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Summary. The article contains a definition and basic properties

of a σ-additive, nonnegative measure, with values in
�

, the enlarged set

of real numbers, where
�

denotes set
�

=
�
∪ {−∞, +∞} - by [11]. We

present definitions of σ-field of sets, σ-additive measure, measurable sets,
measure zero sets and the basic theorems describing relationships between
the notions mentioned above. The work is the third part of the series of
articles concerning the Lebesgue measure theory.

MML Identifier: MEASURE1.

The papers [13], [12], [7], [8], [5], [6], [1], [10], [2], [9], [3], and [4] provide the
terminology and notation for this paper. One can prove the following four
propositions:

(1) For all sets X, Y holds
⋃
{X,Y, ∅} =

⋃
{X,Y }.

(2) For every natural number n holds n = 0 or n = 1 or 1 < n.

(4)1 For all Real numbers x, y, s, t such that 0 � ≤ x and 0 � ≤ s and x ≤ y

and s ≤ t holds x + s ≤ y + t.

(5) For all Real numbers x, y, z such that 0 � ≤ y and 0 � ≤ z and x = y + z

and y < +∞ holds z = x − y.

Let X be a set. A set is called a non-empty family of subsets of X if:

(Def.1) it 6= ∅ and for an arbitrary A such that A ∈ it holds A ∈ 2X .

One can prove the following propositions:

(6) For every set X and for every subset A of X holds {A} is a non-empty
family of subsets of X.

(7) For every set X and for all subsets A, B of X holds {A,B} is a non-
empty family of subsets of X.

(8) For every set X and for all subsets A, B, C of X holds {A,B,C} is a
non-empty family of subsets of X.

1The proposition (3) was either repeated or obvious.
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(9) For every set X holds {∅} is a non-empty family of subsets of X.

(10) For every set X holds {∅,X} is a non-empty family of subsets of X.

(12)2 For every set X holds 2X is a non-empty family of subsets of X.

The scheme DomsetFamEx concerns a set A, and a unary predicate P, and
states that:

there exists a non-empty family F of subsets of A such that for every set B

holds B ∈ F if and only if B ⊆ A and P[B]
provided the following condition is satisfied:

• there exists a set B such that B ⊆ A and P[B].
Let X be a set, and let S be a non-empty family of subsets of X. The functor

X \ S yielding a non-empty family of subsets of X is defined as follows:

(Def.2) for every set A holds A ∈ X \ S if and only if there exists a set B such
that B ∈ S and A = X \ B.

We now state three propositions:

(13) For every set X and for every non-empty family S of subsets of X and
for every set A holds A ∈ X \ S if and only if there exists a set B such
that B ∈ S and A = X \ B.

(14) For every set X and for every non-empty family S of subsets of X holds
S = X \ (X \ S).

(15) For every set X and for every non-empty family S of subsets of X holds
⋂

S = X \
⋃

(X \ S) and
⋃

S = X \
⋂

(X \ S).

Let X be a set. A non-empty family of subsets of X is said to be a field of
subsets of X if:

(Def.3) for every set A such that A ∈ it holds X \ A ∈ it and for all sets A, B

such that A ∈ it and B ∈ it holds A ∪ B ∈ it.

The following propositions are true:

(17)3 For every set X and for every field S of subsets of X holds S = X \ S.

(18) For every set X and for an arbitrary M holds M is a field of subsets of
X if and only if there exists a non-empty family S of subsets of X such
that M = S and for every set A such that A ∈ S holds X \A ∈ S and for
all sets A, B such that A ∈ S and B ∈ S holds A ∪ B ∈ S.

(19) For every set X and for every non-empty family S of subsets of X holds
S is a field of subsets of X if and only if for every set A such that A ∈ S

holds X \ A ∈ S and for all sets A, B such that A ∈ S and B ∈ S holds
A ∩ B ∈ S.

(20) For every set X and for every field S of subsets of X and for all sets A,
B such that A ∈ S and B ∈ S holds A \ B ∈ S.

(21) For every set X and for every field S of subsets of X holds ∅ ∈ S and
X ∈ S.

2The proposition (11) was either repeated or obvious.
3The proposition (16) was either repeated or obvious.
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Let X be a set, and let S be a non-empty family of subsets of X, and let F

be a function from S into
�
, and let A be an element of S. Then F (A) is a Real

number.

Let F be a function from � into
�
, and let n be a natural number. Then

F (n) is a Real number.

Let X be a set, and let S be a non-empty family of subsets of X, and let F

be a function from S into
�
. We say that F is non-negative if and only if:

(Def.4) for every element A of S holds 0 � ≤ F (A).

We now state the proposition

(23)4 For every set X and for every field S of subsets of X there exists a
function M from S into

�
such that M is non-negative and M(∅) = 0 �

and for all elements A, B of S such that A ∩ B = ∅ holds M(A ∪ B) =
M(A) + M(B).

