Real Exponents and Logarithms ${ }^{1}$

Konrad Raczkowski
Warsaw University
Białystok

Andrzej Nẹdzusiak
Warsaw University
Białystok

Abstract

Summary. Definitions and properties of the following concepts: root, real exponent and logarithm. Also the number e is defined.

MML Identifier: POWER.

The papers [11], [2], [9], [1], [7], [5], [6], [13], [12], [4], [3], [8], and [10] provide the notation and terminology for this paper. For simplicity we follow the rules: a, b, c, d denote real numbers, m, n, m_{1}, m_{2} denote natural numbers, k, l denote integers, and p denotes a rational number. One can prove the following propositions:
(1) If there exists m such that $n=2 \cdot m$, then $(-a)_{N}^{n}=a_{\mathrm{N}}^{n}$.
(2) If there exists m such that $n=2 \cdot m+1$, then $(-a)_{N}^{n}=-a_{N}^{n}$.
(3) If $a \geq 0$ or there exists m such that $n=2 \cdot m$, then $a_{\mathrm{N}}^{n} \geq 0$.

Let us consider n, a. The functor $\sqrt[n]{a}$ yields a real number and is defined by:
(Def.1) (i) $\sqrt[n]{a}=\operatorname{root}_{n}(a)$ if $a \geq 0$ and $n \geq 1$,
(ii) $\sqrt[n]{a}=-\operatorname{root}_{n}(-a)$ if $a<0$ and there exists m such that $n=2 \cdot m+1$.

One can prove the following propositions:
(4) For all a, n holds if $a \geq 0$ and $n \geq 1$, then $\sqrt[n]{a}=\operatorname{root}_{n}(a)$ but if $a<0$ and there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{a}=-\operatorname{root}_{n}(-a)$.
(5) If $n \geq 1$ and $a \geq 0$ or there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{a_{\mathrm{N}}^{n}}=a$ and $\sqrt[n]{a_{\mathrm{N}}^{n}}=a$.
(6) If $n \geq 1$, then $\sqrt[n]{0}=0$.
(7) If $n \geq 1$, then $\sqrt[n]{1}=1$.
(8) If $a \geq 0$ and $n \geq 1$, then $\sqrt[n]{a} \geq 0$.
(9) If there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{-1}=-1$.
(10) $\sqrt[1]{a}=a$.

[^0](11) If there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{a}=-\sqrt[n]{-a}$.
(12) If $n \geq 1$ and $a \geq 0$ and $b \geq 0$ or there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$.
(13) If $a>0$ and $n \geq 1$ or $a \neq 0$ and there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{\frac{1}{a}}=\frac{1}{\sqrt[n]{a}}$.
(14) If $a \geq 0$ and $b>0$ and $n \geq 1$ or $b \neq 0$ and there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$.
(15) If $a \geq 0$ and $n \geq 1$ and $m \geq 1$ or there exist m_{1}, m_{2} such that $n=2 \cdot m_{1}+1$ and $m=2 \cdot m_{2}+1$, then $\sqrt[n]{\sqrt[m]{a}}=\sqrt[n \cdot m]{a}$.
(16) If $a \geq 0$ and $n \geq 1$ and $m \geq 1$ or there exist m_{1}, m_{2} such that $n=2 \cdot m_{1}+1$ and $m=2 \cdot m_{2}+1$, then $\sqrt[n]{a} \cdot \sqrt[m]{a}=\sqrt[n \cdot m]{a_{N}^{n+m}}$.
(17) If $a \leq b$ but $0 \leq a$ and $n \geq 1$ or there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{a} \leq \sqrt[n]{b}$.
(18) If $a<b$ but $a \geq 0$ and $n \geq 1$ or there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{a}<\sqrt[n]{b}$.
(19) If $a \geq 1$ and $n \geq 1$, then $\sqrt[n]{a} \geq 1$ and $a \geq \sqrt[n]{a}$.
(20) If $a \leq-1$ and there exists m such that $n=2 \cdot m+1$, then $\sqrt[n]{a} \leq-1$ and $a \leq \sqrt[n]{a}$.
(21) If $a \geq 0$ and $a<1$ and $n \geq 1$, then $a \leq \sqrt[n]{a}$ and $\sqrt[n]{a}<1$.
(22) If $a>-1$ and $a \leq 0$ and there exists m such that $n=2 \cdot m+1$, then $a \geq \sqrt[n]{a}$ and $\sqrt[n]{a}>-1$.
(23) If $a>0$ and $n \geq 1$, then $\sqrt[n]{a}-1 \leq \frac{a-1}{n}$.
(24) For every sequence of real numbers s and for every a such that $a>0$ and for every n such that $n \geq 1$ holds $s(n)=\sqrt[n]{a}$ holds s is convergent and $\lim s=1$.
Let us consider a, b. The functor a^{b} yielding a real number is defined as follows:
(Def.2) (i) $a^{b}=a_{\mathrm{R}}^{b}$ if $a>0$,
(ii) $a^{b}=0$ if $a=0$ and $b>0$,
(iii) there exists k such that $k=b$ and $a^{b}=a_{\mathbb{Z}}^{k}$ if $a<0$ and b is an integer.

