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Université Catholique de Louvain

Operations on Submodules in Left Module

over Associative Ring 1

Micha l Muzalewski

Warsaw University

Bia lystok

Wojciech Skaba

University of Toruń
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modules. We prove a number of theorems related to these notions. This
article originated as a generalization of the article [10].
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The terminology and notation used here are introduced in the following papers:
[1], [12], [14], [9], [8], [13], [2], [11], [7], [3], [4], [5], and [6]. For simplicity we
adopt the following rules: R denotes an associative ring, V denotes a left module
over R, W , W1, W2, W3 denote submodules of V , u, u1, u2, v, v1, v2 denote
vectors of V , and x is arbitrary. Let us consider R, V , W1, W2. The functor
W1 + W2 yields a submodule of V and is defined by:

(Def.1) the carrier of the carrier of W1 + W2 = {v + u : v ∈ W1 ∧ u ∈ W2}.

Let us consider R, V , W1, W2. The functor W1 ∩ W2 yielding a submodule
of V is defined by:

(Def.2) the carrier of the carrier of W1 ∩ W2 = (the carrier of the carrier of
W1)∩ (the carrier of the carrier of W2).

One can prove the following propositions:

(1) The carrier of the carrier of W1 + W2 = {v + u : v ∈ W1 ∧ u ∈ W2}.

(2) If the carrier of the carrier of W = {v + u : v ∈ W1 ∧ u ∈ W2}, then
W = W1 + W2.

(3) The carrier of the carrier of W1 ∩ W2 = (the carrier of the carrier of
W1)∩ (the carrier of the carrier of W2).

(4) If the carrier of the carrier of W = (the carrier of the carrier of W1)∩
(the carrier of the carrier of W2), then W = W1 ∩ W2.
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(5) x ∈ W1 + W2 if and only if there exist v1, v2 such that v1 ∈ W1 and
v2 ∈ W2 and x = v1 + v2.

(6) If v ∈ W1 or v ∈ W2, then v ∈ W1 + W2.

(7) x ∈ W1 ∩ W2 if and only if x ∈ W1 and x ∈ W2.

(8) W + W = W .

(9) W1 + W2 = W2 + W1.

(10) W1 + (W2 + W3) = W1 + W2 + W3.

(11) W1 is a submodule of W1 + W2 and W2 is a submodule of W1 + W2.

(12) W1 is a submodule of W2 if and only if W1 + W2 = W2.

(13) 0V + W = W and W + 0V = W .

(14) 0V + ΩV = V and ΩV + 0V = V .

(15) ΩV + W = V and W + ΩV = V .

(16) ΩV + ΩV = V .

(17) W ∩ W = W .

(18) W1 ∩ W2 = W2 ∩ W1.

(19) W1 ∩ (W2 ∩ W3) = W1 ∩ W2 ∩ W3.

(20) W1 ∩ W2 is a submodule of W1 and W1 ∩ W2 is a submodule of W2.

(21) W1 is a submodule of W2 if and only if W1 ∩ W2 = W1.

(22) If W1 is a submodule of W2, then W1 ∩W3 is a submodule of W2 ∩W3.

(23) If W1 is a submodule of W3, then W1 ∩ W2 is a submodule of W3.

(24) If W1 is a submodule of W2 and W1 is a submodule of W3, then W1 is
a submodule of W2 ∩ W3.

(25) 0V ∩ W = 0V and W ∩ 0V = 0V .

(26) 0V ∩ ΩV = 0V and ΩV ∩ 0V = 0V .

(27) ΩV ∩ W = W and W ∩ ΩV = W .

(28) ΩV ∩ ΩV = V .

(29) W1 ∩ W2 is a submodule of W1 + W2.

(30) W1 ∩ W2 + W2 = W2.

(31) W1 ∩ (W1 + W2) = W1.

One can prove the following propositions:

(32) W1 ∩ W2 + W2 ∩ W3 is a submodule of W2 ∩ (W1 + W3).

(33) If W1 is a submodule of W2, then W2∩(W1+W3) = W1∩W2+W2∩W3.

(34) W2 + W1 ∩ W3 is a submodule of (W1 + W2) ∩ (W2 + W3).

(35) If W1 is a submodule of W2, then W2+W1∩W3 = (W1+W2)∩(W2+W3).

(36) If W1 is a submodule of W3, then W1 + W2 ∩ W3 = (W1 + W2) ∩ W3.

(37) W1 + W2 = W2 if and only if W1 ∩ W2 = W1.

(38) If W1 is a submodule of W2, then W1 +W3 is a submodule of W2 +W3.

