Operations on Submodules in Left Module over Associative Ring ${ }^{1}$

Michał Muzalewski
Warsaw University
Białystok

Wojciech Skaba
University of Toruń

Summary. Definition of sum, direct sum and intersection of submodules. We prove a number of theorems related to these notions. This article originated as a generalization of the article [10].

MML Identifier: LMOD_3.

The terminology and notation used here are introduced in the following papers: [1], [12], [14], [9], [8], [13], [2], [11], [7], [3], [4], [5], and [6]. For simplicity we adopt the following rules: R denotes an associative ring, V denotes a left module over $R, W, W_{1}, W_{2}, W_{3}$ denote submodules of $V, u, u_{1}, u_{2}, v, v_{1}, v_{2}$ denote vectors of V, and x is arbitrary. Let us consider R, V, W_{1}, W_{2}. The functor $W_{1}+W_{2}$ yields a submodule of V and is defined by:
(Def.1) the carrier of the carrier of $W_{1}+W_{2}=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$.
Let us consider R, V, W_{1}, W_{2}. The functor $W_{1} \cap W_{2}$ yielding a submodule of V is defined by:
(Def.2) the carrier of the carrier of $W_{1} \cap W_{2}=$ (the carrier of the carrier of $\left.W_{1}\right) \cap\left(\right.$ the carrier of the carrier of $\left.W_{2}\right)$.
One can prove the following propositions:
(1) The carrier of the carrier of $W_{1}+W_{2}=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$.
(2) If the carrier of the carrier of $W=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$, then $W=W_{1}+W_{2}$.
(3) The carrier of the carrier of $W_{1} \cap W_{2}=$ (the carrier of the carrier of $\left.W_{1}\right) \cap\left(\right.$ the carrier of the carrier of $\left.W_{2}\right)$.
(4) If the carrier of the carrier of $W=\left(\right.$ the carrier of the carrier of $\left.W_{1}\right) \cap$ (the carrier of the carrier of W_{2}), then $W=W_{1} \cap W_{2}$.

[^0](5) $\quad x \in W_{1}+W_{2}$ if and only if there exist v_{1}, v_{2} such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $x=v_{1}+v_{2}$.
(6) If $v \in W_{1}$ or $v \in W_{2}$, then $v \in W_{1}+W_{2}$.
(7) $\quad x \in W_{1} \cap W_{2}$ if and only if $x \in W_{1}$ and $x \in W_{2}$.
(8) $W+W=W$.
(9) $W_{1}+W_{2}=W_{2}+W_{1}$.
(10) $\quad W_{1}+\left(W_{2}+W_{3}\right)=W_{1}+W_{2}+W_{3}$.
(11) $\quad W_{1}$ is a submodule of $W_{1}+W_{2}$ and W_{2} is a submodule of $W_{1}+W_{2}$.
(12) $\quad W_{1}$ is a submodule of W_{2} if and only if $W_{1}+W_{2}=W_{2}$.
(13) $\quad \mathbf{0}_{V}+W=W$ and $W+\mathbf{0}_{V}=W$.
(14) $\quad \mathbf{0}_{V}+\Omega_{V}=V$ and $\Omega_{V}+\mathbf{0}_{V}=V$.
(15) $\Omega_{V}+W=V$ and $W+\Omega_{V}=V$.
(16) $\Omega_{V}+\Omega_{V}=V$.
(17) $\quad W \cap W=W$.
(18) $\quad W_{1} \cap W_{2}=W_{2} \cap W_{1}$.
(19) $\quad W_{1} \cap\left(W_{2} \cap W_{3}\right)=W_{1} \cap W_{2} \cap W_{3}$.
(20) $\quad W_{1} \cap W_{2}$ is a submodule of W_{1} and $W_{1} \cap W_{2}$ is a submodule of W_{2}.
(21) $\quad W_{1}$ is a submodule of W_{2} if and only if $W_{1} \cap W_{2}=W_{1}$.
(22) If W_{1} is a submodule of W_{2}, then $W_{1} \cap W_{3}$ is a submodule of $W_{2} \cap W_{3}$.
(23) If W_{1} is a submodule of W_{3}, then $W_{1} \cap W_{2}$ is a submodule of W_{3}.
(24) If W_{1} is a submodule of W_{2} and W_{1} is a submodule of W_{3}, then W_{1} is a submodule of $W_{2} \cap W_{3}$.
(25) $\quad \mathbf{0}_{V} \cap W=\mathbf{0}_{V}$ and $W \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(26) $\quad \mathbf{0}_{V} \cap \Omega_{V}=\mathbf{0}_{V}$ and $\Omega_{V} \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(27) $\quad \Omega_{V} \cap W=W$ and $W \cap \Omega_{V}=W$.
(28) $\quad \Omega_{V} \cap \Omega_{V}=V$.
(29) $\quad W_{1} \cap W_{2}$ is a submodule of $W_{1}+W_{2}$.
(30) $\quad W_{1} \cap W_{2}+W_{2}=W_{2}$.
(31) $\quad W_{1} \cap\left(W_{1}+W_{2}\right)=W_{1}$.

