Linear Independence in Left Module over Domain ${ }^{1}$

Michał Muzalewski
Warsaw University
Białystok

Wojciech Skaba
University of Toruń

-

Summary. Notion of submodule generated by a set of vectors and linear independence of a set of vectors. A few theorems originated as a generalization of the theorems from the article [18].

MML Identifier: LMOD_5.

The articles [22], [5], [3], [2], [4], [6], [21], [16], [14], [15], [1], [17], [19], [20], [7], [8], [9], [12], [11], [10], and [13] provide the terminology and notation for this paper. For simplicity we adopt the following rules: x is arbitrary, R is an associative ring, V is a left module over R, v, v_{1}, v_{2} are vectors of V, A, B are subsets of V, and l is a linear combination of A. We now define two new predicates. Let us consider R, V, A. We say that A is linearly independent if and only if:
(Def.1) for every l such that $\sum l=\Theta_{V}$ holds support $l=\emptyset$.
A is linearly dependent stands for A is not linearly independent.
One can prove the following propositions:
(2) ${ }^{2}$ If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
(3) If $0_{R} \neq 1_{R}$ and A is linearly independent, then $\Theta_{V} \notin A$.
(4) $\emptyset_{\text {the carrier of the carrier of } V}$ is linearly independent.
(5) If $0_{R} \neq 1_{R}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent, then $v_{1} \neq \Theta_{V}$ and $v_{2} \neq \Theta_{V}$.
(6) If $0_{R} \neq 1_{R}$, then $\left\{v, \Theta_{V}\right\}$ is linearly dependent and $\left\{\Theta_{V}, v\right\}$ is linearly dependent.

[^0]For simplicity we follow the rules: R will be an integral domain, V will be a left module over R, W will be a submodule of V, A, B will be subsets of V, and l will be a linear combination of A. Let us consider R, V, A. The functor $\operatorname{Lin}(A)$ yields a submodule of V and is defined as follows:
(Def.2) the carrier of the carrier of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
One can prove the following propositions:
(7) If the carrier of the carrier of $W=\left\{\sum l\right\}$, then $W=\operatorname{Lin}(A)$.
(8) The carrier of the carrier of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
(9) $\quad x \in \operatorname{Lin}(A)$ if and only if there exists l such that $x=\sum l$.
(10) If $x \in A$, then $x \in \operatorname{Lin}(A)$.

We now state several propositions:
(11) $\operatorname{Lin}\left(\emptyset_{\text {the }}\right.$ carrier of the carrier of $\left.V\right)=\mathbf{0}_{V}$.

If $\operatorname{Lin}(A)=\mathbf{0}_{V}$, then $A=\emptyset$ or $A=\left\{\Theta_{V}\right\}$.
If $0_{R} \neq 1_{R}$ and $A=$ the carrier of the carrier of W, then $\operatorname{Lin}(A)=W$.
If $0_{R} \neq 1_{R}$ and $A=$ the carrier of the carrier of V, then $\operatorname{Lin}(A)=V$.
If $A \subseteq B$, then $\operatorname{Lin}(A)$ is a submodule of $\operatorname{Lin}(B)$.
If $\operatorname{Lin}(A)=V$ and $A \subseteq B$, then $\operatorname{Lin}(B)=V$.
$\operatorname{Lin}(A \cup B)=\operatorname{Lin}(A)+\operatorname{Lin}(B)$.
$\operatorname{Lin}(A \cap B)$ is a submodule of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[9] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279-282, 1991.
[10] Michał Muzalewski and Wojciech Skaba. Linear combinations in left module over associative ring. Formalized Mathematics, 2(2):295-300, 1991.
[11] Michał Muzalewski and Wojciech Skaba. Operations on submodules in left module over associative ring. Formalized Mathematics, 2(2):289-293, 1991.
[12] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. Formalized Mathematics, 2(2):283-287, 1991.
[13] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[18] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[19] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received October 22, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6
 ${ }^{2}$ The proposition (1) was either repeated or obvious.

