Three-Argument Operations and Four-Argument Operations¹

Michal Muzalewski Warsaw University Białystok Wojciech Skaba University of Toruń

Summary. The article contains the definition of three- and fourargument operations. The article is also introduces a few operation related schemes: *FuncEx3D*, *TriOpEx*, *Lambda3D*, *TriOpLambda*, *FuncEx4D*, *QuaOpEx*, *Lambda4D*, *QuaOpLambda*.

MML Identifier: MULTOP_1.

The terminology and notation used in this paper have been introduced in the following articles: [4], [1], [2], [5], and [3]. Let f be a function, and let a, b, c be arbitrary. The functor f(a, b, c) is defined by:

(Def.1) $f(a, b, c) = f(\langle a, b, c \rangle).$

We now state the proposition

(1) For every function f and for arbitrary a, b, c holds $f(a, b, c) = f(\langle a, b, c \rangle)$.

For simplicity we adopt the following rules: A, B, C, D are non-empty sets, a is an element of A, b is an element of B, and c is an element of C. Let us consider A, B, C, D, and let f be a function from [A, B, C] into D, and let us consider a, b, c. Then f(a, b, c) is an element of D.

We adopt the following rules: X, Y, Z denote sets, T denotes a non-empty set, and x, y, z are arbitrary. One can prove the following propositions:

- (2) For all functions f_1 , f_2 from [X, Y, Z] into T such that $T \neq \emptyset$ and for all x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ holds $f_1(\langle x, y, z \rangle) = f_2(\langle x, y, z \rangle)$ holds $f_1 = f_2$.
- (3) For all functions f_1 , f_2 from [A, B, C] into D such that for all a, b, c holds $f_1(\langle a, b, c \rangle) = f_2(\langle a, b, c \rangle)$ holds $f_1 = f_2$.

¹Supported by RPBP.III-24.C6

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 (4) For all functions f_1 , f_2 from [A, B, C] into D such that for every element a of A and for every element b of B and for every element c of C holds $f_1(a, b, c) = f_2(a, b, c)$ holds $f_1 = f_2$.

Let us consider A. A ternary operation on A is a function from [A, A, A] into A.

In this article we present several logical schemes. The scheme FuncEx3D concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a non-empty set \mathcal{D} , and a 4-ary predicate \mathcal{P} , and states that:

there exists a function f from $[\mathcal{A}, \mathcal{B}, \mathcal{C}]$ into \mathcal{D} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} holds $\mathcal{P}[x, y, z, f(\langle x, y, z \rangle)]$

provided the following requirements are met:

- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} there exists an element t of \mathcal{D} such that $\mathcal{P}[x, y, z, t]$,
- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for all elements t_1 , t_2 of \mathcal{D} such that $\mathcal{P}[x, y, z, t_1]$ and $\mathcal{P}[x, y, z, t_2]$ holds $t_1 = t_2$.

The scheme TriOpEx concerns a non-empty set \mathcal{A} , and a 4-ary predicate \mathcal{P} , and states that:

there exists a ternary operation o on \mathcal{A} such that for all elements a, b, c of \mathcal{A} holds $\mathcal{P}[a, b, c, o(a, b, c)]$

provided the parameters meet the following requirements:

- for every elements x, y, z of \mathcal{A} there exists an element t of \mathcal{A} such that $\mathcal{P}[x, y, z, t]$,
- for all elements x, y, z of \mathcal{A} and for all elements t_1, t_2 of \mathcal{A} such that $\mathcal{P}[x, y, z, t_1]$ and $\mathcal{P}[x, y, z, t_2]$ holds $t_1 = t_2$.

The scheme Lambda3D concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a non-empty set \mathcal{D} , and a ternary functor \mathcal{F} yielding an element of \mathcal{D} and states that:

there exists a function f from $[\mathcal{A}, \mathcal{B}, \mathcal{C}]$ into \mathcal{D} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} holds $f(\langle x, y, z \rangle) = \mathcal{F}(x, y, z)$

for all values of the parameters.

The scheme TriOpLambda concerns a non-empty set \mathcal{A} and a ternary functor \mathcal{F} yielding an element of \mathcal{A} and states that:

there exists a ternary operation o on \mathcal{A} such that for all elements a, b, c of \mathcal{A} holds $o(a, b, c) = \mathcal{F}(a, b, c)$

for all values of the parameters.