Let X be a set, and let S be a field of subsets of X. A function from S into�
is called a measure on S if:

(Def.5) it is non-negative and it(∅) = 0 � and for all elements A, B of S such
that A ∩ B = ∅ holds it(A ∪ B) = it(A) + it(B).

Next we state two propositions:

(25)5 For every set X and for every field S of subsets of X and for every
measure M on S and for all elements A, B of S such that A ⊆ B holds
M(A) ≤ M(B).

(26) For every set X and for every field S of subsets of X and for every
measure M on S and for all elements A, B of S such that A ⊆ B and
M(A) < +∞ holds M(B \ A) = M(B) − M(A).

Let X be a set, and let S be a field of subsets of X, and let A, B be elements
of S. Then A ∪ B is an element of S.

Let X be a set, and let S be a field of subsets of X, and let A, B be elements
of S. Then A ∩ B is an element of S.

Let X be a set, and let S be a field of subsets of X, and let A, B be elements
of S. Then A \ B is an element of S.

The following proposition is true

(27) For every set X and for every field S of subsets of X and for every
measure M on S and for all elements A, B of S holds M(A ∪ B) ≤
M(A) + M(B).

Let X be a set, and let S be a field of subsets of X, and let M be a measure
on S, and let A be a set. We say that A is measurable w.r.t. M if and only if:

(Def.6) A ∈ S.

The following proposition is true

4The proposition (22) was either repeated or obvious.
5The proposition (24) was either repeated or obvious.
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(29)6 For every set X and for every field S of subsets of X and for every
measure M on S holds ∅ is measurable w.r.t. M and X is measurable
w.r.t. M and for all sets A, B such that A is measurable w.r.t. M and B

is measurable w.r.t. M holds X \A is measurable w.r.t. M and A ∪B is
measurable w.r.t. M and A ∩ B is measurable w.r.t. M .

Let X be a set, and let S be a field of subsets of X, and let M be a measure
on S. An element of S is called a set of measure zero w.r.t. M if:

(Def.7) M(it) = 0 � .

The following propositions are true:

(31)7 For every set X and for every field S of subsets of X and for every
measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M such that A ⊆ B holds A is a set of measure zero
w.r.t. M .

(32) For every set X and for every field S of subsets of X and for every
measure M on S and for all sets A, B of measure zero w.r.t. M holds
A ∪ B is a set of measure zero w.r.t. M and A ∩ B is a set of measure
zero w.r.t. M and A \ B is a set of measure zero w.r.t. M .

(33) For every set X and for every field S of subsets of X and for every
measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M holds M(A∪B) = M(A) and M(A∩B) = 0 � and
M(A \ B) = M(A).

(34) For every set X and for every subset A of X there exists a function F

from � into 2X such that rng F = {A}.

(35) For every set X and for every subset A of X there exists a function F

from � into {A} such that for every natural number n holds F (n) = A.

Let X be a set. A non-empty family of subsets of X is said to be a denu-
merable family of subsets of X if:

(Def.8) there exists a function F from � into 2X such that it = rng F .

We now state several propositions:

(37)8 For every set X and for every denumerable family S of subsets of X

there exists a function F from � into 2X such that S = rng F .

(38) For every set X and for every subsets A, B, C of X there exists a
function F from � into 2X such that rngF = {A,B,C} and F (0) = A

and F (1) = B and for every natural number n such that 1 < n holds
F (n) = C.

(39) For every set X and for all subsets A, B of X holds {A,B, ∅} is a
denumerable family of subsets of X.

6The proposition (28) was either repeated or obvious.
7The proposition (30) was either repeated or obvious.
8The proposition (36) was either repeated or obvious.
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(40) For every set X and for every subsets A, B of X there exists a function
F from � into 2X such that rng F = {A,B} and F (0) = A and for every
natural number n such that 0 < n holds F (n) = B.

(41) For every set X and for all subsets A, B of X holds {A,B} is a denu-
merable family of subsets of X.

(42) For every set X and for every denumerable family S of subsets of X

holds X \ S is a denumerable family of subsets of X.

Let X be a set. A non-empty family of subsets of X is said to be a σ-field
of subsets of X if:

(Def.9) for every set A such that A ∈ it holds X \ A ∈ it and for every denu-
merable family M of subsets of X such that M ⊆ it holds

⋃
M ∈ it.

One can prove the following propositions:

(44)9 For every set X and for every non-empty family S of subsets of X such
that S is a σ-field of subsets of X holds S is a field of subsets of X.

(45) For every set X and for every σ-field S of subsets of X holds ∅ ∈ S and
X ∈ S.

(46) For every set X and for every σ-field S of subsets of X and for all sets
A, B such that A ∈ S and B ∈ S holds A ∪ B ∈ S and A ∩ B ∈ S.

