Linear Independence in Left Module over Domain¹

Michał Muzalewski Warsaw University Białystok Wojciech Skaba University of Toruń

Summary. Notion of submodule generated by a set of vectors and linear independence of a set of vectors. A few theorems originated as a generalization of the theorems from the article [18].

 ${\rm MML} \ {\rm Identifier:} \ {\tt LMOD_5}.$

The articles [22], [5], [3], [2], [4], [6], [21], [16], [14], [15], [1], [17], [19], [20], [7], [8], [9], [12], [11], [10], and [13] provide the terminology and notation for this paper. For simplicity we adopt the following rules: x is arbitrary, R is an associative ring, V is a left module over R, v, v_1 , v_2 are vectors of V, A, B are subsets of V, and l is a linear combination of A. We now define two new predicates. Let us consider R, V, A. We say that A is linearly independent if and only if:

(Def.1) for every l such that $\sum l = \Theta_V$ holds support $l = \emptyset$.

A is linearly dependent stands for A is not linearly independent.

One can prove the following propositions:

- $(2)^2$ If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
- (3) If $0_R \neq 1_R$ and A is linearly independent, then $\Theta_V \notin A$.
- (4) $\emptyset_{\text{the carrier of the carrier of } V}$ is linearly independent.
- (5) If $0_R \neq 1_R$ and $\{v_1, v_2\}$ is linearly independent, then $v_1 \neq \Theta_V$ and $v_2 \neq \Theta_V$.
- (6) If $0_R \neq 1_R$, then $\{v, \Theta_V\}$ is linearly dependent and $\{\Theta_V, v\}$ is linearly dependent.

301

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C6

²The proposition (1) was either repeated or obvious.

For simplicity we follow the rules: R will be an integral domain, V will be a left module over R, W will be a submodule of V, A, B will be subsets of V, and l will be a linear combination of A. Let us consider R, V, A. The functor Lin(A) yields a submodule of V and is defined as follows:

(Def.2) the carrier of the carrier of $Lin(A) = \{\sum l\}.$

One can prove the following propositions:

- (7) If the carrier of the carrier of $W = \{\sum l\}$, then W = Lin(A).
- (8) The carrier of the carrier of $Lin(A) = \{\sum l\}.$
- (9) $x \in \text{Lin}(A)$ if and only if there exists l such that $x = \sum l$.
- (10) If $x \in A$, then $x \in \text{Lin}(A)$.

We now state several propositions:

- (11) $\operatorname{Lin}(\emptyset_{\text{the carrier of the carrier of }V}) = \mathbf{0}_V.$
- (12) If $\operatorname{Lin}(A) = \mathbf{0}_V$, then $A = \emptyset$ or $A = \{\Theta_V\}$.
- (13) If $0_R \neq 1_R$ and A = the carrier of the carrier of W, then Lin(A) = W.
- (14) If $0_R \neq 1_R$ and A = the carrier of the carrier of V, then Lin(A) = V.
- (15) If $A \subseteq B$, then $\operatorname{Lin}(A)$ is a submodule of $\operatorname{Lin}(B)$.
- (16) If $\operatorname{Lin}(A) = V$ and $A \subseteq B$, then $\operatorname{Lin}(B) = V$.
- (17) $\operatorname{Lin}(A \cup B) = \operatorname{Lin}(A) + \operatorname{Lin}(B).$
- (18) $\operatorname{Lin}(A \cap B)$ is a submodule of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [9] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279–282, 1991.
- [10] Michał Muzalewski and Wojciech Skaba. Linear combinations in left module over associative ring. Formalized Mathematics, 2(2):295–300, 1991.
- Michał Muzalewski and Wojciech Skaba. Operations on submodules in left module over associative ring. Formalized Mathematics, 2(2):289–293, 1991.
- [12] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. *Formalized Mathematics*, 2(2):283–287, 1991.
- [13] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.

- [14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [18] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.
- [19] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [22] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received October 22, 1990