and $q \mid B$ and $r \mid B$ and $s \mid B$ and p, q, r, s are mutually different.
We follow a convention: I_{1} will denote a Desarguesian 2-dimensional projective space defined in terms of incidence, c, p, q, x, y will denote elements of the points of I_{1}, and K, L, R, X will denote elements of the lines of I_{1}. Let us consider I_{1}, K, L, p. Let us assume that $p \nmid K$ and $p \nmid L$. The functor $\pi_{p}(K \rightarrow L)$ yields a partial function from the points of I_{1} to the points of I_{1} and is defined as follows:
(Def.1) $\quad \operatorname{dom} \pi_{p}(K \rightarrow L) \subseteq$ the points of I_{1} and for every x holds $x \in \operatorname{dom} \pi_{p}(K \rightarrow$ L) if and only if $x \mid K$ and for all x, y such that $x \mid K$ and $y \mid L$ holds $\pi_{p}(K \rightarrow L)(x)=y$ if and only if there exists X such that $p \mid X$ and $x \mid X$ and $y \mid X$.
One can prove the following propositions:
(20) Suppose $p \nmid K$ and $p \nmid L$. Then
(i) $\operatorname{dom} \pi_{p}(K \rightarrow L) \subseteq$ the points of I_{1},
(ii) for every x holds $x \in \operatorname{dom} \pi_{p}(K \rightarrow L)$ if and only if $x \mid K$,
(iii) for all x, y such that $x \mid K$ and $y \mid L$ holds $\pi_{p}(K \rightarrow L)(x)=y$ if and only if there exists X such that $p \mid X$ and $x \mid X$ and $y \mid X$.
(21) If $p \nmid K$, then for every x such that $x \mid K$ holds $\pi_{p}(K \rightarrow K)(x)=x$.
(22) If $p \nmid K$ and $p \nmid L$ and $x \mid K$, then $\pi_{p}(K \rightarrow L)(x)$ is an element of the points of I_{1}.
(23) If $p \nmid K$ and $p \nmid L$ and $x \mid K$ and $y=\pi_{p}(K \rightarrow L)(x)$, then $y \mid L$.
(24) If $p \nmid K$ and $p \nmid L$ and $y \in \operatorname{rng} \pi_{p}(K \rightarrow L)$, then $y \mid L$.
(25) Suppose $p \nmid K$ and $p \nmid L$ and $q \nmid L$ and $q \nmid R$. Then $\operatorname{dom}\left(\pi_{q}(L \rightarrow\right.$ $\left.R) \cdot \pi_{p}(K \rightarrow L)\right)=\operatorname{dom} \pi_{p}(K \rightarrow L)$ and $\operatorname{rng}\left(\pi_{q}(L \rightarrow R) \cdot \pi_{p}(K \rightarrow L)\right)=$ $\operatorname{rng} \pi_{q}(L \rightarrow R)$.
(26) Let $a_{1}, b_{1}, a_{2}, b_{2}$ be elements of the points of I_{1}. Then if $p \nmid K$ and $p \nmid L$ and $a_{1} \mid K$ and $b_{1} \mid K$ and $\pi_{p}(K \rightarrow L)\left(a_{1}\right)=a_{2}$ and $\pi_{p}(K \rightarrow L)\left(b_{1}\right)=b_{2}$ and $a_{2}=b_{2}$, then $a_{1}=b_{1}$.

$$
\begin{equation*}
\text { If } p \nmid K \text { and } p \nmid L \text { and } x \mid K \text { and } x \mid L \text {, then } \pi_{p}(K \rightarrow L)(x)=x . \tag{27}
\end{equation*}
$$

We now state the proposition
(28) Suppose $p \nmid K$ and $p \nmid L$ and $q \nmid L$ and $q \nmid R$ and $c \mid K$ and $c \mid L$ and $c \mid R$ and $K \neq R$. Then there exists an element o of the points of I_{1} such that $o \nmid K$ and $o \nmid R$ and $\pi_{q}(L \rightarrow R) \cdot \pi_{p}(K \rightarrow L)=\pi_{o}(K \rightarrow R)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[3] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[5] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[8] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[10] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 16, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6

