Incidence Projective Spaces

Wojciech Leończuk ${ }^{1}$
Warsaw University
Białystok

Krzysztof Prażmowski ${ }^{2}$
Warsaw University
Białystok

Abstract

Summary. A basis for investigations on incidence projective spaces. With every projective space defined in terms of collinearity relation we associate the incidence structure consisting of points and lines of the given space. We introduce the general notion of projective space defined in terms of incidence and define several properties of such structures (like satisfability of the Desargues Axiom and conditions on the dimension).

MML Identifier: INCPROJ.

The papers [7], [8], [6], [1], [2], [3], [4], and [5] provide the notation and terminology for this paper. We consider projective incidence structures which are systems
<points, lines, an incidence〉,
where the points constitute a non-empty set, the lines constitute a non-empty set, and the incidence is a relation between the points and the lines.

We see that the projective space defined in terms of collinearity is a proper collinearity space.

For simplicity we follow a convention: C_{1} will be a proper collinearity space, x, y will be arbitrary, Y will be a set, and B will be an element of $2^{\text {the points of } C_{1}}$. Let us consider C_{1}. We see that the line of C_{1} is an element of $2^{\text {the points of } C_{1}}$.

Let us consider C_{1}. The functor $L\left(C_{1}\right)$ yielding a non-empty set is defined by:
(Def.1) $L\left(C_{1}\right)=\left\{B: B\right.$ is a line of $\left.C_{1}\right\}$.
We now state two propositions:
(1) $L\left(C_{1}\right)=\left\{B: B\right.$ is a line of $\left.C_{1}\right\}$.
(2) For every x holds x is a line of C_{1} if and only if x is an element of $L\left(C_{1}\right)$.

[^0]Let us consider C_{1}. The functor $\mathbf{I}_{C_{1}}$ yields a relation between the points of C_{1} and $L\left(C_{1}\right)$ and is defined by:
(Def.2) for all x, y holds $\langle x, y\rangle \in \mathbf{I}_{C_{1}}$ if and only if $x \in$ the points of C_{1} and $y \in L\left(C_{1}\right)$ and there exists Y such that $y=Y$ and $x \in Y$.

Let us consider C_{1}. The functor Inc-ProjSp $\left(C_{1}\right)$ yields a projective incidence structure and is defined by:
(Def.3) Inc-ProjSp $\left(C_{1}\right)=\left\langle\right.$ the points of $\left.C_{1}, L\left(C_{1}\right), \mathbf{I}_{C_{1}}\right\rangle$.
Next we state four propositions:
(3) $\operatorname{Inc-ProjSp}\left(C_{1}\right)=\left\langle\right.$ the points of $\left.C_{1}, L\left(C_{1}\right), \mathbf{I}_{C_{1}}\right\rangle$.
(4) For every C_{1} holds the points of $\operatorname{Inc}-\operatorname{ProjSp}\left(C_{1}\right)=$ the points of C_{1} and the lines of Inc-ProjSp$\left(C_{1}\right)=L\left(C_{1}\right)$ and the incidence of $\operatorname{Inc-ProjSp}\left(C_{1}\right)=\mathbf{I}_{C_{1}}$.
(5) For every x holds x is a line of C_{1} if and only if x is an element of the lines of Inc-ProjSp $\left(C_{1}\right)$.
(6) For every x holds x is an element of the points of $\operatorname{Inc-ProjSp}\left(C_{1}\right)$ if and only if x is an element of the points of C_{1}.
For simplicity we adopt the following rules: a, b, c, p, q, s will be elements of the points of Inc-ProjSp $\left(C_{1}\right), P, Q, S$ will be elements of the lines of $\operatorname{Inc-ProjSp}\left(C_{1}\right), P^{\prime}$ will be a line of C_{1}, and $a^{\prime}, b^{\prime}, c^{\prime}, p^{\prime}$ will be elements of the points of C_{1}. Let I_{1} be a projective incidence structure, and let s be an element of the points of I_{1}, and let S be an element of the lines of I_{1}. The predicate $s \mid S$ is defined as follows:
(Def.4) $\langle s, S\rangle \in$ the incidence of I_{1}.
One can prove the following propositions:
(7) $\quad s \mid S$ if and only if $\langle s, S\rangle \in \mathbf{I}_{C_{1}}$.
(8) If $p=p^{\prime}$ and $P=P^{\prime}$, then $p \mid P$ if and only if $p^{\prime} \in P^{\prime}$.
(9) There exist $a^{\prime}, b^{\prime}, c^{\prime}$ such that $a^{\prime} \neq b^{\prime}$ and $b^{\prime} \neq c^{\prime}$ and $c^{\prime} \neq a^{\prime}$.
(10) For every a^{\prime} there exists b^{\prime} such that $a^{\prime} \neq b^{\prime}$.
(11) If $p \mid P$ and $q \mid P$ and $p \mid Q$ and $q \mid Q$, then $p=q$ or $P=Q$.
(12) For every p, q there exists P such that $p \mid P$ and $q \mid P$.
(13) If $a=a^{\prime}$ and $b=b^{\prime}$ and $c=c^{\prime}$, then a^{\prime}, b^{\prime} and c^{\prime} are collinear if and only if there exists P such that $a \mid P$ and $b \mid P$ and $c \mid P$.
(14) There exist p, P such that $p \nmid P$.

