Submodules and Cosets of Submodules in Left Module over Associative Ring ¹

Michał Muzalewski Warsaw University Białystok Wojciech Skaba University of Toruń

Summary. Notions of Submodules in Left Module over Associative Ring and Cosets of Submodules in Left Module over Associative Ring. A few basic theorems related to these notions are proved. This article originated as a generalization of the article [12].

MML Identifier: LMOD_2.

The notation and terminology used here are introduced in the following articles: [8], [2], [14], [13], [10], [11], [7], [1], [3], [9], [4], [6], and [5]. For simplicity we follow a convention: x will be arbitrary, R will be an associative ring, a will be a scalar of R, V, X, Y will be left modules over R, and u, v, v_1 , v_2 will be vectors of V. Let us consider R, V. A subset of V is a subset of the carrier of the carrier of V.

In the sequel V_1 , V_2 , V_3 will denote subsets of V. Let us consider R, V, V_1 . We say that V_1 is linearly closed if and only if:

(Def.1) for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$ and for all a, v such that $v \in V_1$ holds $a \cdot v \in V_1$.

We now state a number of propositions:

- (1) If for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$ and for all a, v such that $v \in V_1$ holds $a \cdot v \in V_1$, then V_1 is linearly closed.
- (2) If V_1 is linearly closed, then for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$.
- (3) If V_1 is linearly closed, then for all a, v such that $v \in V_1$ holds $a \cdot v \in V_1$.
- (4) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then $\Theta_V \in V_1$.
- (5) If V_1 is linearly closed, then for every v such that $v \in V_1$ holds $-v \in V_1$.

¹Supported by RPBP.III-24.C6

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (6) If V_1 is linearly closed, then for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v u \in V_1$.
- (7) $\{\Theta_V\}$ is linearly closed.
- (8) If the carrier of the carrier of $V = V_1$, then V_1 is linearly closed.
- (9) If V_1 is linearly closed and V_2 is linearly closed and $V_3 = \{v + u : v \in V_1 \land u \in V_2\}$, then V_3 is linearly closed.
- (10) If V_1 is linearly closed and V_2 is linearly closed, then $V_1 \cap V_2$ is linearly closed.

Let us consider R, V. A left module over R is called a submodule of V if:

(Def.2) the carrier of the carrier of it \subseteq the carrier of the carrier of V and the zero of the carrier of it = the zero of the carrier of V and the addition of the carrier of it = (the addition of the carrier of V) \upharpoonright [: the carrier of the carrier of the carrier of it] and the left multiplication of it = (the left multiplication of V) \upharpoonright [: the carrier of R, the carrier of the carrier of the carrier of R, the carrier of the carrier of it].

We now state the proposition

(11) If the carrier of the carrier of $X \subseteq$ the carrier of the carrier of V and the zero of the carrier of X = the zero of the carrier of V and the addition of the carrier of X = (the addition of the carrier of $V) \upharpoonright [$ the carrier of the carrier of X, the carrier of the carrier of X] and the left multiplication of X = (the left multiplication of $V) \upharpoonright [$ the carrier of R, the carrier of X], then X is a submodule of V.

We follow a convention: W, W_1, W_2 denote submodules of V and w, w_1, w_2 denote vectors of W. The following propositions are true:

- (12) The carrier of the carrier of $W \subseteq$ the carrier of the carrier of V.
- (13) The zero of the carrier of W = the zero of the carrier of V.
- (14) The addition of the carrier of $W = (\text{the addition of the carrier of } V) \upharpoonright [:$ the carrier of the carrier of W, the carrier of the carrier of W].
- (15) The left multiplication of $W = (\text{the left multiplication of } V) \upharpoonright [: \text{the carrier of } R, \text{ the carrier of the carrier of } W].$
- (16) If $x \in W_1$ and W_1 is a submodule of W_2 , then $x \in W_2$.
- (17) If $x \in W$, then $x \in V$.
- (18) w is a vector of V.
- (19) $\Theta_W = \Theta_V.$
- (20) $\Theta_{W_1} = \Theta_{W_2}.$
- (21) If $w_1 = v$ and $w_2 = u$, then $w_1 + w_2 = v + u$.
- (22) If w = v, then $a \cdot w = a \cdot v$.
- (23) If w = v, then -v = -w.
- (24) If $w_1 = v$ and $w_2 = u$, then $w_1 w_2 = v u$.
- (25) $\Theta_V \in W$.
- (26) $\Theta_{W_1} \in W_2$.

- (27) $\Theta_W \in V.$
- (28) If $u \in W$ and $v \in W$, then $u + v \in W$.
- (29) If $v \in W$, then $a \cdot v \in W$.
- (30) If $v \in W$, then $-v \in W$.
- (31) If $u \in W$ and $v \in W$, then $u v \in W$.
- (32) V is a submodule of V.
- (33) If V is a submodule of X and X is a submodule of V, then V = X.
- (34) If V is a submodule of X and X is a submodule of Y, then V is a submodule of Y.
- (35) If the carrier of the carrier of $W_1 \subseteq$ the carrier of the carrier of W_2 , then W_1 is a submodule of W_2 .
- (36) If for every v such that $v \in W_1$ holds $v \in W_2$, then W_1 is a submodule of W_2 .
- (37) If the carrier of the carrier of W_1 = the carrier of the carrier of W_2 , then $W_1 = W_2$.
- (38) If for every v holds $v \in W_1$ if and only if $v \in W_2$, then $W_1 = W_2$.
- (39) If the carrier of the carrier of W = the carrier of the carrier of V, then W = V.
- (40) If for every v holds $v \in W$, then W = V.
- (41) If the carrier of the carrier of $W = V_1$, then V_1 is linearly closed.
- (42) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then there exists W such that $V_1 =$ the carrier of the carrier of W.

