On Pseudometric Spaces¹

Adam Lecko Technical University of Rzeszów Mariusz Startek Technical University of Rzeszów

Summary. We introduce the equivalence classes in a pseudometric space. Next we prove that the set of the equivalence classes forms the metric space with the special metric defined in the article.

MML Identifier: METRIC_2.

The terminology and notation used here have been introduced in the following articles: [9], [4], [13], [12], [10], [8], [2], [3], [1], [14], [7], [11], [5], and [6]. Let M be a metric structure, and let x, y be elements of the carrier of M. The predicate $x \approx y$ is defined by:

(Def.1) $\rho(x, y) = 0.$

Let M be a metric structure, and let x be an element of the carrier of M. The functor x^{\Box} yielding a subset of the carrier of M is defined as follows:

(Def.2) $x^{\Box} = \{y : x \approx y\}$, where y ranges over elements of the carrier of M.

One can prove the following proposition

(2)² For every M being a metric structure and for every element x of the carrier of M holds $x^{\Box} = \{y : x \approx y\}$, where y ranges over elements of the carrier of M.

Let M be a metric structure. A subset of the carrier of M is called a \square -equivalence class of M if:

(Def.3) there exists an element x of the carrier of M such that it $= x^{\Box}$.

Next we state a number of propositions:

- (4)³ For every pseudo metric space M and for every element x of the carrier of M holds $x \approx x$.
- (5) For every pseudo metric space M and for all elements x, y of the carrier of M such that $x \approx y$ holds $y \approx x$.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP-III.24.B3

²The proposition (1) was either repeated or obvious.

³The proposition (3) was either repeated or obvious.

- (6) For every pseudo metric space M and for all elements x, y, z of the carrier of M such that $x \approx y$ and $y \approx z$ holds $x \approx z$.
- (7) For every pseudo metric space M and for all elements x, y of the carrier of M holds $y \in x^{\Box}$ if and only if $y \approx x$.
- (8) For every pseudo metric space M and for all elements x, p, q of the carrier of M such that $p \in x^{\Box}$ and $q \in x^{\Box}$ holds $p \approx q$.
- (9) For every pseudo metric space M and for every element x of the carrier of M holds $x \in x^{\Box}$.
- (10) For every pseudo metric space M and for all elements x, y of the carrier of M holds $x \in y^{\Box}$ if and only if $y \in x^{\Box}$.
- (11) For every pseudo metric space M and for all elements p, x, y of the carrier of M such that $p \in x^{\Box}$ and $x \approx y$ holds $p \in y^{\Box}$.
- (12) For every pseudo metric space M and for all elements x, y of the carrier of M such that $y \in x^{\Box}$ holds $x^{\Box} = y^{\Box}$.
- (13) For every pseudo metric space M and for all elements x, y of the carrier of M holds $x^{\Box} = y^{\Box}$ if and only if $x \approx y$.

The following propositions are true:

- (14) For every pseudo metric space M and for all elements x, y of the carrier of M holds $x^{\Box} \cap y^{\Box} \neq \emptyset$ if and only if $x \approx y$.
- (15) For every pseudo metric space M and for every element x of the carrier of M holds x^{\Box} is a non-empty set.
- (16) For every pseudo metric space M and for every \Box -equivalence class V of M holds V is a non-empty set.
- (17) For every pseudo metric space M and for all elements x, p, q of the carrier of M such that $p \in x^{\Box}$ and $q \in x^{\Box}$ holds $\rho(p,q) = 0$.
- (18) For every metric space M and for all elements x, y of the carrier of M holds $x \approx y$ if and only if x = y.
- (19) For every metric space M and for all elements x, y of the carrier of M holds $y \in x^{\Box}$ if and only if y = x.

One can prove the following two propositions:

- (20) For every metric space M and for every element x of the carrier of M holds $x^{\Box} = \{x\}$.
- (21) For every metric space M and for every subset V of the carrier of M holds V is a \Box -equivalence class of M if and only if there exists an element x of the carrier of M such that $V = \{x\}$.

Let M be a metric structure. The functor M^{\Box} yields a non-empty set and is defined by:

(Def.4) $M^{\Box} = \{s : \bigvee_x x^{\Box} = s\}$, where s ranges over elements of 2^{the carrier of M}, and x ranges over elements of the carrier of M.