For simplicity we follow the rules: C_{1} is a projective space defined in terms of collinearity, a, b, c, d, p, q are elements of the points of $\operatorname{Inc-ProjSp}\left(C_{1}\right), P$, Q, S, M, N are elements of the lines of $\operatorname{Inc}-\operatorname{ProjSp}\left(C_{1}\right)$, and $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, p^{\prime}$ are elements of the points of C_{1}. One can prove the following propositions:
(15) For every P there exist a, b, c such that $a \neq b$ and $b \neq c$ and $c \neq a$ and $a \mid P$ and $b \mid P$ and $c \mid P$.
(16) Suppose that
(i) $a \mid M$,
(ii) $b \mid M$,
(iii) $c \mid N$,
(iv) $d \mid N$,
(v) $p \mid M$,
(vi) $p \mid N$,
(vii) $\quad a \mid P$,
(viii) $\quad c \mid P$,
(ix) $b \mid Q$,
(x) $d \mid Q$,
(xi) $p \nmid P$,
(xii) $p \nmid Q$,
(xiii) $\quad M \neq N$.

Then there exists q such that $q \mid P$ and $q \mid Q$.
(17) If for every $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ there exists p^{\prime} such that a^{\prime}, b^{\prime} and p^{\prime} are collinear and c^{\prime}, d^{\prime} and p^{\prime} are collinear, then for every M, N there exists q such that $q \mid M$ and $q \mid N$.
(18) If there exist elements p, p_{1}, r, r_{1} of the points of C_{1} such that for no element s of the points of C_{1} holds p, p_{1} and s are collinear and r, r_{1} and s are collinear, then there exist M, N such that for no q holds $q \mid M$ and $q \mid N$.
(19) Suppose for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear. Then for every a, M, N there exist b, c, S such that $a \mid S$ and $b \mid S$ and $c \mid S$ and $b \mid M$ and $c \mid N$.
We now define two new predicates. Let x, y, z be arbitrary. We say that x, y, z are mutually different if and only if:
(Def.5) $\quad x \neq y$ and $y \neq z$ and $z \neq x$.
Let u be arbitrary. We say that x, y, z, u are mutually different if and only if:
(Def.6) $\quad x \neq y$ and $y \neq z$ and $z \neq x$ and $u \neq x$ and $u \neq y$ and $u \neq z$.
We now define two new predicates. Let C_{2} be a projective incidence structure, and let a, b be elements of the points of C_{2}, and let M be an element of the lines of C_{2}. The predicate $a, b \mid M$ is defined as follows:
(Def.7) $\quad a \mid M$ and $b \mid M$.
Let c be an element of the points of C_{2}. The predicate $a, b, c \mid M$ is defined by:
(Def.8) $\quad a \mid M$ and $b \mid M$ and $c \mid M$.
We now state three propositions:
(20) Suppose that
(i) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1}
are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
Let p, q, r, s, a, b, c be elements of the points of $\operatorname{Inc}-\operatorname{ProjSp}\left(C_{1}\right)$. Let L, Q, R, S, A, B, C be elements of the lines of $\operatorname{Inc}-\operatorname{ProjSp}\left(C_{1}\right)$. Suppose that
(ii) $q \nmid L$,
(iii) $r \nmid L$,
(iv) $p \nmid Q$,
(v) $s \nmid Q$,
(vi) $p \nmid R$,
(vii) $r \nmid R$,
(viii) $q \nmid S$,
(ix) $s \nmid S$,
(x) $a, p, s \mid L$,
(xi) $a, q, r \mid Q$,
(xii) $b, q, s \mid R$,
(xiii) $b, p, r \mid S$,
(xiv) $\quad c, p, q \mid A$,
(xv) $c, r, s \mid B$,
(xvi) $a, b \mid C$.

