Linear Combinations in Left Module over Associative Ring¹

Michał Muzalewski Warsaw University Białystok Wojciech Skaba University of Toruń

Summary. Notion of linear combination of vectors in Left Module over Associative Ring, defined as a function from the carrier of Left Module over Associative Ring to the carrier of this Ring. The following operations are included: addition, subtraction of combinations and multiplication of a combination by a scalar of the Ring. Following it, the sum of a finite set of vectors and the sum of linear combinations is defined. Many theorems are proved. This article originated as a generalization of the article [19].

MML Identifier: LMOD_4.

The articles [22], [7], [5], [3], [6], [8], [21], [17], [15], [16], [2], [4], [18], [20], [1], [9], [10], [11], [13], [12], and [14] provide the terminology and notation for this paper. For simplicity we follow a convention: R will be an associative ring, V will be a left module over R, a, b will be scalars of R, x will be arbitrary, i will be a natural number, u, v, v_1, v_2, v_3 will be vectors of V, F, G will be finite sequences of elements of the carrier of the carrier of V, A, B will be subsets of V, and f will be a function from the carrier of the carrier of V into the carrier of R. Let D be a non-empty set. Then \emptyset_D is a subset of D.

Let us consider R, V. A subset of V is said to be a finite subset of V if: (Def.1) it is finite.

In the sequel S, T denote finite subsets of V. Let us consider R, V, S, T. Then $S \cup T$ is a finite subset of V. Then $S \cap T$ is a finite subset of V. Then $S \setminus T$ is a finite subset of V. Then $S \to T$ is a finite subset of V.

Let us consider R, V. The functor 0_V yields a finite subset of V and is defined as follows:

(Def.2) $0_V = \emptyset$.

¹Supported by RPBP.III-24.C6

295

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 One can prove the following proposition

 $(2)^2 \quad 0_V = \emptyset.$

Let us consider R, V, T. The functor $\sum T$ yields a vector of V and is defined as follows:

- (Def.3) there exists F such that rng F = T and F is one-to-one and $\sum T = \sum F$. One can prove the following two propositions:
 - (3) There exists F such that $\operatorname{rng} F = T$ and F is one-to-one and $\sum T = \sum F$.
 - (4) If rng F = T and F is one-to-one and $v = \sum F$, then $v = \sum T$.

Let us consider R, V, v. Then $\{v\}$ is a finite subset of V.

Let us consider R, V, v_1, v_2 . Then $\{v_1, v_2\}$ is a finite subset of V.

Let us consider R, V, v_1, v_2, v_3 . Then $\{v_1, v_2, v_3\}$ is a finite subset of V.

We now state a number of propositions:

- (5) $\sum (0_V) = \Theta_V.$
- (6) $\sum \{v\} = v.$
- (7) If $v_1 \neq v_2$, then $\sum \{v_1, v_2\} = v_1 + v_2$.
- (8) If $v_1 \neq v_2$ and $v_2 \neq v_3$ and $v_1 \neq v_3$, then $\sum \{v_1, v_2, v_3\} = v_1 + v_2 + v_3$.
- (9) If T misses S, then $\sum (T \cup S) = \sum T + \sum S$.
- (10) $\sum (T \cup S) = (\sum T + \sum S) \sum (T \cap S).$
- (11) $\sum (T \cap S) = (\sum T + \sum S) \sum (T \cup S).$
- (12) $\sum (T \setminus S) = \sum (T \cup S) \sum S.$
- (13) $\sum (T \setminus S) = \sum T \sum (T \cap S).$
- (14) $\sum (T \div S) = \sum (T \cup S) \sum (T \cap S).$
- (15) $\sum (T \div S) = \sum (T \setminus S) + \sum (S \setminus T).$

Let us consider R, V. An element of (the carrier of R)^{the carrier of the carrier of V} is called a linear combination of V if:

(Def.4) there exists T such that for every v such that $v \notin T$ holds $it(v) = 0_R$.

In the sequel K, L, L_1, L_2, L_3 are linear combinations of V. We now state the proposition

(16) There exists T such that for every v such that $v \notin T$ holds $L(v) = 0_R$.

In the sequel E is an element of (the carrier of R)^{the carrier of the carrier of V}. Next we state the proposition

(17) If there exists T such that for every v such that $v \notin T$ holds $E(v) = 0_R$, then E is a linear combination of V.

Let us consider R, V, L. The functor support L yields a finite subset of V and is defined as follows:

(Def.5) support $L = \{v : L(v) \neq 0_R\}.$

The following propositions are true:

²The proposition (1) was either repeated or obvious.