One can prove the following proposition

(22) For every M being a metric structure holds $M^{\Box} = \{s : \bigvee_x x^{\Box} = s\}$, where s ranges over elements of $2^{\text{the carrier of } M}$, and x ranges over elements of the carrier of M.

In the sequel V is arbitrary. The following two propositions are true:

- (23) For every M being a metric structure holds $V \in M^{\Box}$ if and only if there exists an element x of the carrier of M such that $V = x^{\Box}$.
- (24) For every M being a metric structure and for every element x of the carrier of M holds $x^{\Box} \in M^{\Box}$.

We now state the proposition

(26)⁴ For every M being a metric structure holds $V \in M^{\square}$ if and only if V is a \square -equivalence class of M.

We now state three propositions:

- (27) For every metric space M and for every element x of the carrier of M holds $\{x\} \in M^{\square}$.
- (28) For every metric space M holds $V \in M^{\Box}$ if and only if there exists an element x of the carrier of M such that $V = \{x\}$.
- (29) For every pseudo metric space M and for all elements V, Q of M^{\Box} and for all elements p_1, p_2, q_1, q_2 of the carrier of M such that $p_1 \in V$ and $q_1 \in Q$ and $p_2 \in V$ and $q_2 \in Q$ holds $\rho(p_1, q_1) = \rho(p_2, q_2)$.

Let M be a pseudo metric space, and let V, Q be elements of M^{\Box} , and let v be an element of \mathbb{R} . We say that the distance between V and Q is v if and only if:

(Def.5) for all elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ holds $\rho(p,q) = v$.

We now state two propositions:

- (31)⁵ For every pseudo metric space M and for all elements V, Q of M^{\Box} and for every element v of \mathbb{R} holds the distance between V and Q is v if and only if there exist elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ and $\rho(p,q) = v$.
- (32) For every pseudo metric space M and for all elements V, Q of M^{\Box} and for every element v of \mathbb{R} holds the distance between V and Q is v if and only if the distance between Q and V is v.

Let M be a pseudo metric space, and let V, Q be elements of M^{\Box} . The functor $\rho^{\circ}(V, Q)$ yields a subset of \mathbb{R} and is defined as follows:

(Def.6) $\rho^{\circ}(V,Q) = \{v : \text{the distance between } V \text{ and } Q \text{ is } v \}, \text{ where } v \text{ ranges over elements of } \mathbb{R}.$

The following two propositions are true:

 $^{^{4}}$ The proposition (25) was either repeated or obvious.

⁵The proposition (30) was either repeated or obvious.

- (33) For every pseudo metric space M and for all elements V, Q of M^{\Box} holds $\rho^{\circ}(V,Q) = \{v : \text{the distance between } V \text{ and } Q \text{ is } v \}$, where v ranges over elements of \mathbb{R} .
- (34) For every pseudo metric space M and for all elements V, Q of M^{\Box} and for every element v of \mathbb{R} holds $v \in \rho^{\circ}(V, Q)$ if and only if the distance between V and Q is v.

Let M be a pseudo metric space, and let v be an element of \mathbb{R} . The functor $\rho_M^{\Box}^{-1}(v)$ yields a subset of $[M^{\Box}, M^{\Box}]$ and is defined as follows:

(Def.7) $\rho_M^{\Box \ -1}(v) = \{W : \bigvee_{V,Q} [W = \langle V, Q \rangle \land \text{ the distance between } V \text{ and } Q \text{ is } v]\},$ where W ranges over elements of $[M^{\Box}, M^{\Box}],$ and V, Q range over elements of M^{\Box} .

One can prove the following two propositions:

- (35) For every pseudo metric space M and for every element v of \mathbb{R} holds $\rho_M^{\Box} {}^{-1}(v) = \{W : \bigvee_{V,Q} [W = \langle V, Q \rangle \land \text{ the distance between } V \text{ and } Q \text{ is } v]\}$, where W ranges over elements of $[M^{\Box}, M^{\Box}]$, and V, Q range over elements of M^{\Box} .
- (36) For every pseudo metric space M and for every element v of \mathbb{R} and for every element W of $[M^{\Box}, M^{\Box}]$ holds $W \in \rho_M^{\Box}^{-1}(v)$ if and only if there exist elements V, Q of M^{\Box} such that $W = \langle V, Q \rangle$ and the distance between V and Q is v.

