Operations on Submodules in Left Module over Associative Ring¹

Michał Muzalewski Warsaw University Białystok Wojciech Skaba University of Toruń

Summary. Definition of sum, direct sum and intersection of submodules. We prove a number of theorems related to these notions. This article originated as a generalization of the article [10].

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{LMOD_3}.$

The terminology and notation used here are introduced in the following papers: [1], [12], [14], [9], [8], [13], [2], [11], [7], [3], [4], [5], and [6]. For simplicity we adopt the following rules: R denotes an associative ring, V denotes a left module over R, W, W_1 , W_2 , W_3 denote submodules of V, u, u_1 , u_2 , v, v_1 , v_2 denote vectors of V, and x is arbitrary. Let us consider R, V, W_1 , W_2 . The functor $W_1 + W_2$ yields a submodule of V and is defined by:

(Def.1) the carrier of the carrier of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$

Let us consider R, V, W_1, W_2 . The functor $W_1 \cap W_2$ yielding a submodule of V is defined by:

(Def.2) the carrier of the carrier of $W_1 \cap W_2 =$ (the carrier of the carrier of W_1) \cap (the carrier of the carrier of W_2).

One can prove the following propositions:

- (1) The carrier of the carrier of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$
- (2) If the carrier of the carrier of $W = \{v + u : v \in W_1 \land u \in W_2\}$, then $W = W_1 + W_2$.
- (3) The carrier of the carrier of $W_1 \cap W_2 =$ (the carrier of the carrier of W_1) \cap (the carrier of the carrier of W_2).
- (4) If the carrier of the carrier of $W = (\text{the carrier of } W_1) \cap (\text{the carrier of the carrier of } W_2), \text{ then } W = W_1 \cap W_2.$

¹Supported by RPBP.III-24.C6

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (5) $x \in W_1 + W_2$ if and only if there exist v_1, v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$.
- (6) If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$.
- (7) $x \in W_1 \cap W_2$ if and only if $x \in W_1$ and $x \in W_2$.
- $(8) \quad W+W=W.$
- $(9) \quad W_1 + W_2 = W_2 + W_1.$
- (10) $W_1 + (W_2 + W_3) = W_1 + W_2 + W_3.$
- (11) W_1 is a submodule of $W_1 + W_2$ and W_2 is a submodule of $W_1 + W_2$.
- (12) W_1 is a submodule of W_2 if and only if $W_1 + W_2 = W_2$.
- (13) $\mathbf{0}_V + W = W$ and $W + \mathbf{0}_V = W$.
- (14) $\mathbf{0}_V + \Omega_V = V$ and $\Omega_V + \mathbf{0}_V = V$.
- (15) $\Omega_V + W = V$ and $W + \Omega_V = V$.
- (16) $\Omega_V + \Omega_V = V.$
- (17) $W \cap W = W.$
- (18) $W_1 \cap W_2 = W_2 \cap W_1.$
- (19) $W_1 \cap (W_2 \cap W_3) = W_1 \cap W_2 \cap W_3.$
- (20) $W_1 \cap W_2$ is a submodule of W_1 and $W_1 \cap W_2$ is a submodule of W_2 .
- (21) W_1 is a submodule of W_2 if and only if $W_1 \cap W_2 = W_1$.
- (22) If W_1 is a submodule of W_2 , then $W_1 \cap W_3$ is a submodule of $W_2 \cap W_3$.
- (23) If W_1 is a submodule of W_3 , then $W_1 \cap W_2$ is a submodule of W_3 .
- (24) If W_1 is a submodule of W_2 and W_1 is a submodule of W_3 , then W_1 is a submodule of $W_2 \cap W_3$.
- (25) $\mathbf{0}_V \cap W = \mathbf{0}_V$ and $W \cap \mathbf{0}_V = \mathbf{0}_V$.
- (26) $\mathbf{0}_V \cap \Omega_V = \mathbf{0}_V$ and $\Omega_V \cap \mathbf{0}_V = \mathbf{0}_V$.
- (27) $\Omega_V \cap W = W$ and $W \cap \Omega_V = W$.
- (28) $\Omega_V \cap \Omega_V = V.$
- (29) $W_1 \cap W_2$ is a submodule of $W_1 + W_2$.
- $(30) \quad W_1 \cap W_2 + W_2 = W_2.$
- (31) $W_1 \cap (W_1 + W_2) = W_1.$

One can prove the following propositions:

- (32) $W_1 \cap W_2 + W_2 \cap W_3$ is a submodule of $W_2 \cap (W_1 + W_3)$.
- (33) If W_1 is a submodule of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (34) $W_2 + W_1 \cap W_3$ is a submodule of $(W_1 + W_2) \cap (W_2 + W_3)$.
- (35) If W_1 is a submodule of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (36) If W_1 is a submodule of W_3 , then $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$.
- (37) $W_1 + W_2 = W_2$ if and only if $W_1 \cap W_2 = W_1$.
- (38) If W_1 is a submodule of W_2 , then $W_1 + W_3$ is a submodule of $W_2 + W_3$.
- (39) If W_1 is a submodule of W_2 , then W_1 is a submodule of $W_2 + W_3$.

