Incidence Projective Space (a reduction theorem in a plane)¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok

Summary. The article begins with basic facts concernig arbitrary projective spaces. Further we are concerned with Fano projective spaces (we prove it has a rank of at least four). Finally we confine ourselves to Desarguesian planes; we define the notion of perspectivity and we prove the reduction theorem for projectivities with concurrent axes.

MML Identifier: PROJRED1.

The articles [6], [8], [5], [7], [9], [10], [4], [3], [1], and [2] provide the terminology and notation for this paper. We adopt the following convention: I_1 will be a projective space defined in terms of incidence, a, b, c, d, p, q, o, r, s will be elements of the points of I_1 , and A, B, C, P, Q will be elements of the lines of I_1 . We now state a number of propositions:

- (1) There exists a such that $a \nmid A$.
- (2) There exists A such that $a \nmid A$.
- (3) If $A \neq B$, then there exist a, b such that $a \mid A$ and $a \nmid B$ and $b \mid B$ and $b \nmid A$.
- (4) If $a \neq b$, then there exist A, B such that $a \mid A$ and $a \nmid B$ and $b \mid B$ and $b \nmid A$.
- (5) There exist A, B, C such that $a \mid A$ and $a \mid B$ and $a \mid C$ and $A \neq B$ and $B \neq C$ and $C \neq A$.
- (6) There exists a such that $a \nmid A$ and $a \nmid B$.
- (7) There exists a such that $a \mid A$.
- (8) If $a \mid A$ and $b \mid A$, then there exists c such that $c \mid A$ and $c \neq a$ and $c \neq b$.

¹Supported by RPBP.III-24.C6

271

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (9) There exists A such that $a \nmid A$ and $b \nmid A$.
- (10) If $A \neq B$ and $o \mid A$ and $o \mid B$ and $p \mid A$ and $p \neq o$ and $q \mid B$, then $p \neq q$.
- (11) If $o \neq a$ and $o \neq b$ and $A \neq B$ and $o \mid A$ and $o \mid B$ and $a \mid A$ and $a \mid C$ and $b \mid B$ and $b \mid C$, then $A \neq C$.
- (12) Suppose $o \mid A$ and $o \mid B$ and $A \neq B$ and $a \mid A$ and $o \neq a$ and $b \mid B$ and $c \mid B$ and $b \neq c$ and $a \mid P$ and $b \mid P$ and $a \mid Q$ and $c \mid Q$. Then $P \neq Q$.
- (13) If $a, b, c \mid A$, then $a, c, b \mid A$ and $b, a, c \mid A$ and $b, c, a \mid A$ and $c, a, b \mid A$ and $c, b, a \mid A$.
- (14) Let I_1 be a Desarguesian projective space defined in terms of incidence. Let $o, b_1, a_1, b_2, a_2, b_3, a_3, r, s, t$ be elements of the points of I_1 . Let C_1 , $C_2, C_3, A_1, A_2, A_3, B_1, B_2, B_3$ be elements of the lines of I_1 . Suppose that
 - (i) $o, b_1, a_1 \mid C_1,$
 - (ii) $o, a_2, b_2 \mid C_2,$
 - $(\text{iii}) \quad o, a_3, b_3 \mid C_3,$
 - (iv) $a_3, a_2, t \mid A_1,$
 - $(\mathbf{v}) \quad a_3, r, a_1 \mid A_2,$
- (vi) $a_2, s, a_1 \mid A_3,$
- (vii) $t, b_2, b_3 \mid B_1,$
- (viii) $b_1, r, b_3 \mid B_2,$
- $(\mathrm{ix}) \quad b_1, s, b_2 \mid B_3,$
- (x) C_1, C_2, C_3 are mutually different,
- (xi) $o \neq a_3$,
- (xii) $o \neq b_1$,
- (xiii) $o \neq b_2$,
- (xiv) $a_2 \neq b_2$.

Then there exists an element O of the lines of I_1 such that $r, s, t \mid O$.

(15) Suppose there exist A, a, b, c, d such that $a \mid A$ and $b \mid A$ and $c \mid A$ and $d \mid A$ and a, b, c, d are mutually different. Then for every B there exist p, q, r, s such that $p \mid B$ and $q \mid B$ and $r \mid B$ and $s \mid B$ and p, q, r, s are mutually different.