Let M be a pseudo metric space. The functor $\rho^{\circ}(M^{\Box}, M^{\Box})$ yields a subset of \mathbb{R} and is defined by:

(Def.8) $\rho^{\circ}(M^{\Box}, M^{\Box}) = \{v : \bigvee_{V,Q} \text{ the distance between } V \text{ and } Q \text{ is } v \}, \text{ where } v \text{ ranges over elements of } \mathbb{R}, \text{ and } V, Q \text{ range over elements of } M^{\Box}.$

The following two propositions are true:

- (37) For every pseudo metric space M holds $\rho^{\circ}(M^{\Box}, M^{\Box}) = \{v : \bigvee_{V,Q} \text{ the distance between } V \text{ and } Q \text{ is } v \}$, where v ranges over elements of \mathbb{R} , and V, Q range over elements of M^{\Box} .
- (38) For every pseudo metric space M and for every element v of \mathbb{R} holds $v \in \rho^{\circ}(M^{\Box}, M^{\Box})$ if and only if there exist elements V, Q of M^{\Box} such that the distance between V and Q is v.

Let M be a pseudo metric space. The functor dom₁ ρ_M^{\sqcup} yields a subset of M^{\Box} and is defined as follows:

(Def.9) dom₁ $\rho_M^{\Box} = \{V : \bigvee_Q \bigvee_v \text{ the distance between } V \text{ and } Q \text{ is } v \}$, where V ranges over elements of M^{\Box} , and Q ranges over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .

We now state two propositions:

(39) For every pseudo metric space M holds $\operatorname{dom}_1 \rho_M^{\Box} = \{V : \bigvee_Q \bigvee_v \text{ the distance between } V \text{ and } Q \text{ is } v \}$, where V ranges over elements of M^{\Box} , and Q ranges over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .

(40) For every pseudo metric space M and for every element V of M^{\Box} holds $V \in \text{dom}_1 \rho_M^{\Box}$ if and only if there exists an element Q of M^{\Box} and there exists an element v of \mathbb{R} such that the distance between V and Q is v.

Let M be a pseudo metric space. The functor dom₂ ρ_M^{\Box} yields a subset of M^{\Box} and is defined by:

(Def.10) $\operatorname{dom}_2 \rho_M^{\Box} = \{Q : \bigvee_V \bigvee_v \text{ the distance between } V \text{ and } Q \text{ is } v \}$, where Q ranges over elements of M^{\Box} , and V ranges over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .

One can prove the following two propositions:

- (41) For every pseudo metric space M holds $\operatorname{dom}_2 \rho_M^{\Box} = \{Q : \bigvee_V \bigvee_v \text{ the distance between } V \text{ and } Q \text{ is } v \}$, where Q ranges over elements of M^{\Box} , and V ranges over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .
- (42) For every pseudo metric space M and for every element Q of M^{\Box} holds $Q \in \operatorname{dom}_2 \rho_M^{\Box}$ if and only if there exists an element V of M^{\Box} and there exists an element v of \mathbb{R} such that the distance between V and Q is v.

Let M be a pseudo metric space. The functor dom ρ_M^{\Box} yielding a subset of $[M^{\Box}, M^{\Box}]$ is defined as follows:

(Def.11) dom $\rho_M^{\Box} = \{V_1 : \bigvee_{V,Q} \bigvee_v [V_1 = \langle V, Q \rangle \land \text{ the distance between } V \text{ and } Q \text{ is } v]\}$, where V_1 ranges over elements of $[M^{\Box}, M^{\Box}]$, and V, Q range over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .

We now state two propositions:

- (43) For every pseudo metric space M holds dom $\rho_M^{\Box} = \{V_1 : \bigvee_{V,Q} \bigvee_v [V_1 = \langle V, Q \rangle \land$ the distance between V and Q is v]}, where V_1 ranges over elements of $[M^{\Box}, M^{\Box}]$, and V, Q range over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .
- (44) For every pseudo metric space M and for every element V_1 of $[M^{\Box}, M^{\Box}]$ holds $V_1 \in \text{dom } \rho_M^{\Box}$ if and only if there exist elements V, Q of M^{\Box} and there exists an element v of \mathbb{R} such that $V_1 = \langle V, Q \rangle$ and the distance between V and Q is v.

