On Pseudometric Spaces ${ }^{1}$

Adam Lecko
Technical University of Rzeszów

Mariusz Startek
Technical University of Rzeszów

Abstract

Summary. We introduce the equivalence classes in a pseudometric space. Next we prove that the set of the equivalence classes forms the metric space with the special metric defined in the article.

MML Identifier: METRIC_2.

The terminology and notation used here have been introduced in the following articles: [9], [4], [13], [12], [10], [8], [2], [3], [1], [14], [7], [11], [5], and [6]. Let M be a metric structure, and let x, y be elements of the carrier of M. The predicate $x \approx y$ is defined by:
(Def.1) $\quad \rho(x, y)=0$.
Let M be a metric structure, and let x be an element of the carrier of M. The functor x^{\square} yielding a subset of the carrier of M is defined as follows:
(Def.2) $\quad x^{\square}=\{y: x \approx y\}$, where y ranges over elements of the carrier of M.
One can prove the following proposition
(2) ${ }^{2}$ For every M being a metric structure and for every element x of the carrier of M holds $x^{\square}=\{y: x \approx y\}$, where y ranges over elements of the carrier of M.
Let M be a metric structure. A subset of the carrier of M is called a \square equivalence class of M if:
(Def.3) there exists an element x of the carrier of M such that it $=x^{\square}$.
Next we state a number of propositions:
$(4)^{3}$ For every pseudo metric space M and for every element x of the carrier of M holds $x \approx x$.
(5) For every pseudo metric space M and for all elements x, y of the carrier of M such that $x \approx y$ holds $y \approx x$.

[^0](6) For every pseudo metric space M and for all elements x, y, z of the carrier of M such that $x \approx y$ and $y \approx z$ holds $x \approx z$.
(7) For every pseudo metric space M and for all elements x, y of the carrier of M holds $y \in x^{\square}$ if and only if $y \approx x$.
(8) For every pseudo metric space M and for all elements x, p, q of the carrier of M such that $p \in x^{\square}$ and $q \in x^{\square}$ holds $p \approx q$.
(9) For every pseudo metric space M and for every element x of the carrier of M holds $x \in x^{\square}$.
(10) For every pseudo metric space M and for all elements x, y of the carrier of M holds $x \in y^{\square}$ if and only if $y \in x^{\square}$.
(11) For every pseudo metric space M and for all elements p, x, y of the carrier of M such that $p \in x^{\square}$ and $x \approx y$ holds $p \in y^{\square}$.
(12) For every pseudo metric space M and for all elements x, y of the carrier of M such that $y \in x^{\square}$ holds $x^{\square}=y^{\square}$.
(13) For every pseudo metric space M and for all elements x, y of the carrier of M holds $x^{\square}=y^{\square}$ if and only if $x \approx y$.
The following propositions are true:
(14) For every pseudo metric space M and for all elements x, y of the carrier of M holds $x^{\square} \cap y^{\square} \neq \emptyset$ if and only if $x \approx y$.
(15) For every pseudo metric space M and for every element x of the carrier of M holds x^{\square} is a non-empty set.
(16) For every pseudo metric space M and for every \square-equivalence class V of M holds V is a non-empty set.
(17) For every pseudo metric space M and for all elements x, p, q of the carrier of M such that $p \in x^{\square}$ and $q \in x^{\square}$ holds $\rho(p, q)=0$.
(18) For every metric space M and for all elements x, y of the carrier of M holds $x \approx y$ if and only if $x=y$.
(19) For every metric space M and for all elements x, y of the carrier of M holds $y \in x^{\square}$ if and only if $y=x$.
One can prove the following two propositions:
(20) For every metric space M and for every element x of the carrier of M holds $x^{\square}=\{x\}$.
(21) For every metric space M and for every subset V of the carrier of M holds V is a \square-equivalence class of M if and only if there exists an element x of the carrier of M such that $V=\{x\}$.
Let M be a metric structure. The functor M^{\square} yields a non-empty set and is defined by:
(Def.4) $\quad M^{\square}=\left\{s: \bigvee_{x} x^{\square}=s\right\}$, where s ranges over elements of $2^{\text {the carrier of } M}$, and x ranges over elements of the carrier of M.
One can prove the following proposition
(22) For every M being a metric structure holds $M^{\square}=\left\{s: \bigvee_{x} x^{\square}=s\right\}$, where s ranges over elements of $2^{\text {the carrier of } M}$, and x ranges over elements of the carrier of M.
In the sequel V is arbitrary. The following two propositions are true:
(23) For every M being a metric structure holds $V \in M^{\square}$ if and only if there exists an element x of the carrier of M such that $V=x^{\square}$.
(24) For every M being a metric structure and for every element x of the carrier of M holds $x^{\square} \in M^{\square}$.
We now state the proposition
$(26)^{4}$ For every M being a metric structure holds $V \in M^{\square}$ if and only if V is a \square-equivalence class of M.