Let us consider R, V. The functor $\mathbf{0}_V$ yields a submodule of V and is defined as follows:

(Def.3) the carrier of the carrier of $\mathbf{0}_V = \{\Theta_V\}$.

Let us consider R, V. The functor Ω_V yielding a submodule of V is defined by:

(Def.4) $\Omega_V = V.$

The following propositions are true:

- (43) The carrier of the carrier of $\mathbf{0}_V = \{\Theta_V\}$.
- (44) If the carrier of the carrier of $W = \{\Theta_V\}$, then $W = \mathbf{0}_V$.
- (45) $\Omega_V = V.$
- (46) $x \in \mathbf{0}_V$ if and only if $x = \Theta_V$.
- $(47) \quad \mathbf{0}_W = \mathbf{0}_V.$
- (48) $\mathbf{0}_{W_1} = \mathbf{0}_{W_2}.$
- (49) $\mathbf{0}_W$ is a submodule of V.
- (50) $\mathbf{0}_V$ is a submodule of W.
- (51) $\mathbf{0}_{W_1}$ is a submodule of W_2 .
- (52) W is a submodule of Ω_V .
- (53) V is a submodule of Ω_V .

Let us consider R, V, v, W. The functor v + W yields a subset of V and is defined by:

(Def.5) $v + W = \{v + u : u \in W\}.$

Let us consider R, V, W. A subset of V is said to be a coset of W if:

(Def.6) there exists v such that it = v + W.

In the sequel B, C are cosets of W. One can prove the following propositions:

- (54) $v + W = \{v + u : u \in W\}.$
- (55) There exists v such that C = v + W.
- (56) If $V_1 = v + W$, then V_1 is a coset of W.
- (57) $x \in v + W$ if and only if there exists u such that $u \in W$ and x = v + u.
- (58) $\Theta_V \in v + W$ if and only if $v \in W$.
- $(59) \quad v \in v + W.$
- (60) $\Theta_V + W =$ the carrier of the carrier of W.
- (61) $v + \mathbf{0}_V = \{v\}.$
- (62) $v + \Omega_V =$ the carrier of the carrier of V.
- (63) $\Theta_V \in v + W$ if and only if v + W = the carrier of the carrier of W.
- (64) $v \in W$ if and only if v + W = the carrier of the carrier of W.
- (65) If $v \in W$, then $a \cdot v + W =$ the carrier of the carrier of W.
- (66) $u \in W$ if and only if v + W = v + u + W.
- (67) $u \in W$ if and only if v + W = (v u) + W.
- (68) $v \in u + W$ if and only if u + W = v + W.
- (69) If $u \in v_1 + W$ and $u \in v_2 + W$, then $v_1 + W = v_2 + W$.
- (70) If $v \in W$, then $a \cdot v \in v + W$.
- (71) If $v \in W$, then $-v \in v + W$.
- (72) $u + v \in v + W$ if and only if $u \in W$.
- (73) $v u \in v + W$ if and only if $u \in W$.
- (74) $u \in v + W$ if and only if there exists v_1 such that $v_1 \in W$ and $u = v + v_1$.
- (75) $u \in v + W$ if and only if there exists v_1 such that $v_1 \in W$ and $u = v v_1$.
- (76) There exists v such that $v_1 \in v + W$ and $v_2 \in v + W$ if and only if $v_1 v_2 \in W$.
- (77) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v + v_1 = u$.
- (78) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v v_1 = u$.
- (79) $v + W_1 = v + W_2$ if and only if $W_1 = W_2$.
- (80) If $v + W_1 = u + W_2$, then $W_1 = W_2$.

In the sequel C_1 denotes a coset of W_1 and C_2 denotes a coset of W_2 . Next we state a number of propositions:

- (81) There exists C such that $v \in C$.
- (82) C is linearly closed if and only if C = the carrier of the carrier of W.
- (83) If $C_1 = C_2$, then $W_1 = W_2$.

- (84) $\{v\}$ is a coset of $\mathbf{0}_V$.
- (85) If V_1 is a coset of $\mathbf{0}_V$, then there exists v such that $V_1 = \{v\}$.
- (86) The carrier of the carrier of W is a coset of W.
- (87) The carrier of the carrier of V is a coset of Ω_V .
- (88) If V_1 is a coset of Ω_V , then V_1 = the carrier of the carrier of V.
- (89) $\Theta_V \in C$ if and only if C = the carrier of the carrier of W.
- (90) $u \in C$ if and only if C = u + W.
- (91) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u+v_1 = v$.
- (92) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u v_1 = v$.
- (93) There exists C such that $v_1 \in C$ and $v_2 \in C$ if and only if $v_1 v_2 \in W$.
- (94) If $u \in B$ and $u \in C$, then B = C.

References

- [1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [5] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279–282, 1991.
- [6] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.
- [7] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, 1(5):851–854, 1990.
- [10] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [11] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855–864, 1990.
- [12] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [14] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received October 22, 1990