Let f be a function, and let a, b, c, d be arbitrary. The functor f(a, b, c, d) is defined as follows:

(Def.2) $f(a, b, c, d) = f(\langle a, b, c, d \rangle).$

One can prove the following proposition

(5) For every function f and for arbitrary a, b, c, d holds $f(a, b, c, d) = f(\langle a, b, c, d \rangle).$

For simplicity we adopt the following rules: A, B, C, D, E will be non-empty sets, a will be an element of A, b will be an element of B, c will be an element of C, and d will be an element of D. Let us consider A, B, C, D, E, and let f be a function from [A, B, C, D] into E, and let us consider a, b, c, d. Then f(a, b, c, d) is an element of E.

We adopt the following rules: X, Y, Z, S will be sets, T will be a non-empty set, and x, y, z, s will be arbitrary. The following three propositions are true:

- (6) Let f_1 , f_2 be functions from [X, Y, Z, S] into T. Then if $T \neq \emptyset$ and for all x, y, z, s such that $x \in X$ and $y \in Y$ and $z \in Z$ and $s \in S$ holds $f_1(\langle x, y, z, s \rangle) = f_2(\langle x, y, z, s \rangle)$, then $f_1 = f_2$.
- (7) For all functions f_1 , f_2 from [A, B, C, D] into E such that for all a, b, c, d holds $f_1(\langle a, b, c, d \rangle) = f_2(\langle a, b, c, d \rangle)$ holds $f_1 = f_2$.
- (8) For all functions f_1 , f_2 from [A, B, C, D] into E such that for every element a of A and for every element b of B and for every element c of C and for every element d of D holds $f_1(a, b, c, d) = f_2(a, b, c, d)$ holds $f_1 = f_2$.

Let us consider A. A quadrary operation on A is a function from [A, A, A, A] into A.

Now we present four schemes. The scheme FuncEx4D concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a non-empty set \mathcal{D} , a non-empty set \mathcal{E} , and a 5-ary predicate \mathcal{P} , and states that:

there exists a function f from $[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}]$ into \mathcal{E} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} holds $\mathcal{P}[x, y, z, s, f(\langle x, y, z, s \rangle)]$

provided the parameters have the following properties:

- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} there exists an element t of \mathcal{E} such that $\mathcal{P}[x, y, z, s, t]$,
- for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} and for all elements t_1 , t_2 of \mathcal{E} such that $\mathcal{P}[x, y, z, s, t_1]$ and $\mathcal{P}[x, y, z, s, t_2]$ holds $t_1 = t_2$.

The scheme QuaOpEx deals with a non-empty set \mathcal{A} , and a 5-ary predicate \mathcal{P} , and states that:

there exists a quadrary operation o on \mathcal{A} such that for all elements a, b, c, d of \mathcal{A} holds $\mathcal{P}[a, b, c, d, o(a, b, c, d)]$

provided the parameters meet the following requirements:

- for every elements x, y, z, s of \mathcal{A} there exists an element t of \mathcal{A} such that $\mathcal{P}[x, y, z, s, t]$,
- for all elements x, y, z, s of \mathcal{A} and for all elements t_1, t_2 of \mathcal{A} such that $\mathcal{P}[x, y, z, s, t_1]$ and $\mathcal{P}[x, y, z, s, t_2]$ holds $t_1 = t_2$.

The scheme Lambda4D concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a non-empty set \mathcal{D} , a non-empty set \mathcal{E} , and a 4-ary functor \mathcal{F} yielding an element of \mathcal{E} and states that:

there exists a function f from $[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}]$ into \mathcal{E} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} holds $f(\langle x, y, z, s \rangle) = \mathcal{F}(x, y, z, s)$ for all values of the parameters.

The scheme QuaOpLambda deals with a non-empty set \mathcal{A} and a 4-ary functor \mathcal{F} yielding an element of \mathcal{A} and states that:

there exists a quadrary operation o on \mathcal{A} such that for all elements a, b, c, d of \mathcal{A} holds $o(a, b, c, d) = \mathcal{F}(a, b, c, d)$

for all values of the parameters.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [5] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.

Received October 2, 1990