We now state three propositions:
(27) For every metric space M and for every element x of the carrier of M holds $\{x\} \in M^{\square}$.
(28) For every metric space M holds $V \in M^{\square}$ if and only if there exists an element x of the carrier of M such that $V=\{x\}$.
(29) For every pseudo metric space M and for all elements V, Q of M^{\square} and for all elements $p_{1}, p_{2}, q_{1}, q_{2}$ of the carrier of M such that $p_{1} \in V$ and $q_{1} \in Q$ and $p_{2} \in V$ and $q_{2} \in Q$ holds $\rho\left(p_{1}, q_{1}\right)=\rho\left(p_{2}, q_{2}\right)$.
Let M be a pseudo metric space, and let V, Q be elements of M^{\square}, and let v be an element of \mathbb{R}. We say that the distance between V and Q is v if and only if:
(Def.5) for all elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ holds $\rho(p, q)=v$.

We now state two propositions:
$(31)^{5}$ For every pseudo metric space M and for all elements V, Q of M^{\square} and for every element v of \mathbb{R} holds the distance between V and Q is v if and only if there exist elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ and $\rho(p, q)=v$.
(32) For every pseudo metric space M and for all elements V, Q of M^{\square} and for every element v of \mathbb{R} holds the distance between V and Q is v if and only if the distance between Q and V is v.
Let M be a pseudo metric space, and let V, Q be elements of M^{\square}. The functor $\rho^{\circ}(V, Q)$ yields a subset of \mathbb{R} and is defined as follows:
(Def.6) $\quad \rho^{\circ}(V, Q)=\{v$: the distance between V and Q is $v\}$, where v ranges over elements of \mathbb{R}.

The following two propositions are true:

[^1](33) For every pseudo metric space M and for all elements V, Q of M^{\square} holds $\rho^{\circ}(V, Q)=\{v$: the distance between V and Q is $v\}$, where v ranges over elements of \mathbb{R}.
(34) For every pseudo metric space M and for all elements V, Q of M^{\square} and for every element v of \mathbb{R} holds $v \in \rho^{\circ}(V, Q)$ if and only if the distance between V and Q is v.
Let M be a pseudo metric space, and let v be an element of \mathbb{R}. The functor $\rho_{M}^{\square}{ }^{-1}(v)$ yields a subset of : M^{\square}, M^{\square} : and is defined as follows:
(Def.7) $\quad \rho_{M}^{\square}{ }^{-1}(v)=\left\{W: \bigvee_{V, Q}[W=\langle V, Q\rangle \wedge\right.$ the distance between V and Q is $v]\}$, where W ranges over elements of $: M^{\square}, M^{\square}:$, and V, Q range over elements of M^{\square}.
One can prove the following two propositions:
(35) For every pseudo metric space M and for every element v of \mathbb{R} holds $\rho_{M}^{\square}{ }^{-1}(v)=\left\{W: \bigvee_{V, Q}[W=\langle V, Q\rangle \wedge\right.$ the distance between V and Q is $v]\}$, where W ranges over elements of $: M^{\square}, M^{\square}:$, and V, Q range over elements of M^{\square}.
(36) For every pseudo metric space M and for every element v of \mathbb{R} and for every element W of : $M^{\square}, M^{\square}:$ holds $W \in \rho_{M}^{\square}{ }^{-1}(v)$ if and only if there exist elements V, Q of M^{\square} such that $W=\langle V, Q\rangle$ and the distance between V and Q is v.
Let M be a pseudo metric space. The functor $\rho^{\circ}\left(M^{\square}, M^{\square}\right)$ yields a subset of \mathbb{R} and is defined by: $\rho^{\circ}\left(M^{\square}, M^{\square}\right)=\left\{v: \bigvee_{V, Q}\right.$ the distance between V and Q is $\left.v\right\}$, where v ranges over elements of \mathbb{R}, and V, Q range over elements of M^{\square}.