- (18) support $L = \{v : L(v) \neq 0_R\}.$
- (19) $x \in \text{support } L$ if and only if there exists v such that x = v and $L(v) \neq 0_R$.
- (20) $L(v) = 0_R$ if and only if $v \notin \text{support } L$.

Let us consider R, V. The functor $\mathbf{0}_{LC_V}$ yielding a linear combination of V is defined by:

(Def.6) support $\mathbf{0}_{\mathrm{LC}_V} = \emptyset$.

We now state two propositions:

(21) $L = \mathbf{0}_{\mathrm{LC}_V}$ if and only if support $L = \emptyset$.

 $(22) \quad \mathbf{0}_{\mathrm{LC}_V}(v) = \mathbf{0}_R.$

Let us consider R, V, A. A linear combination of V is called a linear combination of A if:

(Def.7) support it $\subseteq A$.

We now state the proposition

(23) If support $L \subseteq A$, then L is a linear combination of A.

In the sequel l will denote a linear combination of A. We now state several propositions:

- (24) support $l \subseteq A$.
- (25) If $A \subseteq B$, then *l* is a linear combination of *B*.
- (26) $\mathbf{0}_{\mathrm{LC}_V}$ is a linear combination of A.
- (27) For every linear combination l of $\emptyset_{\text{the carrier of the carrier of }V}$ holds $l = \mathbf{0}_{\text{LC}_V}$.
- (28) L is a linear combination of support L.

Let us consider R, V, F, f. The functor fF yields a finite sequence of elements of the carrier of the carrier of V and is defined by:

(Def.8) $\operatorname{len}(fF) = \operatorname{len} F$ and for every i such that $i \in \operatorname{dom}(fF)$ holds $(fF)(i) = f(\pi_i F) \cdot \pi_i F$.

We now state several propositions:

- (29) $\operatorname{len}(fF) = \operatorname{len} F.$
- (30) For every *i* such that $i \in \text{dom}(fF)$ holds $(fF)(i) = f(\pi_i F) \cdot \pi_i F$.
- (31) If len G = len F and for every i such that $i \in \text{dom } G$ holds $G(i) = f(\pi_i F) \cdot \pi_i F$, then G = fF.
- (32) If $i \in \text{dom } F$ and v = F(i), then $(fF)(i) = f(v) \cdot v$.
- (33) $f\varepsilon_{\text{the carrier of the carrier of }V} = \varepsilon_{\text{the carrier of the carrier of }V}$.
- (34) $f\langle v \rangle = \langle f(v) \cdot v \rangle.$
- (35) $f\langle v_1, v_2 \rangle = \langle f(v_1) \cdot v_1, f(v_2) \cdot v_2 \rangle.$
- (36) $f\langle v_1, v_2, v_3 \rangle = \langle f(v_1) \cdot v_1, f(v_2) \cdot v_2, f(v_3) \cdot v_3 \rangle.$
- (37) $f(F \cap G) = (fF) \cap (fG).$

Let us consider R, V, L. The functor $\sum L$ yields a vector of V and is defined as follows:

(Def.9) there exists F such that F is one-to-one and rng F = support L and $\sum L = \sum (LF)$.

The following propositions are true:

- (38) There exists F such that F is one-to-one and rng F = support L and $\sum L = \sum (LF)$.
- (39) If F is one-to-one and rng $F = \operatorname{support} L$ and $u = \sum (LF)$, then $u = \sum L$.
- (40) If $0_R \neq 1_R$, then $A \neq \emptyset$ and A is linearly closed if and only if for every l holds $\sum l \in A$.
- (41) $\sum \mathbf{0}_{\mathrm{LC}_V} = \Theta_V.$
- (42) For every linear combination l of $\emptyset_{\text{the carrier of the carrier of } V}$ holds $\sum l = \Theta_V$.
- (43) For every linear combination l of $\{v\}$ holds $\sum l = l(v) \cdot v$.
- (44) If $v_1 \neq v_2$, then for every linear combination l of $\{v_1, v_2\}$ holds $\sum l = l(v_1) \cdot v_1 + l(v_2) \cdot v_2$.
- (45) If support $L = \emptyset$, then $\sum L = \Theta_V$.
- (46) If support $L = \{v\}$, then $\sum L = L(v) \cdot v$.
- (47) If support $L = \{v_1, v_2\}$ and $v_1 \neq v_2$, then $\sum L = L(v_1) \cdot v_1 + L(v_2) \cdot v_2$.
- Let us consider R, V, L_1 , L_2 . Let us note that one can characterize the predicate $L_1 = L_2$ by the following (equivalent) condition:
- (Def.10) for every v holds $L_1(v) = L_2(v)$.

Next we state the proposition

(48) If for every v holds $L_1(v) = L_2(v)$, then $L_1 = L_2$.

