Submodules and Cosets of Submodules in Left Module over Associative Ring ${ }^{1}$

Michał Muzalewski
Warsaw University
Białystok

Wojciech Skaba
University of Toruń

Abstract

Summary. Notions of Submodules in Left Module over Associative Ring and Cosets of Submodules in Left Module over Associative Ring. A few basic theorems related to these notions are proved. This article originated as a generalization of the article [12].

MML Identifier: LMOD_2.

The notation and terminology used here are introduced in the following articles: [8], [2], [14], [13], [10], [11], [7], [1], [3], [9], [4], [6], and [5]. For simplicity we follow a convention: x will be arbitrary, R will be an associative ring, a will be a scalar of R, V, X, Y will be left modules over R, and u, v, v_{1}, v_{2} will be vectors of V. Let us consider R, V. A subset of V is a subset of the carrier of the carrier of V.

In the sequel V_{1}, V_{2}, V_{3} will denote subsets of V. Let us consider R, V, V_{1}. We say that V_{1} is linearly closed if and only if:
(Def.1) for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$ and for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
We now state a number of propositions:
(1) If for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$ and for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$, then V_{1} is linearly closed.
(2) If V_{1} is linearly closed, then for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$.
(3) If V_{1} is linearly closed, then for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
(4) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then $\Theta_{V} \in V_{1}$.
(5) If V_{1} is linearly closed, then for every v such that $v \in V_{1}$ holds $-v \in V_{1}$.

[^0](6) If V_{1} is linearly closed, then for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v-u \in V_{1}$.
(7) $\left\{\Theta_{V}\right\}$ is linearly closed.
(8) If the carrier of the carrier of $V=V_{1}$, then V_{1} is linearly closed.
(9) If V_{1} is linearly closed and V_{2} is linearly closed and $V_{3}=\{v+u: v \in$ $\left.V_{1} \wedge u \in V_{2}\right\}$, then V_{3} is linearly closed.
(10) If V_{1} is linearly closed and V_{2} is linearly closed, then $V_{1} \cap V_{2}$ is linearly closed.
Let us consider R, V. A left module over R is called a submodule of V if:
(Def.2) the carrier of the carrier of it \subseteq the carrier of the carrier of V and the zero of the carrier of it = the zero of the carrier of V and the addition of the carrier of it $=($ the addition of the carrier of $V) \upharpoonright$: the carrier of the carrier of it, the carrier of the carrier of it:] and the left multiplication of it $=($ the left multiplication of $V) \upharpoonright:$ the carrier of R, the carrier of the carrier of it : .
We now state the proposition
(11) If the carrier of the carrier of $X \subseteq$ the carrier of the carrier of V and the zero of the carrier of $X=$ the zero of the carrier of V and the addition of the carrier of $X=$ (the addition of the carrier of V) $!$: the carrier of the carrier of X, the carrier of the carrier of $X:$ and the left multiplication of $X=$ (the left multiplication of V) \mid : the carrier of R, the carrier of the carrier of $X:$, then X is a submodule of V.
We follow a convention: W, W_{1}, W_{2} denote submodules of V and w, w_{1}, w_{2} denote vectors of W. The following propositions are true:
(12) The carrier of the carrier of $W \subseteq$ the carrier of the carrier of V.
(13) The zero of the carrier of $W=$ the zero of the carrier of V.
(14) The addition of the carrier of $W=$ (the addition of the carrier of V) ヶ: the carrier of the carrier of W, the carrier of the carrier of W :
(15) The left multiplication of $W=$ (the left multiplication of V) \upharpoonright : the carrier of R, the carrier of the carrier of W :].
(16) If $x \in W_{1}$ and W_{1} is a submodule of W_{2}, then $x \in W_{2}$.
(17) If $x \in W$, then $x \in V$.
(18) w is a vector of V.
(19) $\Theta_{W}=\Theta_{V}$.
(20) $\Theta_{W_{1}}=\Theta_{W_{2}}$.
(21) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}+w_{2}=v+u$.
(22) If $w=v$, then $a \cdot w=a \cdot v$.
(23) If $w=v$, then $-v=-w$.
(24) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}-w_{2}=v-u$.
(25) $\Theta_{V} \in W$.
$\Theta_{W_{1}} \in W_{2}$.
(27) $\Theta_{W} \in V$.
(28) If $u \in W$ and $v \in W$, then $u+v \in W$.
(29) If $v \in W$, then $a \cdot v \in W$.
(30) If $v \in W$, then $-v \in W$.
(31) If $u \in W$ and $v \in W$, then $u-v \in W$.
(32) V is a submodule of V.
(33) If V is a submodule of X and X is a submodule of V, then $V=X$.
(34) If V is a submodule of X and X is a submodule of Y, then V is a submodule of Y.
(35) If the carrier of the carrier of $W_{1} \subseteq$ the carrier of the carrier of W_{2}, then W_{1} is a submodule of W_{2}.
(36) If for every v such that $v \in W_{1}$ holds $v \in W_{2}$, then W_{1} is a submodule of W_{2}.
(37) If the carrier of the carrier of $W_{1}=$ the carrier of the carrier of W_{2}, then $W_{1}=W_{2}$.
(38) If for every v holds $v \in W_{1}$ if and only if $v \in W_{2}$, then $W_{1}=W_{2}$.
(39) If the carrier of the carrier of $W=$ the carrier of the carrier of V, then $W=V$.
(40) If for every v holds $v \in W$, then $W=V$.
(41) If the carrier of the carrier of $W=V_{1}$, then V_{1} is linearly closed.
(42) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then there exists W such that $V_{1}=$ the carrier of the carrier of W.
Let us consider R, V. The functor $\mathbf{0}_{V}$ yields a submodule of V and is defined as follows:
(Def.3) the carrier of the carrier of $\mathbf{0}_{V}=\left\{\Theta_{V}\right\}$.
Let us consider R, V. The functor Ω_{V} yielding a submodule of V is defined by:
(Def.4) $\quad \Omega_{V}=V$.
The following propositions are true:
(43) The carrier of the carrier of $\mathbf{0}_{V}=\left\{\Theta_{V}\right\}$.
(44) If the carrier of the carrier of $W=\left\{\Theta_{V}\right\}$, then $W=\mathbf{0}_{V}$.
(45) $\Omega_{V}=V$.
(46) $\quad x \in \mathbf{0}_{V}$ if and only if $x=\Theta_{V}$.
(47) $\mathbf{0}_{W}=\mathbf{0}_{V}$.
(48) $\mathbf{0}_{W_{1}}=\mathbf{0}_{W_{2}}$.
(49) $\mathbf{0}_{W}$ is a submodule of V.
(50) $\quad \mathbf{0}_{V}$ is a submodule of W.
(51) $\mathbf{0}_{W_{1}}$ is a submodule of W_{2}.
(52) W is a submodule of Ω_{V}.
(53) $\quad V$ is a submodule of Ω_{V}.

