Real Exponents and Logarithms¹

Konrad Raczkowski Warsaw University Białystok Andrzej Nędzusiak Warsaw University Białystok

Summary. Definitions and properties of the following concepts: root, real exponent and logarithm. Also the number e is defined.

MML Identifier: POWER.

The papers [11], [2], [9], [1], [7], [5], [6], [13], [12], [4], [3], [8], and [10] provide the notation and terminology for this paper. For simplicity we follow the rules: a, b, c, d denote real numbers, m, n, m_1, m_2 denote natural numbers, k, ldenote integers, and p denotes a rational number. One can prove the following propositions:

- (1) If there exists m such that $n = 2 \cdot m$, then $(-a)_{\mathbb{N}}^n = a_{\mathbb{N}}^n$.
- (2) If there exists m such that $n = 2 \cdot m + 1$, then $(-a)_{\mathbb{N}}^n = -a_{\mathbb{N}}^n$.
- (3) If $a \ge 0$ or there exists m such that $n = 2 \cdot m$, then $a_{\mathbb{N}}^n \ge 0$.

Let us consider n, a. The functor $\sqrt[n]{a}$ yields a real number and is defined by: (Def.1) (i) $\sqrt[n]{a} = \operatorname{root}_n(a)$ if $a \ge 0$ and $n \ge 1$,

(ii) $\sqrt[n]{a} = -\operatorname{root}_n(-a)$ if a < 0 and there exists m such that $n = 2 \cdot m + 1$.

One can prove the following propositions:

- (4) For all a, n holds if $a \ge 0$ and $n \ge 1$, then $\sqrt[n]{a} = \operatorname{root}_n(a)$ but if a < 0 and there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{a} = -\operatorname{root}_n(-a)$.
- (5) If $n \ge 1$ and $a \ge 0$ or there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{a_{\mathbb{N}}^n} = a$ and $\sqrt[n]{a_{\mathbb{N}}^n} = a$.
- (6) If $n \ge 1$, then $\sqrt[n]{0} = 0$.
- (7) If $n \ge 1$, then $\sqrt[n]{1} = 1$.
- (8) If $a \ge 0$ and $n \ge 1$, then $\sqrt[n]{a} \ge 0$.
- (9) If there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{-1} = -1$.

(10)
$$\sqrt[1]{a} = a$$

¹Supported by RPBP-III.24.C8

213

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (11) If there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{a} = -\sqrt[n]{-a}$.
- (12) If $n \ge 1$ and $a \ge 0$ and $b \ge 0$ or there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$.
- (13) If a > 0 and $n \ge 1$ or $a \ne 0$ and there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{\frac{1}{a}} = \frac{1}{\frac{1}{3\sqrt{a}}}$.
- (14) If $a \ge 0$ and b > 0 and $n \ge 1$ or $b \ne 0$ and there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$.
- (15) If $a \ge 0$ and $n \ge 1$ and $m \ge 1$ or there exist m_1 , m_2 such that $n = 2 \cdot m_1 + 1$ and $m = 2 \cdot m_2 + 1$, then $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n \cdot m]{a}$.
- (16) If $a \ge 0$ and $n \ge 1$ and $m \ge 1$ or there exist m_1, m_2 such that $n = 2 \cdot m_1 + 1$ and $m = 2 \cdot m_2 + 1$, then $\sqrt[n]{a} \cdot \sqrt[m]{a} = \sqrt[n \cdot m]{a_{\mathbb{N}}^{n+m}}$.
- (17) If $a \leq b$ but $0 \leq a$ and $n \geq 1$ or there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{a} \leq \sqrt[n]{b}$.
- (18) If a < b but $a \ge 0$ and $n \ge 1$ or there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{a} < \sqrt[n]{b}$.
- (19) If $a \ge 1$ and $n \ge 1$, then $\sqrt[n]{a} \ge 1$ and $a \ge \sqrt[n]{a}$.
- (20) If $a \leq -1$ and there exists m such that $n = 2 \cdot m + 1$, then $\sqrt[n]{a} \leq -1$ and $a \leq \sqrt[n]{a}$.
- (21) If $a \ge 0$ and a < 1 and $n \ge 1$, then $a \le \sqrt[n]{a}$ and $\sqrt[n]{a} < 1$.
- (22) If a > -1 and $a \le 0$ and there exists m such that $n = 2 \cdot m + 1$, then $a \ge \sqrt[n]{a}$ and $\sqrt[n]{a} > -1$.
- (23) If a > 0 and $n \ge 1$, then $\sqrt[n]{a} 1 \le \frac{a-1}{n}$.
- (24) For every sequence of real numbers s and for every a such that a > 0and for every n such that $n \ge 1$ holds $s(n) = \sqrt[n]{a}$ holds s is convergent and $\lim s = 1$.

Let us consider a, b. The functor a^b yielding a real number is defined as follows:

(Def.2) (i) $a^b = a^b_{\mathbb{R}}$ if a > 0,

(ii) $a^b = 0$ if a = 0 and b > 0,

(iii) there exists k such that k = b and $a^b = a_{\mathbb{Z}}^k$ if a < 0 and b is an integer.