Let us consider R, V, L_1, L_2 . The functor $L_1 + L_2$ yielding a linear combination of V is defined by:

(Def.11) for every v holds $(L_1 + L_2)(v) = L_1(v) + L_2(v)$.

The following propositions are true:

- (49) If for every v holds $L(v) = L_1(v) + L_2(v)$, then $L = L_1 + L_2$.
- (50) $(L_1 + L_2)(v) = L_1(v) + L_2(v).$
- (51) $\operatorname{support}(L_1 + L_2) \subseteq \operatorname{support} L_1 \cup \operatorname{support} L_2.$
- (52) If L_1 is a linear combination of A and L_2 is a linear combination of A, then $L_1 + L_2$ is a linear combination of A.
- (53) For every commutative ring R and for every left module V over R and for all linear combinations L_1 , L_2 of V holds $L_1 + L_2 = L_2 + L_1$.
- $(54) L_1 + (L_2 + L_3) = L_1 + L_2 + L_3.$
- (55) For every commutative ring R and for every left module V over R and for every linear combination L of V holds $L+\mathbf{0}_{LC_V} = L$ and $\mathbf{0}_{LC_V}+L = L$.

Let us consider R, V, a, L. The functor $a \cdot L$ yielding a linear combination of V is defined as follows:

(Def.12) for every v holds $(a \cdot L)(v) = a \cdot L(v)$.

One can prove the following propositions:

- (56) If for every v holds $K(v) = a \cdot L(v)$, then $K = a \cdot L$.
- (57) $(a \cdot L)(v) = a \cdot L(v).$
- (58) $\operatorname{support}(a \cdot L) \subseteq \operatorname{support} L.$

In the sequel R_1 denotes an integral domain, V_1 denotes a left module over R_1 , L_4 denotes a linear combination of V_1 , and a_1 denotes a scalar of R_1 . Next we state several propositions:

- (59) If $a_1 \neq 0_{R_1}$, then support $(a_1 \cdot L_4) =$ support L_4 .
- (60) $0_R \cdot L = \mathbf{0}_{\mathrm{LC}_V}.$
- (61) If L is a linear combination of A, then $a \cdot L$ is a linear combination of A.
- (62) $(a+b) \cdot L = a \cdot L + b \cdot L.$
- (63) $a \cdot (L_1 + L_2) = a \cdot L_1 + a \cdot L_2.$
- (64) $a \cdot (b \cdot L) = a \cdot b \cdot L.$
- $(65) \quad (1_R) \cdot L = L.$

Let us consider R, V, L. The functor -L yields a linear combination of V and is defined as follows:

(Def.13)
$$-L = (-1_R) \cdot L.$$

One can prove the following propositions:

- (66) $-L = (-1_R) \cdot L.$
- (67) (-L)(v) = -L(v).
- (68) If $L_1 + L_2 = \mathbf{0}_{LC_V}$, then $L_2 = -L_1$.
- (69) support -L =support L.
- (70) If L is a linear combination of A, then -L is a linear combination of A.
- (71) -L = L.

Let us consider R, V, L_1, L_2 . The functor $L_1 - L_2$ yields a linear combination of V and is defined by:

(Def.14)
$$L_1 - L_2 = L_1 + -L_2$$
.

One can prove the following propositions:

- $(72) L_1 L_2 = L_1 + -L_2.$
- (73) $(L_1 L_2)(v) = L_1(v) L_2(v).$
- (74) $\operatorname{support}(L_1 L_2) \subseteq \operatorname{support} L_1 \cup \operatorname{support} L_2.$
- (75) If L_1 is a linear combination of A and L_2 is a linear combination of A, then $L_1 L_2$ is a linear combination of A.

(76)
$$L - L = \mathbf{0}_{\mathrm{LC}_V}.$$

(77)
$$\sum (L_1 + L_2) = \sum L_1 + \sum L_2.$$

For simplicity we adopt the following convention: R will be an integral domain, V will be a left module over R, L, L_1 , L_2 will be linear combinations of V, and a will be a scalar of R. We now state three propositions:

(78) $\sum (a \cdot L) = a \cdot \sum L.$

(79) $\sum -L = -\sum L.$

(80)
$$\sum (L_1 - L_2) = \sum L_1 - \sum L_2.$$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [10] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [11] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279–282, 1991.
- [12] Michał Muzalewski and Wojciech Skaba. Operations on submodules in left module over associative ring. Formalized Mathematics, 2(2):289–293, 1991.
- [13] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. Formalized Mathematics, 2(2):283–287, 1991.
- [14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.
- [15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [16] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [19] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877–882, 1990.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [22] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received October 22, 1990