The following two propositions are true:
(37) For every pseudo metric space M holds $\rho^{\circ}\left(M^{\square}, M^{\square}\right)=\left\{v: \bigvee_{V, Q}\right.$ the distance between V and Q is $v\}$, where v ranges over elements of \mathbb{R}, and V, Q range over elements of M^{\square}.
(38) For every pseudo metric space M and for every element v of \mathbb{R} holds $v \in \rho^{\circ}\left(M^{\square}, M^{\square}\right)$ if and only if there exist elements V, Q of M^{\square} such that the distance between V and Q is v.
Let M be a pseudo metric space. The functor $\operatorname{dom}_{1} \rho_{M}^{\square}$ yields a subset of M^{\square} and is defined as follows:
(Def.9) $\quad \operatorname{dom}_{1} \rho_{M}^{\square}=\left\{V: \bigvee_{Q} \bigvee_{v}\right.$ the distance between V and Q is $\left.v\right\}$, where V ranges over elements of M^{\square}, and Q ranges over elements of M^{\square}, and v ranges over elements of \mathbb{R}.
We now state two propositions:
(39) For every pseudo metric space M holds $\operatorname{dom}_{1} \rho_{M}^{\square}=\left\{V: \bigvee_{Q} \bigvee_{v}\right.$ the distance between V and Q is $v\}$, where V ranges over elements of M^{\square}, and Q ranges over elements of M^{\square}, and v ranges over elements of \mathbb{R}.
(40) For every pseudo metric space M and for every element V of M^{\square} holds $V \in \operatorname{dom}_{1} \rho_{M}^{\square}$ if and only if there exists an element Q of M^{\square} and there exists an element v of \mathbb{R} such that the distance between V and Q is v.
Let M be a pseudo metric space. The functor $\operatorname{dom}_{2} \rho_{M}^{\square}$ yields a subset of M^{\square} and is defined by:
(Def.10) $\operatorname{dom}_{2} \rho_{M}^{\square}=\left\{Q: \bigvee_{V} \bigvee_{v}\right.$ the distance between V and Q is $\left.v\right\}$, where Q ranges over elements of M^{\square}, and V ranges over elements of M^{\square}, and v ranges over elements of \mathbb{R}.
One can prove the following two propositions:
(41) For every pseudo metric space M holds $\operatorname{dom}_{2} \rho_{M}^{\square}=\left\{Q: \bigvee_{V} \bigvee_{v}\right.$ the distance between V and Q is $v\}$, where Q ranges over elements of M^{\square}, and V ranges over elements of M^{\square}, and v ranges over elements of \mathbb{R}.
(42) For every pseudo metric space M and for every element Q of M^{\square} holds $Q \in \operatorname{dom}_{2} \rho_{M}^{\square}$ if and only if there exists an element V of M^{\square} and there exists an element v of \mathbb{R} such that the distance between V and Q is v.
Let M be a pseudo metric space. The functor $\operatorname{dom} \rho_{M}^{\square}$ yielding a subset of : M^{\square}, M^{\square} : is defined as follows:
(Def.11) $\quad \operatorname{dom} \rho_{M}=\left\{V_{1}: \bigvee_{V, Q} \bigvee_{v}\left[V_{1}=\langle V, Q\rangle \wedge\right.\right.$ the distance between V and Q is $v]\}$, where V_{1} ranges over elements of : M^{\square}, M^{\square}], and V, Q range over elements of M^{\square}, and v ranges over elements of \mathbb{R}.

We now state two propositions:
(43) For every pseudo metric space M holds dom $\rho_{M}^{\square}=\left\{V_{1}: \bigvee_{V, Q} \bigvee_{v}\left[V_{1}=\right.\right.$ $\langle V, Q\rangle \wedge$ the distance between V and Q is $v]\}$, where V_{1} ranges over elements of $: M^{\square}, M^{\square}:$, and V, Q range over elements of M^{\square}, and v ranges over elements of \mathbb{R}.
(44) For every pseudo metric space M and for every element V_{1} of : M^{\square}, M^{\square} : holds $V_{1} \in \operatorname{dom} \rho_{M}^{\square}$ if and only if there exist elements V, Q of M^{\square} and there exists an element v of \mathbb{R} such that $V_{1}=\langle V, Q\rangle$ and the distance between V and Q is v.
Let M be a pseudo metric space. The functor graph ρ_{M}^{\square} yielding a subset of $\left.: M^{\square}, M^{\square}, \mathbb{R}:\right]$ is defined by:
(Def.12) graph $\rho_{M}^{\square}=\left\{V_{2}: \bigvee_{V, Q} \bigvee_{v}\left[V_{2}=\langle V, Q, v\rangle \wedge\right.\right.$ the distance between V and Q is $v]\}$, where V_{2} ranges over elements of : $\left.M^{\square}, M^{\square}, \mathbb{R}:\right]$, and V, Q range over elements of M^{\square}, and v ranges over elements of \mathbb{R}.