(39) If W1 is a submodule of W2, then W1 is a submodule of W2 + W3.
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(40) If W1 is a submodule of W3 and W2 is a submodule of W3, then W1+W2

is a submodule of W3.

(41) There exists W such that the carrier of the carrier of W = (the carrier
of the carrier of W1)∪ (the carrier of the carrier of W2) if and only if W1

is a submodule of W2 or W2 is a submodule of W1.

Let us consider R, V . The functor Sub(V ) yields a non-empty set and is
defined by:

(Def.3) for every x holds x ∈ Sub(V ) if and only if x is a submodule of V .

In the sequel D denotes a non-empty set. One can prove the following three
propositions:

(42) If for every x holds x ∈ D if and only if x is a submodule of V , then
D = Sub(V ).

(43) x ∈ Sub(V ) if and only if x is a submodule of V .

(44) V ∈ Sub(V ).

Let us consider R, V , W1, W2. We say that V is the direct sum of W1 and
W2 if and only if:

(Def.4) V = W1 + W2 and W1 ∩ W2 = 0V .

One can prove the following two propositions:

(46)2 If V is the direct sum of W1 and W2, then V is the direct sum of W2

and W1.

(47) V is the direct sum of 0V and ΩV and V is the direct sum of ΩV and
0V .

In the sequel C1 will denote a coset of W1 and C2 will denote a coset of W2.
Next we state several propositions:

(48) If C1 ∩ C2 6= ∅, then C1 ∩ C2 is a coset of W1 ∩ W2.

(49) V is the direct sum of W1 and W2 if and only if for every C1, C2 there
exists v such that C1 ∩ C2 = {v}.

(50) W1 + W2 = V if and only if for every v there exist v1, v2 such that
v1 ∈ W1 and v2 ∈ W2 and v = v1 + v2.

(51) If V is the direct sum of W1 and W2 and v = v1 + v2 and v = u1 + u2

and v1 ∈ W1 and u1 ∈ W1 and v2 ∈ W2 and u2 ∈ W2, then v1 = u1 and
v2 = u2.

(52) Suppose V = W1 + W2 and there exists v such that for all v1, v2, u1,
u2 such that v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and
v2 ∈ W2 and u2 ∈ W2 holds v1 = u1 and v2 = u2. Then V is the direct
sum of W1 and W2.

In the sequel t will be an element of [: the carrier of the carrier of V, the
carrier of the carrier of V :]. Let us consider R, V , v, W1, W2. Let us assume
that V is the direct sum of W1 and W2. The functor v < (W1,W2) yielding an

2The proposition (45) was either repeated or obvious.
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element of [: the carrier of the carrier of V, the carrier of the carrier of V :] is
defined as follows:

(Def.5) v = (v < (W1,W2))1+(v < (W1,W2))2 and (v < (W1,W2))1 ∈ W1 and
(v < (W1,W2))2 ∈ W2.

The following propositions are true:

(53) If V is the direct sum of W1 and W2 and t1 + t2 = v and t1 ∈ W1 and
t2 ∈ W2, then t = v < (W1,W2).

(54) If V is the direct sum of W1 and W2, then
(v < (W1,W2))1 + (v < (W1,W2))2 = v.

(55) If V is the direct sum of W1 and W2, then (v < (W1,W2))1 ∈ W1.

(56) If V is the direct sum of W1 and W2, then (v < (W1,W2))2 ∈ W2.

(57) If V is the direct sum of W1 and W2, then
(v < (W1,W2))1 = (v < (W2,W1))2.

(58) If V is the direct sum of W1 and W2, then
(v < (W1,W2))2 = (v < (W2,W1))1.

In the sequel A1, A2 will denote elements of Sub(V ). Let us consider R, V .
The functor SubJoinV yields a binary operation on Sub(V ) and is defined as
follows:

(Def.6) for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubJoinV )(A1, A2) = W1 + W2.

Let us consider R, V . The functor SubMeetV yielding a binary operation
on Sub(V ) is defined as follows:

(Def.7) for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubMeetV )(A1, A2) = W1 ∩ W2.

In the sequel o is a binary operation on Sub(V ). Next we state several
propositions:

(59) If A1 = W1 and A2 = W2, then SubJoinV (A1, A2) = W1 + W2.

(60) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds o(A1,

A2) = W1 + W2, then o = SubJoinV .

(61) If A1 = W1 and A2 = W2, then SubMeet V (A1, A2) = W1 ∩ W2.

(62) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds o(A1,

A2) = W1 ∩ W2, then o = SubMeetV .

(63) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a lattice.

(64) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a lower bound lattice.

(65) 〈Sub(V ),SubJoinV,SubMeet V 〉 is an upper bound lattice.

(66) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a bound lattice.

(67) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a modular lattice.
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