One can prove the following propositions:

- (25) Given a, b. Then if a > 0, then $a^b = a^b_{\mathbb{R}}$ but if a = 0 and b > 0, then $a^b = 0$ but if a < 0 and b is an integer, then there exists k such that k = b and $a^b = a^k_{\mathbb{Z}}$.
- (26) If a > 0, then $a^b = a^b_{\mathbb{R}}$.
- (27) If b > 0, then $0^b = 0$.
- (28) If a < 0, then $a^k = a_{\pi}^k$.
- (29) If $a \neq 0$, then $a^0 = 1$.
- $(30) \quad a^1 = a.$

(31)
$$1^{a} = 1$$
.
(32) If $a > 0$, then $a^{b+c} = a^{b} \cdot a^{c}$.
(33) If $a > 0$, then $a^{-c} = \frac{1}{a^{c}}$.
(34) If $a > 0$ and $b > 0$, then $(a \cdot b)^{c} = a^{c} \cdot b^{c}$.
(35) If $a > 0$ and $b > 0$, then $\frac{a}{b} \cdot c^{c} = \frac{a^{c}}{b^{c}}$.
(36) If $a > 0$ and $b > 0$, then $\frac{a}{b} \cdot c^{c} = \frac{a^{c}}{b^{c}}$.
(37) If $a > 0$, then $\frac{1}{a}^{b} = a^{-b}$.
(38) If $a > 0$, then $(a^{b})^{c} = a^{b \cdot c}$.
(39) If $a > 0$, then $a^{b} > 0$.
(40) If $a > 1$ and $b > 0$, then $a^{b} > 1$.
(41) If $a > 1$ and $b > 0$, then $a^{b} > 1$.
(42) If $a > 0$ and $a < b$ and $c > 0$, then $a^{c} < b^{c}$.
(43) If $a > 0$ and $a < b$ and $c > 0$, then $a^{c} < b^{c}$.
(44) If $a < 0$ and $a < b$ and $c < 0$, then $a^{c} > b^{c}$.
(45) If $a < b$ and $c > 1$, then $c^{a} < c^{b}$.
(46) If $a \neq 0$, then $a^{n} = a_{N}^{n}$.
(47) If $n \ge 1$, then $a^{n} = a^{n}$.
(48) If $a \neq 0$, then $a^{n} = a^{n}$.
(49) If $n \ge 1$, then $a^{n} = a^{n}$.
(50) If $a \neq 0$, then $a^{p} = a^{p}_{Q}$.
(51) If $a > 0$ and $n \ge 1$, then $a^{\frac{1}{n}} = \sqrt[n]{a}$.
(53) $a^{2} = a^{2}$.
(54) If $a \neq 0$ and there exists l such that $k = 2 \cdot l$, then $(-a)^{k} = a^{k}$.
(55) If $a \neq 0$ and there exists l such that $k = 2 \cdot l + 1$, then $(-a)^{k} = -a^{k}$.
Next we state two propositions:
(56) If $-1 < a$, then $(1 + a)^{n} \ge 1 + n \cdot a$.
(57) If $a > 0$ and $a \neq 1$ and $c \neq d$, then $a^{c} \neq a^{d}$.
Let us consider a, b . Let us assume that $a > 0$ and $a \neq 1$ and $b > 0$. The functor $\log_{a} b$ yields a real number and is defined by:
(Def.3) $a^{\log_{a} b} = b$.

The following propositions are true:

- For all a, b, c such that a > 0 and $a \neq 1$ and b > 0 holds $c = \log_a b$ if (58)and only if $a^c = b$.
- If a > 0 and $a \neq 1$, then $\log_a 1 = 0$. (59)
- If a > 0 and $a \neq 1$, then $\log_a a = 1$. (60)
- If a > 0 and $a \neq 1$ and b > 0 and c > 0, then $\log_a b + \log_a c = \log_a (b \cdot c)$. (61)
- If a > 0 and $a \neq 1$ and b > 0 and c > 0, then $\log_a b \log_a c = \log_a \frac{b}{c}$. (62)

1 and b > 0. The

- (63) If a > 0 and $a \neq 1$ and b > 0, then $\log_a(b^c) = c \cdot \log_a b$.
- (64) If a > 0 and $a \neq 1$ and b > 0 and $b \neq 1$ and c > 0, then $\log_a c = \log_a b \cdot \log_b c$.
- (65) If a > 1 and b > 0 and c > b, then $\log_a c > \log_a b$.
- (66) If a > 0 and a < 1 and b > 0 and c > b, then $\log_a c < \log_a b$.
- (67) For every sequence of real numbers s such that for every n holds $s(n) = (1 + \frac{1}{n+1})^{n+1}$ holds s is convergent.

The real number e is defined as follows:

(Def.4) for every sequence of real numbers s such that for every n holds
$$s(n) = (1 + \frac{1}{n+1})^{n+1}$$
 holds $e = \lim s$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [3] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841–845, 1990.
- Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [8] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887– 890, 1990.
- Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [10] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

Received October 1, 1990