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Université Catholique de Louvain

Linear Independence in Left Module over

Domain 1

Micha l Muzalewski

Warsaw University

Bia lystok

Wojciech Skaba

University of Toruń

Summary. Notion of submodule generated by a set of vectors and
linear independence of a set of vectors. A few theorems originated as a
generalization of the theorems from the article [18].
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The articles [22], [5], [3], [2], [4], [6], [21], [16], [14], [15], [1], [17], [19], [20],
[7], [8], [9], [12], [11], [10], and [13] provide the terminology and notation for
this paper. For simplicity we adopt the following rules: x is arbitrary, R is an
associative ring, V is a left module over R, v, v1, v2 are vectors of V , A, B
are subsets of V , and l is a linear combination of A. We now define two new
predicates. Let us consider R, V , A. We say that A is linearly independent if
and only if:

(Def.1) for every l such that
∑

l = ΘV holds support l = ∅.

A is linearly dependent stands for A is not linearly independent.

One can prove the following propositions:

(2)2 If A ⊆ B and B is linearly independent, then A is linearly independent.

(3) If 0R 6= 1R and A is linearly independent, then ΘV /∈ A.

(4) ∅the carrier of the carrier of V is linearly independent.

(5) If 0R 6= 1R and {v1, v2} is linearly independent, then v1 6= ΘV and
v2 6= ΘV .

(6) If 0R 6= 1R, then {v,ΘV } is linearly dependent and {ΘV , v} is linearly
dependent.

1Supported by RPBP.III-24.C6
2The proposition (1) was either repeated or obvious.
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For simplicity we follow the rules: R will be an integral domain, V will be
a left module over R, W will be a submodule of V , A, B will be subsets of V ,
and l will be a linear combination of A. Let us consider R, V , A. The functor
Lin(A) yields a submodule of V and is defined as follows:

(Def.2) the carrier of the carrier of Lin(A) = {
∑

l}.

One can prove the following propositions:

(7) If the carrier of the carrier of W = {
∑

l}, then W = Lin(A).

(8) The carrier of the carrier of Lin(A) = {
∑

l}.

(9) x ∈ Lin(A) if and only if there exists l such that x =
∑

l.

(10) If x ∈ A, then x ∈ Lin(A).

We now state several propositions:

(11) Lin(∅the carrier of the carrier of V ) = 0V .

(12) If Lin(A) = 0V , then A = ∅ or A = {ΘV }.

(13) If 0R 6= 1R and A = the carrier of the carrier of W , then Lin(A) = W .

(14) If 0R 6= 1R and A = the carrier of the carrier of V , then Lin(A) = V .

(15) If A ⊆ B, then Lin(A) is a submodule of Lin(B).

(16) If Lin(A) = V and A ⊆ B, then Lin(B) = V .

(17) Lin(A ∪ B) = Lin(A) + Lin(B).

(18) Lin(A ∩ B) is a submodule of Lin(A) ∩ Lin(B).
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