Three-Argument Operations and Four-Argument Operations ${ }^{1}$

Michal Muzalewski
Warsaw University
Białystok

Wojciech Skaba
University of Toruń

Summary. The article contains the definition of three- and fourargument operations. The article is also introduces a few operation related schemes: FuncEx3D, TriOpEx, Lambda3D, TriOpLambda, FuncEx4D, QuaOpEx, Lambda4D, QuaOpLambda.

MML Identifier: MULTOP_1.

The terminology and notation used in this paper have been introduced in the following articles: [4], [1], [2], [5], and [3]. Let f be a function, and let a, b, c be arbitrary. The functor $f(a, b, c)$ is defined by:
(Def.1) $\quad f(a, b, c)=f(\langle a, b, c\rangle)$.
We now state the proposition
(1) For every function f and for arbitrary a, b, c holds $f(a, b, c)=f(\langle a, b, c\rangle)$.

For simplicity we adopt the following rules: A, B, C, D are non-empty sets, a is an element of A, b is an element of B, and c is an element of C. Let us consider A, B, C, D, and let f be a function from $: A, B, C$: into D, and let us consider a, b, c. Then $f(a, b, c)$ is an element of D.

We adopt the following rules: X, Y, Z denote sets, T denotes a non-empty set, and x, y, z are arbitrary. One can prove the following propositions:
(2) For all functions f_{1}, f_{2} from $\left.: X, Y, Z:\right]$ into T such that $T \neq \emptyset$ and for all x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ holds $f_{1}(\langle x, y, z\rangle)=$ $f_{2}(\langle x, y, z\rangle)$ holds $f_{1}=f_{2}$.
(3) For all functions f_{1}, f_{2} from : A, B, C : into D such that for all a, b, c holds $f_{1}(\langle a, b, c\rangle)=f_{2}(\langle a, b, c\rangle)$ holds $f_{1}=f_{2}$.

[^0](4) For all functions f_{1}, f_{2} from : A, B, C : into D such that for every element a of A and for every element b of B and for every element c of C holds $f_{1}(a, b, c)=f_{2}(a, b, c)$ holds $f_{1}=f_{2}$.
Let us consider A. A ternary operation on A is a function from : A, A, A : into A.

In this article we present several logical schemes. The scheme FuncEx3D concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a nonempty set \mathcal{D}, and a 4 -ary predicate \mathcal{P}, and states that:
there exists a function f from $: \mathcal{A}, \mathcal{B}, \mathcal{C}$: into \mathcal{D} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} holds $\mathcal{P}[x, y, z, f(\langle x, y, z\rangle)]$
provided the following requirements are met:

- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} there exists an element t of \mathcal{D} such that $\mathcal{P}[x, y, z, t]$,
- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for all elements t_{1}, t_{2} of \mathcal{D} such that $\mathcal{P}\left[x, y, z, t_{1}\right]$ and $\mathcal{P}\left[x, y, z, t_{2}\right]$ holds $t_{1}=t_{2}$.
The scheme $\operatorname{TriOpEx}$ concerns a non-empty set \mathcal{A}, and a 4 -ary predicate \mathcal{P}, and states that:
there exists a ternary operation o on \mathcal{A} such that for all elements a, b, c of \mathcal{A} holds $\mathcal{P}[a, b, c, o(a, b, c)]$ provided the parameters meet the following requirements:
- for every elements x, y, z of \mathcal{A} there exists an element t of \mathcal{A} such that $\mathcal{P}[x, y, z, t]$,
- for all elements x, y, z of \mathcal{A} and for all elements t_{1}, t_{2} of \mathcal{A} such that $\mathcal{P}\left[x, y, z, t_{1}\right]$ and $\mathcal{P}\left[x, y, z, t_{2}\right]$ holds $t_{1}=t_{2}$.
The scheme $L a m b d a 3 D$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a non-empty set \mathcal{D}, and a ternary functor \mathcal{F} yielding an element of \mathcal{D} and states that:
there exists a function f from $: \mathcal{A}, \mathcal{B}, \mathcal{C}:$ into \mathcal{D} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} holds $f(\langle x, y, z\rangle)=$ $\mathcal{F}(x, y, z)$
for all values of the parameters.
The scheme TriOpLambda concerns a non-empty set \mathcal{A} and a ternary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
there exists a ternary operation on \mathcal{A} such that for all elements a, b, c of \mathcal{A} holds $o(a, b, c)=\mathcal{F}(a, b, c)$ for all values of the parameters.