We follow a convention: I_1 will be a Fanoian projective space defined in terms of incidence, a, b, c, d, p, q, r, s will be elements of the points of I_1 , and A, B, C, D, L, Q, R, S will be elements of the lines of I_1 . The following propositions are true:

- (16) There exist p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D such that $q \nmid L$ and $r \nmid L$ and $p \nmid Q$ and $s \nmid Q$ and $p \nmid R$ and $r \nmid R$ and $q \nmid S$ and $s \nmid S$ and $a, p, s \mid L$ and $a, q, r \mid Q$ and $b, q, s \mid R$ and $b, p, r \mid S$ and $c, p, q \mid A$ and $c, r, s \mid B$ and $a, b \mid C$ and $c \nmid C$.
- (17) There exist a, A, B, C, D such that $a \mid A$ and $a \mid B$ and $a \mid C$ and $a \mid D$ and A, B, C, D are mutually different.
- (18) There exist a, b, c, d, A such that $a \mid A$ and $b \mid A$ and $c \mid A$ and $d \mid A$ and a, b, c, d are mutually different.

(19) There exist p, q, r, s such that $p \mid B$ and $q \mid B$ and $r \mid B$ and $s \mid B$ and p, q, r, s are mutually different.

We follow a convention: I_1 will denote a Desarguesian 2-dimensional projective space defined in terms of incidence, c, p, q, x, y will denote elements of the points of I_1 , and K, L, R, X will denote elements of the lines of I_1 . Let us consider I_1, K, L, p . Let us assume that $p \nmid K$ and $p \nmid L$. The functor $\pi_p(K \to L)$ yields a partial function from the points of I_1 to the points of I_1 and is defined as follows:

(Def.1) dom $\pi_p(K \to L) \subseteq$ the points of I_1 and for every x holds $x \in \text{dom } \pi_p(K \to L)$ if and only if $x \mid K$ and for all x, y such that $x \mid K$ and $y \mid L$ holds $\pi_p(K \to L)(x) = y$ if and only if there exists X such that $p \mid X$ and $x \mid X$ and $y \mid X$.

One can prove the following propositions:

- (20) Suppose $p \nmid K$ and $p \nmid L$. Then
 - (i) dom $\pi_p(K \to L) \subseteq$ the points of I_1 ,
 - (ii) for every x holds $x \in \text{dom } \pi_p(K \to L)$ if and only if $x \mid K$,
- (iii) for all x, y such that $x \mid K$ and $y \mid L$ holds $\pi_p(K \to L)(x) = y$ if and only if there exists X such that $p \mid X$ and $x \mid X$ and $y \mid X$.
- (21) If $p \nmid K$, then for every x such that $x \mid K$ holds $\pi_p(K \to K)(x) = x$.
- (22) If $p \nmid K$ and $p \nmid L$ and $x \mid K$, then $\pi_p(K \to L)(x)$ is an element of the points of I_1 .
- (23) If $p \nmid K$ and $p \nmid L$ and $x \mid K$ and $y = \pi_p(K \to L)(x)$, then $y \mid L$.
- (24) If $p \nmid K$ and $p \nmid L$ and $y \in \operatorname{rng} \pi_p(K \to L)$, then $y \mid L$.
- (25) Suppose $p \nmid K$ and $p \nmid L$ and $q \nmid L$ and $q \nmid R$. Then $\operatorname{dom}(\pi_q(L \to R) \cdot \pi_p(K \to L)) = \operatorname{dom} \pi_p(K \to L)$ and $\operatorname{rng}(\pi_q(L \to R) \cdot \pi_p(K \to L)) = \operatorname{rng} \pi_q(L \to R)$.
- (26) Let a_1, b_1, a_2, b_2 be elements of the points of I_1 . Then if $p \nmid K$ and $p \nmid L$ and $a_1 \mid K$ and $b_1 \mid K$ and $\pi_p(K \to L)(a_1) = a_2$ and $\pi_p(K \to L)(b_1) = b_2$ and $a_2 = b_2$, then $a_1 = b_1$.
- (27) If $p \nmid K$ and $p \nmid L$ and $x \mid K$ and $x \mid L$, then $\pi_p(K \to L)(x) = x$. We now state the proposition
- (28) Suppose $p \nmid K$ and $p \nmid L$ and $q \nmid L$ and $q \nmid R$ and $c \mid K$ and $c \mid L$ and $c \mid R$ and $K \neq R$. Then there exists an element o of the points of I_1 such that $o \nmid K$ and $o \nmid R$ and $\pi_q(L \to R) \cdot \pi_p(K \to L) = \pi_o(K \to R)$.

References

- [1] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [3] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225–232, 1991.
- [4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

- [5] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [10] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received October 16, 1990