Finite Sums of Vectors in Left Module over Associative Ring ${ }^{1}$

Michał Muzalewski
Warsaw University
Białystok
Wojciech Skaba
University of Toruń
Brok

Summary. Definition of a finite sequence of the vectors of Left Module over Associative Ring and some theorems concerning these sums. Written as a generalization of the article [11].

MML Identifier: LMOD_1.

The terminology and notation used here have been introduced in the following papers: [10], [3], [2], [4], [6], [12], [9], [5], [1], [7], and [8]. For simplicity we adopt the following convention: x is arbitrary, R is an associative ring, a is a scalar of R, V is a left module over R, and v, v_{1}, v_{2}, w, u are vectors of V. Let us consider R, V, x. The predicate $x \in V$ is defined by:
(Def.1) $\quad x \in$ the carrier of the carrier of V.
The following two propositions are true:
(1) $x \in V$ if and only if $x \in$ the carrier of the carrier of V.
(2) $v \in V$.

We adopt the following convention: F, G, H will denote finite sequences of elements of the carrier of the carrier of V, f will denote a function from \mathbb{N} into the carrier of the carrier of V, and i, j, k, n will denote natural numbers. Let us consider R, V, F. The functor $\sum F$ yielding a vector of V is defined by:
(Def.2) there exists f such that $\sum F=f(\operatorname{len} F)$ and $f(0)=\Theta_{V}$ and for all j, v such that $j<\operatorname{len} F$ and $v=F(j+1)$ holds $f(j+1)=f(j)+v$.
One can prove the following propositions:
(3) If there exists f such that $u=f(\operatorname{len} F)$ and $f(0)=\Theta_{V}$ and for all j, v such that $j<\operatorname{len} F$ and $v=F(j+1)$ holds $f(j+1)=f(j)+v$, then $u=\sum F$.

[^0](4) There exists f such that $\sum F=f(\operatorname{len} F)$ and $f(0)=\Theta_{V}$ and for all j, v such that $j<$ len F and $v=F(j+1)$ holds $f(j+1)=f(j)+v$.
(5) If $k \in \operatorname{Seg} n$ and len $F=n$, then $F(k)$ is a vector of V.
(6) If len $F=\operatorname{len} G+1$ and $G=F \upharpoonright \operatorname{Seg} \operatorname{len} G$ and $v=F(\operatorname{len} F)$, then $\sum F=\sum G+v$.
(7) $\quad \sum(F \frown G)=\sum F+\sum G$.
(8) If len $F=\operatorname{len} G$ and len $F=\operatorname{len} H$ and for every k such that $k \in$ Seg len F holds $H(k)=\pi_{k} F+\pi_{k} G$, then $\sum H=\sum F+\sum G$.
(9) If len $F=\operatorname{len} G$ and for all k, v such that $k \in \operatorname{Seg}$ len F and $v=G(k)$ holds $F(k)=a \cdot v$, then $\sum F=a \cdot \sum G$.
(10) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}$ len F holds $G(k)=$ $a \cdot \pi_{k} F$, then $\sum G=a \cdot \sum F$.
(11) If len $F=\operatorname{len} G$ and for all k, v such that $k \in \operatorname{Seg}$ len F and $v=G(k)$ holds $F(k)=-v$, then $\sum F=-\sum G$.
(12) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}$ len F holds $G(k)=$ $-\pi_{k} F$, then $\sum G=-\sum F$.
(13) If $\operatorname{len} F=\operatorname{len} G$ and len $F=\operatorname{len} H$ and for every k such that $k \in$ Seg len F holds $H(k)=\pi_{k} F-\pi_{k} G$, then $\sum H=\sum F-\sum G$.
(14) If $\operatorname{rng} F=\operatorname{rng} G$ and F is one-to-one and G is one-to-one, then $\sum F=$ $\sum G$.
(15) For all F, G and for every permutation f of $\operatorname{dom} F$ such that len $F=$ len G and for every i such that $i \in \operatorname{dom} G$ holds $G(i)=F(f(i))$ holds $\sum F=\sum G$.
(16) For every permutation f of dom F such that $G=F \cdot f$ holds $\sum F=\sum G$.
(17) $\sum \varepsilon_{\text {the carrier of the carrier of } V}=\Theta_{V}$.
(18) $\quad \sum\langle v\rangle=v$.
(19) $\quad \sum\langle v, u\rangle=v+u$.
(20) $\quad \sum\langle v, u, w\rangle=v+u+w$.
(21) $a \cdot \sum \varepsilon_{\text {the carrier of the carrier of } V}=\Theta_{V}$.
(22) $a \cdot \sum\langle v\rangle=a \cdot v$.
(23) $a \cdot \sum\langle v, u\rangle=a \cdot v+a \cdot u$.
(24) $a \cdot \sum\langle v, u, w\rangle=a \cdot v+a \cdot u+a \cdot w$.
(25) $\quad-\sum \varepsilon_{\text {the carrier of the carrier of } V}=\Theta_{V}$.
(26) $-\sum\langle v\rangle=-v$.
(27) $-\sum\langle v, u\rangle=(-v)-u$.
(28) $-\sum\langle v, u, w\rangle=(-v)-u-w$.
(29) $\quad \sum\langle v, w\rangle=\sum\langle w, v\rangle$.
(30) $\quad \sum\langle v, w\rangle=\sum\langle v\rangle+\sum\langle w\rangle$.
(31) $\quad \sum\left\langle\Theta_{V}, \Theta_{V}\right\rangle=\Theta_{V}$.
$\sum\left\langle\Theta_{V}, v\right\rangle=v$ and $\sum\left\langle v, \Theta_{V}\right\rangle=v$.
\[

$$
\begin{equation*}
\sum\langle v,-v\rangle=\Theta_{V} \text { and } \sum\langle-v, v\rangle=\Theta_{V} . \tag{33}
\end{equation*}
$$

\]

We now state a number of propositions:
(50) If len $F=2$ and $v_{1}=F(1)$ and $v_{2}=F(2)$, then $\sum F=v_{1}+v_{2}$.
(51) If len $F=3$ and $v_{1}=F(1)$ and $v_{2}=F(2)$ and $v=F(3)$, then $\sum F=$ $v_{1}+v_{2}+v$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[8] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, $1(5): 851-854,1990$.
[12] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.

Received October 22, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6