One can prove the following propositions:
(32) $\quad W_{1} \cap W_{2}+W_{2} \cap W_{3}$ is a submodule of $W_{2} \cap\left(W_{1}+W_{3}\right)$.
(33) If W_{1} is a submodule of W_{2}, then $W_{2} \cap\left(W_{1}+W_{3}\right)=W_{1} \cap W_{2}+W_{2} \cap W_{3}$.
(34) $\quad W_{2}+W_{1} \cap W_{3}$ is a submodule of $\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(35) If W_{1} is a submodule of W_{2}, then $W_{2}+W_{1} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(36) If W_{1} is a submodule of W_{3}, then $W_{1}+W_{2} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap W_{3}$.
(37) $\quad W_{1}+W_{2}=W_{2}$ if and only if $W_{1} \cap W_{2}=W_{1}$.
(38) If W_{1} is a submodule of W_{2}, then $W_{1}+W_{3}$ is a submodule of $W_{2}+W_{3}$.
(39) If W_{1} is a submodule of W_{2}, then W_{1} is a submodule of $W_{2}+W_{3}$.
(40) If W_{1} is a submodule of W_{3} and W_{2} is a submodule of W_{3}, then $W_{1}+W_{2}$ is a submodule of W_{3}.
(41) There exists W such that the carrier of the carrier of $W=$ (the carrier of the carrier of $\left.W_{1}\right) \cup$ (the carrier of the carrier of W_{2}) if and only if W_{1} is a submodule of W_{2} or W_{2} is a submodule of W_{1}.
Let us consider R, V. The functor $\operatorname{Sub}(V)$ yields a non-empty set and is defined by:
(Def.3) for every x holds $x \in \operatorname{Sub}(V)$ if and only if x is a submodule of V.
In the sequel D denotes a non-empty set. One can prove the following three propositions:
(42) If for every x holds $x \in D$ if and only if x is a submodule of V, then $D=\operatorname{Sub}(V)$.
$x \in \operatorname{Sub}(V)$ if and only if x is a submodule of V.
$V \in \operatorname{Sub}(V)$.
Let us consider R, V, W_{1}, W_{2}. We say that V is the direct sum of W_{1} and W_{2} if and only if:
(Def.4)
$V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\mathbf{0}_{V}$.
One can prove the following two propositions:
$(46)^{2}$ If V is the direct sum of W_{1} and W_{2}, then V is the direct sum of W_{2} and W_{1}.
(47) V is the direct sum of $\mathbf{0}_{V}$ and Ω_{V} and V is the direct sum of Ω_{V} and $\mathbf{0}_{V}$.
In the sequel C_{1} will denote a coset of W_{1} and C_{2} will denote a coset of W_{2}. Next we state several propositions:
(48) If $C_{1} \cap C_{2} \neq \emptyset$, then $C_{1} \cap C_{2}$ is a coset of $W_{1} \cap W_{2}$.
(49) V is the direct sum of W_{1} and W_{2} if and only if for every C_{1}, C_{2} there exists v such that $C_{1} \cap C_{2}=\{v\}$.
(50) $\quad W_{1}+W_{2}=V$ if and only if for every v there exist v_{1}, v_{2} such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $v=v_{1}+v_{2}$.
(51) If V is the direct sum of W_{1} and W_{2} and $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$, then $v_{1}=u_{1}$ and $v_{2}=u_{2}$.
(52) Suppose $V=W_{1}+W_{2}$ and there exists v such that for all v_{1}, v_{2}, u_{1}, u_{2} such that $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$ holds $v_{1}=u_{1}$ and $v_{2}=u_{2}$. Then V is the direct sum of W_{1} and W_{2}.
In the sequel t will be an element of : the carrier of the carrier of V, the carrier of the carrier of V]. Let us consider R, V, v, W_{1}, W_{2}. Let us assume that V is the direct sum of W_{1} and W_{2}. The functor $v \triangleleft\left(W_{1}, W_{2}\right)$ yielding an