The following propositions are true:
(45) For every pseudo metric space M holds graph $\rho_{M}^{\square}=\left\{V_{2}: \bigvee_{V, Q} \bigvee_{v}\left[V_{2}=\right.\right.$ $\langle V, Q, v\rangle \wedge$ the distance between V and Q is $v]\}$, where V_{2} ranges over elements of : $\left.M^{\square}, M^{\square}, \mathbb{R}\right]$, and V, Q range over elements of M^{\square}, and v ranges over elements of \mathbb{R}.
(46) For every pseudo metric space M and for every element V_{2} of : M^{\square}, $M^{\square}, \mathbb{R}:$ holds $V_{2} \in \operatorname{graph} \rho_{M}^{\square}$ if and only if there exist elements V, Q of
M^{\square} and there exists an element v of \mathbb{R} such that $V_{2}=\langle V, Q, v\rangle$ and the distance between V and Q is v.
For every pseudo metric space M holds dom $\rho_{M}^{\square}=\operatorname{dom}_{2} \rho_{M}^{\square}$.
For every pseudo metric space M holds graph $\rho_{M}^{\square} \subseteq: \operatorname{dom}_{1} \rho_{M}^{\square}$, $\operatorname{dom}_{2} \rho_{M}^{\square}$, $\left.\rho^{\circ}\left(M^{\square}, M^{\square}\right)\right]$.
(49) Let M be a pseudo metric space. Then for all elements V, Q of M^{\square} and for all elements $p_{1}, q_{1}, p_{2}, q_{2}$ of the carrier of M and for all elements v_{1}, v_{2} of \mathbb{R} such that $p_{1} \in V$ and $q_{1} \in Q$ and $\rho\left(p_{1}, q_{1}\right)=v_{1}$ and $p_{2} \in V$ and $q_{2} \in Q$ and $\rho\left(p_{2}, q_{2}\right)=v_{2}$ holds $v_{1}=v_{2}$.
The following two propositions are true:
(50) For every pseudo metric space M and for all elements V, Q of M^{\square} and for all elements v_{1}, v_{2} of \mathbb{R} such that the distance between V and Q is v_{1} and the distance between V and Q is v_{2} holds $v_{1}=v_{2}$.
$(52)^{6}$ For every pseudo metric space M and for every elements V, Q of M^{\square} there exists an element v of \mathbb{R} such that the distance between V and Q is v.
Let M be a pseudo metric space. The functor ρ_{M}^{\square} yielding a function from $: M^{\square}, M^{\square}:$ into \mathbb{R} is defined as follows:
(Def.13) for all elements V, Q of M^{\square} and for all elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ holds $\rho_{M}^{\square}(V, Q)=\rho(p, q)$.
One can prove the following propositions:
(53) For every pseudo metric space M and for every function F from : M^{\square}, $M^{\square}:$ into \mathbb{R} holds $F=\rho_{M}^{\square}$ if and only if for all elements V, Q of M^{\square} and for all elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ holds $F(V, Q)=\rho(p, q)$.
(54) For every pseudo metric space M and for all elements V, Q of M^{\square} holds $\rho_{M}^{\square}(V, Q)=0$ if and only if $V=Q$.
(55) For every pseudo metric space M and for all elements V, Q of M^{\square} holds $\rho_{M}^{\square}(V, Q)=\rho_{M}^{\square}(Q, V)$.
(56) For every pseudo metric space M and for all elements V, Q, W of M^{\square} holds $\rho_{M}^{\square}(V, W) \leq \rho_{M}^{\square}(V, Q)+\rho_{M}^{\square}(Q, W)$.
Let M be a pseudo metric space. The functor $M_{/ \square}$ yields a metric space and is defined as follows:
(Def.14) $\quad M_{/ \square}=\left\langle M^{\square}, \rho_{M}^{\square}\right\rangle$.
We now state the proposition
(57) For every pseudo metric space M holds $M_{/ \square}=\left\langle M^{\square}, \rho_{M}^{\square}\right\rangle$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[^2][2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[6] Adam Lecko and Mariusz Startek. Submetric spaces - part I. Formalized Mathematics, 2(2):199-203, 1991.
[7] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[11] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received September 28, 1990

[^0]: ${ }^{1}$ Supported by RPBP-III.24.B3
 ${ }^{2}$ The proposition (1) was either repeated or obvious.
 ${ }^{3}$ The proposition (3) was either repeated or obvious.

[^1]: ${ }^{4}$ The proposition (25) was either repeated or obvious.
 ${ }^{5}$ The proposition (30) was either repeated or obvious.

[^2]: ${ }^{6}$ The proposition (51) was either repeated or obvious.

