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Summary. Notion of linear combination of vectors in Left Mod-
ule over Associative Ring, defined as a function from the carrier of Left
Module over Associative Ring to the carrier of this Ring. The following
operations are included: addition, subtraction of combinations and mul-
tiplication of a combination by a scalar of the Ring. Following it, the sum
of a finite set of vectors and the sum of linear combinations is defined.
Many theorems are proved. This article originated as a generalization of
the article [19].

MML Identifier: LMOD 4.

The articles [22], [7], [5], [3], [6], [8], [21], [17], [15], [16], [2], [4], [18], [20], [1],
[9], [10], [11], [13], [12], and [14] provide the terminology and notation for this
paper. For simplicity we follow a convention: R will be an associative ring, V
will be a left module over R, a, b will be scalars of R, x will be arbitrary, i will
be a natural number, u, v, v1, v2, v3 will be vectors of V , F , G will be finite
sequences of elements of the carrier of the carrier of V , A, B will be subsets of
V , and f will be a function from the carrier of the carrier of V into the carrier
of R. Let D be a non-empty set. Then ∅D is a subset of D.

Let us consider R, V . A subset of V is said to be a finite subset of V if:

(Def.1) it is finite.

In the sequel S, T denote finite subsets of V . Let us consider R, V , S, T .
Then S ∪ T is a finite subset of V . Then S ∩ T is a finite subset of V . Then
S \ T is a finite subset of V . Then S−. T is a finite subset of V .

Let us consider R, V . The functor 0V yields a finite subset of V and is
defined as follows:

(Def.2) 0V = ∅.
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One can prove the following proposition

(2)2 0V = ∅.

Let us consider R, V , T . The functor
∑

T yields a vector of V and is defined
as follows:

(Def.3) there exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

One can prove the following two propositions:

(3) There exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

(4) If rng F = T and F is one-to-one and v =
∑

F , then v =
∑

T .

Let us consider R, V , v. Then {v} is a finite subset of V .

Let us consider R, V , v1, v2. Then {v1, v2} is a finite subset of V .

Let us consider R, V , v1, v2, v3. Then {v1, v2, v3} is a finite subset of V .

We now state a number of propositions:

(5)
∑

(0V ) = ΘV .

(6)
∑
{v} = v.

(7) If v1 6= v2, then
∑
{v1, v2} = v1 + v2.

(8) If v1 6= v2 and v2 6= v3 and v1 6= v3, then
∑
{v1, v2, v3} = v1 + v2 + v3.

(9) If T misses S, then
∑

(T ∪ S) =
∑

T +
∑

S.

(10)
∑

(T ∪ S) = (
∑

T +
∑

S) −
∑

(T ∩ S).

(11)
∑

(T ∩ S) = (
∑

T +
∑

S) −
∑

(T ∪ S).

(12)
∑

(T \ S) =
∑

(T ∪ S) −
∑

S.

(13)
∑

(T \ S) =
∑

T −
∑

(T ∩ S).

(14)
∑

(T−. S) =
∑

(T ∪ S) −
∑

(T ∩ S).

(15)
∑

(T−. S) =
∑

(T \ S) +
∑

(S \ T ).

Let us consider R, V . An element of (the carrier of R)the carrier of the carrier of V

is called a linear combination of V if:

(Def.4) there exists T such that for every v such that v /∈ T holds it(v) = 0R.

In the sequel K, L, L1, L2, L3 are linear combinations of V . We now state
the proposition

(16) There exists T such that for every v such that v /∈ T holds L(v) = 0R.

In the sequel E is an element of (the carrier of R)the carrier of the carrier of V .
Next we state the proposition

(17) If there exists T such that for every v such that v /∈ T holds E(v) = 0R,
then E is a linear combination of V .

Let us consider R, V , L. The functor supportL yields a finite subset of V
and is defined as follows:

(Def.5) supportL = {v : L(v) 6= 0R}.

The following propositions are true:

2The proposition (1) was either repeated or obvious.
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(18) supportL = {v : L(v) 6= 0R}.

(19) x ∈ supportL if and only if there exists v such that x = v and L(v) 6=
0R.

(20) L(v) = 0R if and only if v /∈ supportL.

Let us consider R, V . The functor 0LCV
yielding a linear combination of V

is defined by:

(Def.6) support0LCV
= ∅.

We now state two propositions:

(21) L = 0LCV
if and only if supportL = ∅.

(22) 0LCV
(v) = 0R.

Let us consider R, V , A. A linear combination of V is called a linear combi-
nation of A if:

(Def.7) support it ⊆ A.

We now state the proposition

(23) If supportL ⊆ A, then L is a linear combination of A.

In the sequel l will denote a linear combination of A. We now state several
propositions:

(24) support l ⊆ A.

(25) If A ⊆ B, then l is a linear combination of B.

(26) 0LCV
is a linear combination of A.

(27) For every linear combination l of ∅the carrier of the carrier of V holds l =
0LCV

.

(28) L is a linear combination of supportL.

Let us consider R, V , F , f . The functor fF yields a finite sequence of
elements of the carrier of the carrier of V and is defined by:

(Def.8) len(fF ) = len F and for every i such that i ∈ dom(fF ) holds (fF )(i) =
f(πiF ) · πiF .