Let M be a pseudo metric space. The functor graph ρ_M^{\Box} yielding a subset of $[M^{\Box}, M^{\Box}, \mathbb{R}]$ is defined by:

(Def.12) graph $\rho_M^{\Box} = \{V_2 : \bigvee_{V,Q} \bigvee_v [V_2 = \langle V, Q, v \rangle \land \text{ the distance between } V \text{ and } Q \text{ is } v]\}$, where V_2 ranges over elements of $[M^{\Box}, M^{\Box}, \mathbb{R}]$, and V, Q range over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .

The following propositions are true:

- (45) For every pseudo metric space M holds graph $\rho_M^{\Box} = \{V_2 : \bigvee_{V,Q} \bigvee_v [V_2 = \langle V, Q, v \rangle \land$ the distance between V and Q is v]}, where V_2 ranges over elements of $[M^{\Box}, M^{\Box}, \mathbb{R}]$, and V, Q range over elements of M^{\Box} , and v ranges over elements of \mathbb{R} .
- (46) For every pseudo metric space M and for every element V_2 of $[M^{\square}, M^{\square}, \mathbb{R}]$ holds $V_2 \in \operatorname{graph} \rho_M^{\square}$ if and only if there exist elements V, Q of

 M^{\Box} and there exists an element v of \mathbb{R} such that $V_2 = \langle V, Q, v \rangle$ and the distance between V and Q is v.

- (47) For every pseudo metric space M holds $\operatorname{dom}_1 \rho_M^{\Box} = \operatorname{dom}_2 \rho_M^{\Box}$.
- (48) For every pseudo metric space M holds graph $\rho_M^{\Box} \subseteq [\operatorname{dom}_1 \rho_M^{\Box}, \operatorname{dom}_2 \rho_M^{\Box}, \rho^{\circ}(M^{\Box}, M^{\Box})].$
- (49) Let M be a pseudo metric space. Then for all elements V, Q of M^{\Box} and for all elements p_1 , q_1 , p_2 , q_2 of the carrier of M and for all elements v_1 , v_2 of \mathbb{R} such that $p_1 \in V$ and $q_1 \in Q$ and $\rho(p_1, q_1) = v_1$ and $p_2 \in V$ and $q_2 \in Q$ and $\rho(p_2, q_2) = v_2$ holds $v_1 = v_2$.

The following two propositions are true:

- (50) For every pseudo metric space M and for all elements V, Q of M^{\Box} and for all elements v_1 , v_2 of \mathbb{R} such that the distance between V and Q is v_1 and the distance between V and Q is v_2 holds $v_1 = v_2$.
- $(52)^6$ For every pseudo metric space M and for every elements V, Q of M^{\Box} there exists an element v of \mathbb{R} such that the distance between V and Q is v.

Let M be a pseudo metric space. The functor ρ_M^{\Box} yielding a function from $[M^{\Box}, M^{\Box}]$ into \mathbb{R} is defined as follows:

(Def.13) for all elements V, Q of M^{\Box} and for all elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ holds $\rho_M^{\Box}(V, Q) = \rho(p, q)$.

One can prove the following propositions:

- (53) For every pseudo metric space M and for every function F from $[M^{\Box}, M^{\Box}]$ into \mathbb{R} holds $F = \rho_M^{\Box}$ if and only if for all elements V, Q of M^{\Box} and for all elements p, q of the carrier of M such that $p \in V$ and $q \in Q$ holds $F(V, Q) = \rho(p, q)$.
- (54) For every pseudo metric space M and for all elements V, Q of M^{\Box} holds $\rho_M^{\Box}(V, Q) = 0$ if and only if V = Q.
- (55) For every pseudo metric space M and for all elements V, Q of M^{\Box} holds $\rho_M^{\Box}(V, Q) = \rho_M^{\Box}(Q, V).$
- (56) For every pseudo metric space M and for all elements V, Q, W of M^{\Box} holds $\rho_M^{\Box}(V, W) \leq \rho_M^{\Box}(V, Q) + \rho_M^{\Box}(Q, W).$

Let M be a pseudo metric space. The functor $M_{/\Box}$ yields a metric space and is defined as follows:

(Def.14) $M_{/\Box} = \langle M^{\Box}, \rho_M^{\Box} \rangle.$

We now state the proposition

(57) For every pseudo metric space M holds $M_{/\Box} = \langle M^{\Box}, \rho_M^{\Box} \rangle$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.

⁶The proposition (51) was either repeated or obvious.

- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [6] Adam Lecko and Mariusz Startek. Submetric spaces part I. Formalized Mathematics, 2(2):199-203, 1991.
- [7] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [11] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [13] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received September 28, 1990