[^1]element of : the carrier of the carrier of V, the carrier of the carrier of V : is defined as follows:
(Def.5) $\quad v=\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{1}}+\left(v \triangleleft\left(W_{1}, W_{2}\right)_{\mathbf{2}}\right.$ and $\left(v \triangleleft\left(W_{1}, W_{2}\right)_{\mathbf{1}} \in W_{1}\right.$ and $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}} \in W_{2}$.
The following propositions are true:
(53) If V is the direct sum of W_{1} and W_{2} and $t_{\mathbf{1}}+t_{\mathbf{2}}=v$ and $t_{\mathbf{1}} \in W_{1}$ and $t_{\mathbf{2}} \in W_{2}$, then $t=v \triangleleft\left(W_{1}, W_{2}\right)$.
(54) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{1}}+\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}}=v$.
(55) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)_{1} \in W_{1}\right.$.

If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)_{\mathbf{2}} \in W_{2}\right.$.
If V is the direct sum of W_{1} and W_{2}, then
$\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{1}}=\left(v \triangleleft\left(W_{2}, W_{1}\right)\right)_{\mathbf{2}}$.
(58) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}}=\left(v \triangleleft\left(W_{2}, W_{1}\right)\right)_{\mathbf{1}}$.
In the sequel A_{1}, A_{2} will denote elements of $\operatorname{Sub}(V)$. Let us consider R, V. The functor SubJoin V yields a binary operation on $\operatorname{Sub}(V)$ and is defined as follows:
(Def.6) for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubJoin $V)\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.
Let us consider R, V. The functor SubMeet V yielding a binary operation on $\operatorname{Sub}(V)$ is defined as follows:
(Def.7) for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubMeet $V)\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.
In the sequel o is a binary operation on $\operatorname{Sub}(V)$. Next we state several propositions:

If $A_{1}=W_{1}$ and $A_{2}=W_{2}$, then SubJoin $V\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.
(60) If for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $o\left(A_{1}\right.$, $\left.A_{2}\right)=W_{1}+W_{2}$, then $o=\operatorname{SubJoin} V$.
(61) If $A_{1}=W_{1}$ and $A_{2}=W_{2}$, then SubMeet $V\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.
(62) If for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $o\left(A_{1}\right.$, $\left.A_{2}\right)=W_{1} \cap W_{2}$, then $o=$ SubMeet V.
(63) $\langle\operatorname{Sub}(V)$, $\operatorname{SubJoin} V$, $\operatorname{SubMeet} V\rangle$ is a lattice.
(64) $\langle\operatorname{Sub}(V)$, $\operatorname{SubJoin} V$, $\operatorname{SubMeet} V\rangle$ is a lower bound lattice.
(65) $\langle\operatorname{Sub}(V)$, SubJoin V, SubMeet $V\rangle$ is an upper bound lattice.
(66) $\langle\operatorname{Sub}(V)$, SubJoin V, SubMeet $V\rangle$ is a bound lattice.
(67) $\langle\operatorname{Sub}(V)$, $\operatorname{SubJoin} V$, SubMeet $V\rangle$ is a modular lattice.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Eugeniusz Kusak, Wojciech Leończuk, and Michat Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[3] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[4] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279-282, 1991.
[5] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. Formalized Mathematics, 2(2):283-287, 1991.
[6] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[10] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[13] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[14] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received October 22, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6

[^1]: ${ }^{2}$ The proposition (45) was either repeated or obvious.