(47) For every set X and for every σ-field S of subsets of X and for all sets
A, B such that A ∈ S and B ∈ S holds A \ B ∈ S.

(48) For every set X and for every σ-field S of subsets of X holds S = X \S.

(49) For every set X and for every non-empty family S of subsets of X holds
S is a σ-field of subsets of X if and only if for every set A such that A ∈ S

holds X \ A ∈ S and for every denumerable family M of subsets of X

such that M ⊆ S holds
⋂

M ∈ S.

Let X be a set, and let S be a σ-field of subsets of X. A function from �
into S is said to be a sequence of separated subsets of S if:

(Def.10) for all natural numbers n, m such that n 6= m holds it(n) ∩ it(m) = ∅.

We now state the proposition

(51)10 For every set X and for every σ-field S of subsets of X and for every
function F from � into S and for every function M from S into

�
holds

M · F is a function from � into
�
.

Let X be a set, and let S be a σ-field of subsets of X, and let F be a function
from � into S. Then rng F is a non-empty family of subsets of X.

Let X be a set, and let S be a σ-field of subsets of X, and let F be a function
from � into S, and let M be a function from S into

�
. Then M ·F is a function

from � into
�
.

Next we state several propositions:

9The proposition (43) was either repeated or obvious.
10The proposition (50) was either repeated or obvious.
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(52) For every set X and for every σ-field S of subsets of X and for every
function F from � into S holds rng F is a denumerable family of subsets
of X.

(53) For every set X and for every σ-field S of subsets of X and for every
function F from � into S holds

⋃
rng F is an element of S.

(54) For every set X and for every σ-field S of subsets of X and for every
function F from � into S and for every function M from S into

�
such

that M is non-negative holds M · F is non-negative.

(55) For every set X and for every σ-field S of subsets of X and for every
Real numbers a, b there exists a function M from S into

�
such that for

every element A of S holds if A = ∅, then M(A) = a but if A 6= ∅, then
M(A) = b.

(56) For every set X and for every σ-field S of subsets of X there exists a
function M from S into

�
such that for every element A of S holds if

A = ∅, then M(A) = 0 � but if A 6= ∅, then M(A) = +∞.

(57) For every set X and for every σ-field S of subsets of X there exists
a function M from S into

�
such that for every element A of S holds

M(A) = 0 � .

(58) For every set X and for every σ-field S of subsets of X there exists a
function M from S into

�
such that M is non-negative and M(∅) = 0 �

and for every sequence F of separated subsets of S holds
∑

(M · F ) =
M(

⋃
rng F ).

Let X be a set, and let S be a σ-field of subsets of X. A function from S

into
�

is said to be a σ-measure on S if:

(Def.11) it is non-negative and it(∅) = 0 � and for every sequence F of separated
subsets of S holds

∑
(it · F ) = it(

⋃
rng F ).

Let X be a set. We see that the σ-field of subsets of X is a field of subsets
of X.

One can prove the following propositions:

(60)11 For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S holds M is a measure on S.

(61) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S such that A ∩ B = ∅
holds M(A ∪ B) = M(A) + M(B).

(62) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S such that A ⊆ B holds
M(A) ≤ M(B).

(63) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S such that A ⊆ B and
M(A) < +∞ holds M(B \ A) = M(B) − M(A).

11The proposition (59) was either repeated or obvious.
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(64) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S holds M(A ∪ B) ≤
M(A) + M(B).

Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-
measure on S, and let A be a set. We say that A is measurable w.r.t. M if and
only if:

(Def.12) A ∈ S.

Next we state two propositions:

(66)12 For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S holds ∅ is measurable w.r.t. M and X is measurable
w.r.t. M and for all sets A, B such that A is measurable w.r.t. M and B

is measurable w.r.t. M holds X \A is measurable w.r.t. M and A ∪B is
measurable w.r.t. M and A ∩ B is measurable w.r.t. M .

(67) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every denumerable family T of subsets of X

such that for every set A such that A ∈ T holds A is measurable w.r.t.
M holds

⋃
T is measurable w.r.t. M and

⋂
T is measurable w.r.t. M .

Let X be a set, and let S be a σ-field of subsets of X, and let M be a
σ-measure on S. An element of S is called a set of measure zero w.r.t. M if:

(Def.13) M(it) = 0 � .

Next we state three propositions:

(69)13 For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M such that A ⊆ B holds A is a set of measure zero
w.r.t. M .

(70) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all sets A, B of measure zero w.r.t. M holds
A ∪ B is a set of measure zero w.r.t. M and A ∩ B is a set of measure
zero w.r.t. M and A \ B is a set of measure zero w.r.t. M .

(71) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M holds M(A∪B) = M(A) and M(A∩B) = 0 � and
M(A \ B) = M(A).
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