One can prove the following propositions:
(25) Given a, b. Then if $a>0$, then $a^{b}=a_{\mathbb{R}}^{b}$ but if $a=0$ and $b>0$, then $a^{b}=0$ but if $a<0$ and b is an integer, then there exists k such that $k=b$ and $a^{b}=a_{\mathbb{Z}}^{k}$.
(26) If $a>0$, then $a^{b}=a_{\mathbb{R}}^{b}$.
(27) If $b>0$, then $0^{b}=0$.
(28) If $a<0$, then $a^{k}=a_{\mathbb{Z}}^{k}$.
(29) If $a \neq 0$, then $a^{0}=1$.
(30) $a^{1}=a$.
(31) $1^{a}=1$.
(32) If $a>0$, then $a^{b+c}=a^{b} \cdot a^{c}$.
(33) If $a>0$, then $a^{-c}=\frac{1}{a^{c}}$.
(34) If $a>0$, then $a^{b-c}=\frac{a^{b}}{a^{c}}$.
(35) If $a>0$ and $b>0$, then $(a \cdot b)^{c}=a^{c} \cdot b^{c}$.
(36) If $a>0$ and $b>0$, then $\frac{a c}{b}=\frac{a^{c}}{b^{c}}$.
(37) If $a>0$, then $\frac{1}{a}^{b}=a^{-b}$.
(38) If $a>0$, then $\left(a^{b}\right)^{c}=a^{b \cdot c}$.
(39) If $a>0$, then $a^{b}>0$.
(40) If $a>1$ and $b>0$, then $a^{b}>1$.
(41) If $a>1$ and $b<0$, then $a^{b}<1$.
(42) If $a>0$ and $a<b$ and $c>0$, then $a^{c}<b^{c}$.
(43) If $a>0$ and $a<b$ and $c<0$, then $a^{c}>b^{c}$.
(44) If $a<b$ and $c>1$, then $c^{a}<c^{b}$.
(45) If $a<b$ and $c>0$ and $c<1$, then $c^{a}>c^{b}$.
(46) If $a \neq 0$, then $a^{n}=a_{N}^{n}$.
(47) If $n \geq 1$, then $a^{n}=a_{\mathrm{N}}^{n}$.
(48) If $a \neq 0$, then $a^{n}=a^{n}$.
(49) If $n \geq 1$, then $a^{n}=a^{n}$.
(50) If $a \neq 0$, then $a^{k}=a_{\mathbb{Z}}^{k}$.
(51) If $a>0$, then $a^{p}=a_{\mathbb{Q}}^{p}$.
(52) If $a \geq 0$ and $n \geq 1$, then $a^{\frac{1}{n}}=\sqrt[n]{a}$.
(53) $a^{2}=a^{2}$.
(54) If $a \neq 0$ and there exists l such that $k=2 \cdot l$, then $(-a)^{k}=a^{k}$.
(55) If $a \neq 0$ and there exists l such that $k=2 \cdot l+1$, then $(-a)^{k}=-a^{k}$.

Next we state two propositions:
(56) If $-1<a$, then $(1+a)^{n} \geq 1+n \cdot a$.
(57) If $a>0$ and $a \neq 1$ and $c \neq d$, then $a^{c} \neq a^{d}$.

Let us consider a, b. Let us assume that $a>0$ and $a \neq 1$ and $b>0$. The functor $\log _{a} b$ yields a real number and is defined by:
(Def.3) $\quad a^{\log _{a} b}=b$.
The following propositions are true:
(58) For all a, b, c such that $a>0$ and $a \neq 1$ and $b>0$ holds $c=\log _{a} b$ if and only if $a^{c}=b$.
(59) If $a>0$ and $a \neq 1$, then $\log _{a} 1=0$.
(60) If $a>0$ and $a \neq 1$, then $\log _{a} a=1$.
(61) If $a>0$ and $a \neq 1$ and $b>0$ and $c>0$, then $\log _{a} b+\log _{a} c=\log _{a}(b \cdot c)$.
(62) If $a>0$ and $a \neq 1$ and $b>0$ and $c>0$, then $\log _{a} b-\log _{a} c=\log _{a} \frac{b}{c}$.

If $a>0$ and $a \neq 1$ and $b>0$, then $\log _{a}\left(b^{c}\right)=c \cdot \log _{a} b$.
If $a>0$ and $a \neq 1$ and $b>0$ and $b \neq 1$ and $c>0$, then $\log _{a} c=$ $\log _{a} b \cdot \log _{b} c$.
(65) If $a>1$ and $b>0$ and $c>b$, then $\log _{a} c>\log _{a} b$.
(66) If $a>0$ and $a<1$ and $b>0$ and $c>b$, then $\log _{a} c<\log _{a} b$.

For every sequence of real numbers s such that for every n holds $s(n)=$ $\left(1+\frac{1}{n+1}\right)^{n+1}$ holds s is convergent.
The real number e is defined as follows:
(Def.4) for every sequence of real numbers s such that for every n holds $s(n)=$ $\left(1+\frac{1}{n+1}\right)^{n+1}$ holds $e=\lim s$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[8] Rafał Kwiatek. Factorial and Newton coeffitients. Formalized Mathematics, 1(5):887890, 1990.
[9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
Received October 1, 1990

[^0]: ${ }^{1}$ Supported by RPBP-III.24.C8