We now state several propositions:

(29) len(fF ) = len F .

(30) For every i such that i ∈ dom(fF ) holds (fF )(i) = f(πiF ) · πiF .

(31) If len G = len F and for every i such that i ∈ dom G holds G(i) =
f(πiF ) · πiF , then G = fF .

(32) If i ∈ dom F and v = F (i), then (fF )(i) = f(v) · v.

(33) fεthe carrier of the carrier of V = εthe carrier of the carrier of V .

(34) f〈v〉 = 〈f(v) · v〉.

(35) f〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.

(36) f〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.

(37) f(F  G) = (fF )  (fG).

Let us consider R, V , L. The functor
∑

L yields a vector of V and is defined
as follows:
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(Def.9) there exists F such that F is one-to-one and rng F = supportL and
∑

L =
∑

(LF ).

The following propositions are true:

(38) There exists F such that F is one-to-one and rng F = supportL and
∑

L =
∑

(LF ).

(39) If F is one-to-one and rng F = supportL and u =
∑

(LF ), then u =
∑

L.

(40) If 0R 6= 1R, then A 6= ∅ and A is linearly closed if and only if for every
l holds

∑
l ∈ A.

(41)
∑

0LCV
= ΘV .

(42) For every linear combination l of ∅the carrier of the carrier of V holds
∑

l =
ΘV .

(43) For every linear combination l of {v} holds
∑

l = l(v) · v.

(44) If v1 6= v2, then for every linear combination l of {v1, v2} holds
∑

l =
l(v1) · v1 + l(v2) · v2.

(45) If supportL = ∅, then
∑

L = ΘV .

(46) If supportL = {v}, then
∑

L = L(v) · v.

(47) If supportL = {v1, v2} and v1 6= v2, then
∑

L = L(v1) · v1 + L(v2) · v2.

Let us consider R, V , L1, L2. Let us note that one can characterize the
predicate L1 = L2 by the following (equivalent) condition:

(Def.10) for every v holds L1(v) = L2(v).

Next we state the proposition

(48) If for every v holds L1(v) = L2(v), then L1 = L2.

Let us consider R, V , L1, L2. The functor L1 + L2 yielding a linear combi-
nation of V is defined by:

(Def.11) for every v holds (L1 + L2)(v) = L1(v) + L2(v).

The following propositions are true:

(49) If for every v holds L(v) = L1(v) + L2(v), then L = L1 + L2.

(50) (L1 + L2)(v) = L1(v) + L2(v).

(51) support(L1 + L2) ⊆ supportL1 ∪ supportL2.

(52) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 + L2 is a linear combination of A.

(53) For every commutative ring R and for every left module V over R and
for all linear combinations L1, L2 of V holds L1 + L2 = L2 + L1.

(54) L1 + (L2 + L3) = L1 + L2 + L3.

(55) For every commutative ring R and for every left module V over R and
for every linear combination L of V holds L+0LCV

= L and 0LCV
+L = L.

Let us consider R, V , a, L. The functor a · L yielding a linear combination
of V is defined as follows:

(Def.12) for every v holds (a · L)(v) = a · L(v).



Linear Combinations in Left Module over . . . 299

One can prove the following propositions:

(56) If for every v holds K(v) = a · L(v), then K = a · L.

(57) (a · L)(v) = a · L(v).

(58) support(a · L) ⊆ supportL.

In the sequel R1 denotes an integral domain, V1 denotes a left module over
R1, L4 denotes a linear combination of V1, and a1 denotes a scalar of R1. Next
we state several propositions:

(59) If a1 6= 0R1
, then support(a1 · L4) = supportL4.

(60) 0R · L = 0LCV
.

(61) If L is a linear combination of A, then a · L is a linear combination of
A.

(62) (a + b) · L = a · L + b · L.

(63) a · (L1 + L2) = a · L1 + a · L2.

(64) a · (b · L) = a · b · L.

(65) (1R) · L = L.

Let us consider R, V , L. The functor −L yields a linear combination of V
and is defined as follows:

(Def.13) −L = (−1R) · L.

One can prove the following propositions:

(66) −L = (−1R) · L.

(67) (−L)(v) = −L(v).

(68) If L1 + L2 = 0LCV
, then L2 = −L1.

(69) support−L = supportL.

(70) If L is a linear combination of A, then −L is a linear combination of A.

(71) −− L = L.

Let us consider R, V , L1, L2. The functor L1−L2 yields a linear combination
of V and is defined by:

(Def.14) L1 − L2 = L1 + −L2.

One can prove the following propositions:

(72) L1 − L2 = L1 + −L2.

(73) (L1 − L2)(v) = L1(v) − L2(v).

(74) support(L1 − L2) ⊆ supportL1 ∪ supportL2.

(75) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 − L2 is a linear combination of A.

(76) L − L = 0LCV
.

(77)
∑

(L1 + L2) =
∑

L1 +
∑

L2.

For simplicity we adopt the following convention: R will be an integral do-
main, V will be a left module over R, L, L1, L2 will be linear combinations of
V , and a will be a scalar of R. We now state three propositions:

(78)
∑

(a · L) = a ·
∑

L.
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(79)
∑

−L = −
∑

L.

(80)
∑

(L1 − L2) =
∑

L1 −
∑

L2.
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[4] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
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[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
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