Let us consider R, V, v, W. The functor $v+W$ yields a subset of V and is defined by:
(Def.5) $\quad v+W=\{v+u: u \in W\}$.
Let us consider R, V, W. A subset of V is said to be a coset of W if:
(Def.6) there exists v such that it $=v+W$.
In the sequel B, C are cosets of W. One can prove the following propositions:
$v+W=\{v+u: u \in W\}$.
(55) There exists v such that $C=v+W$.
(56) If $V_{1}=v+W$, then V_{1} is a coset of W.
(57) $\quad x \in v+W$ if and only if there exists u such that $u \in W$ and $x=v+u$.
(58) $\Theta_{V} \in v+W$ if and only if $v \in W$.
(59) $v \in v+W$.
(60) $\Theta_{V}+W=$ the carrier of the carrier of W.
(61) $v+\mathbf{0}_{V}=\{v\}$.
(62) $v+\Omega_{V}=$ the carrier of the carrier of V.
(63) $\Theta_{V} \in v+W$ if and only if $v+W=$ the carrier of the carrier of W.
(64) $v \in W$ if and only if $v+W=$ the carrier of the carrier of W.
(65) If $v \in W$, then $a \cdot v+W=$ the carrier of the carrier of W.
(66) $u \in W$ if and only if $v+W=v+u+W$.
(67) $\quad u \in W$ if and only if $v+W=(v-u)+W$.
(68) $v \in u+W$ if and only if $u+W=v+W$.
(69) If $u \in v_{1}+W$ and $u \in v_{2}+W$, then $v_{1}+W=v_{2}+W$.
(70) If $v \in W$, then $a \cdot v \in v+W$.
(71) If $v \in W$, then $-v \in v+W$.
(72) $u+v \in v+W$ if and only if $u \in W$.
(73) $v-u \in v+W$ if and only if $u \in W$.
(74) $u \in v+W$ if and only if there exists v_{1} such that $v_{1} \in W$ and $u=v+v_{1}$.
(75) $u \in v+W$ if and only if there exists v_{1} such that $v_{1} \in W$ and $u=v-v_{1}$.
(76) There exists v such that $v_{1} \in v+W$ and $v_{2} \in v+W$ if and only if $v_{1}-v_{2} \in W$.
(77) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v+v_{1}=u$.
(78) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v-v_{1}=u$.
(79) $\quad v+W_{1}=v+W_{2}$ if and only if $W_{1}=W_{2}$.
(80) If $v+W_{1}=u+W_{2}$, then $W_{1}=W_{2}$.

In the sequel C_{1} denotes a coset of W_{1} and C_{2} denotes a coset of W_{2}. Next we state a number of propositions:
(81) There exists C such that $v \in C$.
(82) $\quad C$ is linearly closed if and only if $C=$ the carrier of the carrier of W.
(83) If $C_{1}=C_{2}$, then $W_{1}=W_{2}$.
$\{v\}$ is a coset of $\mathbf{0}_{V}$.
(85) If V_{1} is a coset of $\mathbf{0}_{V}$, then there exists v such that $V_{1}=\{v\}$.
(86) The carrier of the carrier of W is a coset of W.
(87) The carrier of the carrier of V is a coset of Ω_{V}.
(88) If V_{1} is a coset of Ω_{V}, then $V_{1}=$ the carrier of the carrier of V.
(91) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u+v_{1}=v$.
(93) There exists C such that $v_{1} \in C$ and $v_{2} \in C$ if and only if $v_{1}-v_{2} \in W$.
(94) If $u \in B$ and $u \in C$, then $B=C$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[4] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[5] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279-282, 1991.
[6] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, 1(5):851-854, 1990.
[10] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[11] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[12] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received October 22, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6

