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Summary. Definitions and properties of the following concepts:
root, real exponent and logarithm. Also the number e is defined.
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The papers [11], [2], [9], [1], [7], [5], [6], [13], [12], [4], [3], [8], and [10] provide
the notation and terminology for this paper. For simplicity we follow the rules:
a, b, c, d denote real numbers, m, n, m1, m2 denote natural numbers, k, l

denote integers, and p denotes a rational number. One can prove the following
propositions:

(1) If there exists m such that n = 2 · m, then (−a)n� = an� .

(2) If there exists m such that n = 2 · m + 1, then (−a)n� = −an� .

(3) If a ≥ 0 or there exists m such that n = 2 · m, then an� ≥ 0.

Let us consider n, a. The functor n
√

a yields a real number and is defined by:

(Def.1) (i) n
√

a = rootn(a) if a ≥ 0 and n ≥ 1,
(ii) n

√
a = − rootn(−a) if a < 0 and there exists m such that n = 2 · m + 1.

One can prove the following propositions:

(4) For all a, n holds if a ≥ 0 and n ≥ 1, then n
√

a = rootn(a) but if a < 0
and there exists m such that n = 2 · m + 1, then n

√
a = − rootn(−a).

(5) If n ≥ 1 and a ≥ 0 or there exists m such that n = 2 · m + 1, then
n
√

an� = a and n
√

an� = a.

(6) If n ≥ 1, then n
√

0 = 0.

(7) If n ≥ 1, then n
√

1 = 1.

(8) If a ≥ 0 and n ≥ 1, then n
√

a ≥ 0.

(9) If there exists m such that n = 2 · m + 1, then n
√
−1 = −1.

(10) 1
√

a = a.
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(11) If there exists m such that n = 2 · m + 1, then n
√

a = − n
√
−a.

(12) If n ≥ 1 and a ≥ 0 and b ≥ 0 or there exists m such that n = 2 ·m + 1,
then n

√
a · b = n

√
a · n

√
b.

(13) If a > 0 and n ≥ 1 or a 6= 0 and there exists m such that n = 2 ·m + 1,

then n

√

1
a

= 1
n
√

a
.

(14) If a ≥ 0 and b > 0 and n ≥ 1 or b 6= 0 and there exists m such that

n = 2 · m + 1, then n

√

a
b

=
n
√

a
n
√

b
.

(15) If a ≥ 0 and n ≥ 1 and m ≥ 1 or there exist m1, m2 such that

n = 2 · m1 + 1 and m = 2 · m2 + 1, then n

√

m
√

a = n·m
√

a.

(16) If a ≥ 0 and n ≥ 1 and m ≥ 1 or there exist m1, m2 such that

n = 2 · m1 + 1 and m = 2 · m2 + 1, then n
√

a · m
√

a = n·m

√

an+m� .

(17) If a ≤ b but 0 ≤ a and n ≥ 1 or there exists m such that n = 2 ·m + 1,
then n

√
a ≤ n

√
b.

(18) If a < b but a ≥ 0 and n ≥ 1 or there exists m such that n = 2 ·m + 1,
then n

√
a <

n
√

b.

(19) If a ≥ 1 and n ≥ 1, then n
√

a ≥ 1 and a ≥ n
√

a.

(20) If a ≤ −1 and there exists m such that n = 2 · m + 1, then n
√

a ≤ −1
and a ≤ n

√
a.

(21) If a ≥ 0 and a < 1 and n ≥ 1, then a ≤ n
√

a and n
√

a < 1.

(22) If a > −1 and a ≤ 0 and there exists m such that n = 2 · m + 1, then
a ≥ n

√
a and n

√
a > −1.

(23) If a > 0 and n ≥ 1, then n
√

a − 1 ≤ a−1
n

.

(24) For every sequence of real numbers s and for every a such that a > 0
and for every n such that n ≥ 1 holds s(n) = n

√
a holds s is convergent

and lim s = 1.

Let us consider a, b. The functor ab yielding a real number is defined as
follows:

(Def.2) (i) ab = ab� if a > 0,
(ii) ab = 0 if a = 0 and b > 0,
(iii) there exists k such that k = b and ab = ak� if a < 0 and b is an integer.

One can prove the following propositions:

(25) Given a, b. Then if a > 0, then ab = ab� but if a = 0 and b > 0, then
ab = 0 but if a < 0 and b is an integer, then there exists k such that k = b

and ab = ak� .

(26) If a > 0, then ab = ab� .

(27) If b > 0, then 0b = 0.

(28) If a < 0, then ak = ak� .

(29) If a 6= 0, then a0 = 1.

(30) a1 = a.
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(31) 1a = 1.

(32) If a > 0, then ab+c = ab · ac.

(33) If a > 0, then a−c = 1
ac .

(34) If a > 0, then ab−c = ab

ac .

(35) If a > 0 and b > 0, then (a · b)c = ac · bc.

(36) If a > 0 and b > 0, then a
b
c = ac

bc .

(37) If a > 0, then 1
a

b
= a−b.

(38) If a > 0, then (ab)
c
= ab·c.

(39) If a > 0, then ab > 0.

(40) If a > 1 and b > 0, then ab > 1.

(41) If a > 1 and b < 0, then ab < 1.

(42) If a > 0 and a < b and c > 0, then ac < bc.

(43) If a > 0 and a < b and c < 0, then ac > bc.

(44) If a < b and c > 1, then ca < cb.

(45) If a < b and c > 0 and c < 1, then ca > cb.

(46) If a 6= 0, then an = an� .

(47) If n ≥ 1, then an = an� .

(48) If a 6= 0, then an = an.

(49) If n ≥ 1, then an = an.

(50) If a 6= 0, then ak = ak� .

(51) If a > 0, then ap = a
p� .

(52) If a ≥ 0 and n ≥ 1, then a
1

n = n
√

a.

(53) a2 = a2.

(54) If a 6= 0 and there exists l such that k = 2 · l, then (−a)k = ak.

(55) If a 6= 0 and there exists l such that k = 2 · l + 1, then (−a)k = −ak.

Next we state two propositions:

(56) If −1 < a, then (1 + a)n ≥ 1 + n · a.

(57) If a > 0 and a 6= 1 and c 6= d, then ac 6= ad.

Let us consider a, b. Let us assume that a > 0 and a 6= 1 and b > 0. The
functor loga b yields a real number and is defined by:

(Def.3) aloga b = b.

The following propositions are true:

(58) For all a, b, c such that a > 0 and a 6= 1 and b > 0 holds c = loga b if
and only if ac = b.

(59) If a > 0 and a 6= 1, then loga 1 = 0.

(60) If a > 0 and a 6= 1, then loga a = 1.

(61) If a > 0 and a 6= 1 and b > 0 and c > 0, then loga b+loga c = loga(b · c).
(62) If a > 0 and a 6= 1 and b > 0 and c > 0, then loga b − loga c = loga

b
c
.
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(63) If a > 0 and a 6= 1 and b > 0, then loga(b
c) = c · loga b.

(64) If a > 0 and a 6= 1 and b > 0 and b 6= 1 and c > 0, then loga c =
loga b · logb c.

(65) If a > 1 and b > 0 and c > b, then loga c > loga b.

(66) If a > 0 and a < 1 and b > 0 and c > b, then loga c < loga b.

(67) For every sequence of real numbers s such that for every n holds s(n) =

(1 + 1
n+1

)
n+1

holds s is convergent.

The real number e is defined as follows:

(Def.4) for every sequence of real numbers s such that for every n holds s(n) =

(1 + 1
n+1

)
n+1

holds e = lim s.
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