Let f be a function, and let a, b, c, d be arbitrary. The functor $f(a, b, c, d)$ is defined as follows:
(Def.2) $\quad f(a, b, c, d)=f(\langle a, b, c, d\rangle)$.
One can prove the following proposition
(5) For every function f and for arbitrary a, b, c, d holds $f(a, b, c, d)=$ $f(\langle a, b, c, d\rangle)$.

For simplicity we adopt the following rules: A, B, C, D, E will be non-empty sets, a will be an element of A, b will be an element of B, c will be an element of C, and d will be an element of D. Let us consider A, B, C, D, E, and let f be a function from $: A, B, C, D:$ into E, and let us consider a, b, c, d. Then $f(a, b, c, d)$ is an element of E.

We adopt the following rules: X, Y, Z, S will be sets, T will be a non-empty set, and x, y, z, s will be arbitrary. The following three propositions are true:
(6) Let f_{1}, f_{2} be functions from $: X, Y, Z, S$: into T. Then if $T \neq \emptyset$ and for all x, y, z, s such that $x \in X$ and $y \in Y$ and $z \in Z$ and $s \in S$ holds $f_{1}(\langle x, y, z, s\rangle)=f_{2}(\langle x, y, z, s\rangle)$, then $f_{1}=f_{2}$.
(7) For all functions f_{1}, f_{2} from : A, B, C, D : into E such that for all a, b, c, d holds $f_{1}(\langle a, b, c, d\rangle)=f_{2}(\langle a, b, c, d\rangle)$ holds $f_{1}=f_{2}$.
(8) For all functions f_{1}, f_{2} from $\left.: A, B, C, D:\right]$ into E such that for every element a of A and for every element b of B and for every element c of C and for every element d of D holds $f_{1}(a, b, c, d)=f_{2}(a, b, c, d)$ holds $f_{1}=f_{2}$.
Let us consider A. A quadrary operation on A is a function from : A, A, A, A :] into A.

Now we present four schemes. The scheme FuncEx $4 D$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a non-empty set \mathcal{D}, a non-empty set \mathcal{E}, and a 5 -ary predicate \mathcal{P}, and states that:
there exists a function f from $: \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}:$ into \mathcal{E} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} holds $\mathcal{P}[x, y, z, s, f(\langle x, y, z, s\rangle)]$ provided the parameters have the following properties:

- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} there exists an element t of \mathcal{E} such that $\mathcal{P}[x, y, z, s, t]$,
- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} and for all elements t_{1}, t_{2} of \mathcal{E} such that $\mathcal{P}\left[x, y, z, s, t_{1}\right]$ and $\mathcal{P}\left[x, y, z, s, t_{2}\right]$ holds $t_{1}=t_{2}$.
The scheme $Q u a O p E x$ deals with a non-empty set \mathcal{A}, and a 5 -ary predicate \mathcal{P}, and states that:
there exists a quadrary operation o on \mathcal{A} such that for all elements a, b, c, d of \mathcal{A} holds $\mathcal{P}[a, b, c, d, o(a, b, c, d)]$
provided the parameters meet the following requirements:
- for every elements x, y, z, s of \mathcal{A} there exists an element t of \mathcal{A} such that $\mathcal{P}[x, y, z, s, t]$,
- for all elements x, y, z, s of \mathcal{A} and for all elements t_{1}, t_{2} of \mathcal{A} such that $\mathcal{P}\left[x, y, z, s, t_{1}\right]$ and $\mathcal{P}\left[x, y, z, s, t_{2}\right]$ holds $t_{1}=t_{2}$.
The scheme Lambda ${ }_{4} D$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a non-empty set \mathcal{D}, a non-empty set \mathcal{E}, and a 4 -ary functor \mathcal{F} yielding an element of \mathcal{E} and states that:
there exists a function f from $: \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}:]$ into \mathcal{E} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} holds $f(\langle x, y, z, s\rangle)=\mathcal{F}(x, y, z, s)$ for all values of the parameters.

The scheme $Q u a O p L a m b d a$ deals with a non-empty set \mathcal{A} and a 4 -ary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
there exists a quadrary operation o on \mathcal{A} such that for all elements a, b, c, d of \mathcal{A} holds $o(a, b, c, d)=\mathcal{F}(a, b, c, d)$ for all values of the parameters.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[5] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received October 2, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6