- (40) If W_1 is a submodule of W_3 and W_2 is a submodule of W_3 , then $W_1 + W_2$ is a submodule of W_3 .
- (41) There exists W such that the carrier of the carrier of W = (the carrier of the carrier of W_1) \cup (the carrier of the carrier of W_2) if and only if W_1 is a submodule of W_2 or W_2 is a submodule of W_1 .

Let us consider R, V. The functor Sub(V) yields a non-empty set and is defined by:

(Def.3) for every x holds $x \in Sub(V)$ if and only if x is a submodule of V.

In the sequel D denotes a non-empty set. One can prove the following three propositions:

- (42) If for every x holds $x \in D$ if and only if x is a submodule of V, then $D = \operatorname{Sub}(V)$.
- (43) $x \in \operatorname{Sub}(V)$ if and only if x is a submodule of V.

$$(44) \quad V \in \mathrm{Sub}(V).$$

Let us consider R, V, W_1, W_2 . We say that V is the direct sum of W_1 and W_2 if and only if:

(Def.4) $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.

One can prove the following two propositions:

- $(46)^2$ If V is the direct sum of W_1 and W_2 , then V is the direct sum of W_2 and W_1 .
- (47) V is the direct sum of $\mathbf{0}_V$ and Ω_V and V is the direct sum of Ω_V and $\mathbf{0}_V$.

In the sequel C_1 will denote a coset of W_1 and C_2 will denote a coset of W_2 . Next we state several propositions:

- (48) If $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$.
- (49) V is the direct sum of W_1 and W_2 if and only if for every C_1, C_2 there exists v such that $C_1 \cap C_2 = \{v\}$.
- (50) $W_1 + W_2 = V$ if and only if for every v there exist v_1 , v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$.
- (51) If V is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$, then $v_1 = u_1$ and $v_2 = u_2$.
- (52) Suppose $V = W_1 + W_2$ and there exists v such that for all v_1, v_2, u_1, u_2 such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then V is the direct sum of W_1 and W_2 .

In the sequel t will be an element of [the carrier of the carrier of V, the carrier of the carrier of V]. Let us consider R, V, v, W_1, W_2 . Let us assume that V is the direct sum of W_1 and W_2 . The functor $v \triangleleft (W_1, W_2)$ yielding an

^{2}The proposition (45) was either repeated or obvious.

element of [: the carrier of the carrier of V, the carrier of the carrier of V] is defined as follows:

(Def.5) $v = (v \triangleleft (W_1, W_2))_1 + (v \triangleleft (W_1, W_2))_2$ and $(v \triangleleft (W_1, W_2))_1 \in W_1$ and $(v \triangleleft (W_1, W_2))_2 \in W_2$.

The following propositions are true:

- (53) If V is the direct sum of W_1 and W_2 and $t_1 + t_2 = v$ and $t_1 \in W_1$ and $t_2 \in W_2$, then $t = v \triangleleft (W_1, W_2)$.
- (54) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_1 + (v \triangleleft (W_1, W_2))_2 = v.$
- (55) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_1 \in W_1$.
- (56) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_2 \in W_2$.
- (57) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_1 = (v \triangleleft (W_2, W_1))_2.$
- (58) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_{\mathbf{2}} = (v \triangleleft (W_2, W_1))_{\mathbf{1}}.$

In the sequel A_1 , A_2 will denote elements of $\operatorname{Sub}(V)$. Let us consider R, V. The functor $\operatorname{SubJoin} V$ yields a binary operation on $\operatorname{Sub}(V)$ and is defined as follows:

(Def.6) for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubJoin V) $(A_1, A_2) = W_1 + W_2$.

Let us consider R, V. The functor SubMeet V yielding a binary operation on Sub(V) is defined as follows:

(Def.7) for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeet V) $(A_1, A_2) = W_1 \cap W_2$.

In the sequel o is a binary operation on Sub(V). Next we state several propositions:

- (59) If $A_1 = W_1$ and $A_2 = W_2$, then SubJoin $V(A_1, A_2) = W_1 + W_2$.
- (60) If for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds $o(A_1, A_2) = W_1 + W_2$, then o = SubJoin V.
- (61) If $A_1 = W_1$ and $A_2 = W_2$, then SubMeet $V(A_1, A_2) = W_1 \cap W_2$.
- (62) If for all A_1, A_2, W_1, W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds $o(A_1, A_2) = W_1 \cap W_2$, then o = SubMeet V.
- (63) $(\operatorname{Sub}(V), \operatorname{SubJoin} V, \operatorname{SubMeet} V)$ is a lattice.
- (64) $(\operatorname{Sub}(V), \operatorname{SubJoin} V, \operatorname{SubMeet} V)$ is a lower bound lattice.
- (65) $(\operatorname{Sub}(V), \operatorname{SubJoin} V, \operatorname{SubMeet} V)$ is an upper bound lattice.
- (66) $(\operatorname{Sub}(V), \operatorname{SubJoin} V, \operatorname{SubMeet} V)$ is a bound lattice.
- (67) $(\operatorname{Sub}(V), \operatorname{SubJoin} V, \operatorname{SubMeet} V)$ is a modular lattice.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.

- [2] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [3] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [4] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279–282, 1991.
- [5] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. *Formalized Mathematics*, 2(2):283–287, 1991.
- [6] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [10] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871–876, 1990.
- [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [12] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [13] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [14] Stanisław Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215– 222, 1990.

Received October 22, 1990