Then $c \nmid C$.
(21) Suppose that
(i) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
Let $o, b_{1}, a_{1}, b_{2}, a_{2}, b_{3}, a_{3}, r, s, t$ be elements of the points of $\operatorname{Inc-ProjSp}\left(C_{1}\right)$. Let $C_{3}, C_{4}, C_{5}, A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ be elements of the lines of Inc-ProjSp $\left(C_{1}\right)$. Suppose that
(ii) $o, b_{1}, a_{1} \mid C_{3}$,
(iii) $o, a_{2}, b_{2} \mid C_{4}$,
(iv) $o, a_{3}, b_{3} \mid C_{5}$,
(v) $a_{3}, a_{2}, t \mid A_{1}$,
(vi) $a_{3}, r, a_{1} \mid A_{2}$,
(vii) $a_{2}, s, a_{1} \mid A_{3}$,
(viii) $t, b_{2}, b_{3} \mid B_{1}$,
(ix) $\quad b_{1}, r, b_{3} \mid B_{2}$,
(x) $\quad b_{1}, s, b_{2} \mid B_{3}$,
(xi) C_{3}, C_{4}, C_{5} are mutually different,
(xii) $\quad o \neq a_{1}$,
(xiii) $o \neq a_{2}$,

$$
\begin{aligned}
(\mathrm{xiv}) & o \neq a_{3}, \\
\text { (xv) } & o \neq b_{1}, \\
\text { (xvi) } & o \neq b_{2}, \\
\text { (xvii) } & o \neq b_{3}, \\
\text { (xviii) } & a_{1} \neq b_{1}, \\
\text { (xix) } & a_{2} \neq b_{2}, \\
\text { (xx) } & a_{3} \neq b_{3} .
\end{aligned}
$$

Then there exists an element O of the lines of $\operatorname{Inc-} \operatorname{ProjSp}\left(C_{1}\right)$ such that $r, s, t \mid O$.
(22) Suppose that
(i) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
Let $o, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}$ be elements of the points of $\operatorname{Inc-ProjSp}\left(C_{1}\right)$. Let $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{3}, C_{4}, C_{5}$ be elements of the lines of $\operatorname{Inc-ProjSp}\left(C_{1}\right)$. Suppose that
(ii) o, a_{1}, a_{2}, a_{3} are mutually different,
(iii) o, b_{1}, b_{2}, b_{3} are mutually different,
(iv) $A_{3} \neq B_{3}$,
(v) $o \mid A_{3}$,
(vi) $o \mid B_{3}$,
(vii) $a_{2}, b_{3}, c_{1} \mid A_{1}$,
(viii) $a_{3}, b_{1}, c_{2} \mid B_{1}$,
(ix) $a_{1}, b_{2}, c_{3} \mid C_{3}$,
(x) $a_{1}, b_{3}, c_{2} \mid A_{2}$,
(xi) $a_{3}, b_{2}, c_{1} \mid B_{2}$,
(xii) $a_{2}, b_{1}, c_{3} \mid C_{4}$,
(xiii) $b_{1}, b_{2}, b_{3} \mid A_{3}$,
(xiv) $a_{1}, a_{2}, a_{3} \mid B_{3}$,
(xv) $c_{1}, c_{2} \mid C_{5}$.

Then $c_{3} \mid C_{5}$.
A projective incidence structure is called a projective space defined in terms of incidence if:
(Def.9) (i) for all elements p, q of the points of it and for all elements P, Q of the lines of it such that $p \mid P$ and $q \mid P$ and $p \mid Q$ and $q \mid Q$ holds $p=q$ or $P=Q$,
(ii) for every elements p, q of the points of it there exists an element P of the lines of it such that $p \mid P$ and $q \mid P$,
(iii) there exists an element p of the points of it and there exists an element P of the lines of it such that $p \nmid P$,
(iv) for every element P of the lines of it there exist elements a, b, c of the points of it such that $a \neq b$ and $b \neq c$ and $c \neq a$ and $a \mid P$ and $b \mid P$ and $c \mid P$,
(v) for all elements a, b, c, d, p, q of the points of it and for all elements M, N, P, Q of the lines of it such that $a \mid M$ and $b \mid M$ and $c \mid N$ and $d \mid N$ and $p \mid M$ and $p \mid N$ and $a \mid P$ and $c \mid P$ and $b \mid Q$ and $d \mid Q$ and $p \nmid P$ and $p \nmid Q$ and $M \neq N$ there exists an element q of the points of it such that $q \mid P$ and $q \mid Q$.
Let C_{1} be a projective space defined in terms of collinearity.
Then $\operatorname{Inc}-\operatorname{ProjSp}\left(C_{1}\right)$ is a projective space defined in terms of incidence.
A projective space defined in terms of incidence is 2-dimensional if:
(Def.10) for every elements M, N of the lines of it there exists an element q of the points of it such that $q \mid M$ and $q \mid N$.
A projective space defined in terms of incidence is at least 3-dimensional if:
(Def.11) there exist elements M, N of the lines of it such that for no element q of the points of it holds $q \mid M$ and $q \mid N$.
A projective space defined in terms of incidence is at most 3-dimensional if:
(Def.12) for every element a of the points of it and for every elements M, N of the lines of it there exist elements b, c of the points of it and there exists an element S of the lines of it such that $a \mid S$ and $b \mid S$ and $c \mid S$ and $b \mid M$ and $c \mid N$.
A projective space defined in terms of incidence is 3-dimensional if:
(Def.13) it is at most 3-dimensional and it is at least 3-dimensional.
A projective space defined in terms of incidence is Fanoian if:
(Def.14) Let p, q, r, s, a, b, c be elements of the points of it . Let L, Q, R, S, A, B, C be elements of the lines of it. Suppose that
(i) $q \nmid L$,
(ii) $r \nmid L$,
(iii) $p \nmid Q$,
(iv) $s \nmid Q$,
(v) $p \nmid R$,
(vi) $\quad r \nmid R$,
(vii) $q \nmid S$,
(viii) $s \nmid S$,
(ix) $a, p, s \mid L$,
(x) $a, q, r \mid Q$,
(xi) $b, q, s \mid R$,
(xii) $b, p, r \mid S$,
(xiii) $\quad c, p, q \mid A$,
(xiv) $c, r, s \mid B$,
(xv) $a, b \mid C$.

Then $c \nmid C$.
A projective space defined in terms of incidence is Desarguesian if:
(Def.15) Let $o, b_{1}, a_{1}, b_{2}, a_{2}, b_{3}, a_{3}, r, s, t$ be elements of the points of it . Let $C_{3}, C_{4}, C_{5}, A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ be elements of the lines of it. Suppose that
(i) $o, b_{1}, a_{1} \mid C_{3}$,
(ii) $o, a_{2}, b_{2} \mid C_{4}$,
(iii) $o, a_{3}, b_{3} \mid C_{5}$,
(iv) $a_{3}, a_{2}, t \mid A_{1}$,
(v) $a_{3}, r, a_{1} \mid A_{2}$,
(vi) $a_{2}, s, a_{1} \mid A_{3}$,
(vii) $t, b_{2}, b_{3} \mid B_{1}$,
(viii) $\quad b_{1}, r, b_{3} \mid B_{2}$,
(ix) $b_{1}, s, b_{2} \mid B_{3}$,
(x) C_{3}, C_{4}, C_{5} are mutually different,
(xi) $o \neq a_{1}$,
(xii) $o \neq a_{2}$,
(xiii) $o \neq a_{3}$,
(xiv) $o \neq b_{1}$,
(xv) $o \neq b_{2}$,
(xvi) $\quad o \neq b_{3}$,
(xvii) $a_{1} \neq b_{1}$,
(xviii) $a_{2} \neq b_{2}$,
(xix) $a_{3} \neq b_{3}$.

Then there exists an element O of the lines of it such that $r, s, t \mid O$.
A projective space defined in terms of incidence is Pappian if:
(Def.16) Let $o, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}$ be elements of the points of it. Let $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{3}, C_{4}, C_{5}$ be elements of the lines of it. Suppose that
(i) o, a_{1}, a_{2}, a_{3} are mutually different,
(ii) o, b_{1}, b_{2}, b_{3} are mutually different,
(iii) $A_{3} \neq B_{3}$,
(iv) $o \mid A_{3}$,
(v) $o \mid B_{3}$,
(vi) $a_{2}, b_{3}, c_{1} \mid A_{1}$,
(vii) $a_{3}, b_{1}, c_{2} \mid B_{1}$,
(viii) $a_{1}, b_{2}, c_{3} \mid C_{3}$,
(ix) $a_{1}, b_{3}, c_{2} \mid A_{2}$,
(x) $a_{3}, b_{2}, c_{1} \mid B_{2}$,
(xi) $a_{2}, b_{1}, c_{3} \mid C_{4}$,
(xii) $b_{1}, b_{2}, b_{3} \mid A_{3}$,
(xiii) $a_{1}, a_{2}, a_{3} \mid B_{3}$,
(xiv) $c_{1}, c_{2} \mid C_{5}$.

Then $c_{3} \mid C_{5}$.

References

[1] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part I. Formalized Mathematics, 1(4):767-776, 1990.
[2] Wojciech Leoñczuk and Krzysztof Prażmowski. Projective spaces - part III. Formalized Mathematics, 1(5):909-918, 1990.
[3] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part IV. Formalized Mathematics, 1(5):919-927, 1990.
[4] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part V. Formalized Mathematics, 1(5):929-938, 1990.
[5] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part VI. Formalized Mathematics, 1(5):939-947, 1990.
[6] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 4, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6
 ${ }^{2}$ Supported by RPBP.III-24.C2

