Hessenberg Theorem¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok

Summary. We prove the Hessenberg theorem which states that every Pappian projective space is Desarguesian.

MML Identifier: HESSENBE.

The terminology and notation used in this paper are introduced in the following articles: [7], [1], [2], [3], [4], [5], and [6]. We follow a convention: P_1 denotes a projective space defined in terms of collinearity and $a, a', a_1, a_2, a_3, b, b', b_1, b_2, c, c', c_1, c_3, d, d', e, o, p, p_1, p_2, p_3, q, q_1, q_2, q_3, r, s, x, y, z denote elements of the points of <math>P_1$. One can prove the following propositions:

- (1) If a, b and c are collinear, then b, a and c are collinear.
- (2) If a, b and c are collinear, then a, c and b are collinear.
- (3) If a, b and c are collinear, then b, c and a are collinear and c, a and b are collinear and b, a and c are collinear and a, c and b are collinear and c, b and a are collinear.
- (4) If $a \neq b$ and a, b and c are collinear and a, b and d are collinear, then a, c and d are collinear.
- (5) If $p \neq q$ and a, b and p are collinear and a, b and q are collinear and p, q and r are collinear, then a, b and r are collinear.
- (6) If $p \neq q$, then there exists r such that p, q and r are not collinear.
- (7) There exist q, r such that p, q and r are not collinear.
- (8) If a, b and c are not collinear and a, b and b' are collinear and $a \neq b'$, then a, b' and c are not collinear.
- (9) If a, b and c are not collinear and a, b and d are collinear and a, c and d are collinear, then a = d.

¹Supported by RPBP.III-24.C6

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (10) If o, a and d are not collinear and o, d and d' are collinear and a, d and s are collinear and $d \neq d'$ and a', d' and s are collinear and o, a and a' are collinear and $o \neq a'$, then $s \neq d$.
- (11) If a, b and c are not collinear and a, b and b' are collinear and a, c and c' are collinear and $a \neq b'$, then $b' \neq c'$.
- (12) If a_1 , a_2 and a_3 are not collinear and a_1 , a_2 and c_3 are collinear and a_2 , a_3 and c_1 are collinear and a_1 , a_3 and z are collinear and c_1 , c_3 and z are collinear and $c_3 \neq a_1$ and $c_3 \neq a_2$ and $c_1 \neq a_2$ and $c_1 \neq a_3$, then $a_1 \neq z$ and $a_3 \neq z$.
- (13) If a, b and c are not collinear and a, b and d are collinear and c, e and d are collinear and $e \neq c$ and $d \neq a$, then e, a and c are not collinear.
- (14) If p_1 , p_2 and q_1 are not collinear and p_1 , p_2 and q_2 are collinear and q_1 , q_2 and q_3 are collinear and $p_1 \neq q_2$ and $q_2 \neq q_3$, then p_2 , p_1 and q_3 are not collinear.
- (15) If p_1 , p_2 and q_1 are not collinear and p_1 , p_2 and p_3 are collinear and q_1 , q_2 and p_3 are collinear and $p_3 \neq q_2$ and $p_2 \neq p_3$, then p_3 , p_2 and q_2 are not collinear.
- (16) If p_1 , p_2 and q_1 are not collinear and p_1 , p_2 and p_3 are collinear and q_1 , q_2 and p_1 are collinear and $p_1 \neq p_3$ and $p_1 \neq q_2$, then p_3 , p_1 and q_2 are not collinear.
- (17) If $a_1 \neq a_2$ and $b_1 \neq b_2$ and b_1 , b_2 and x are collinear and b_1 , b_2 and y are collinear and a_1 , a_2 and x are collinear and a_1 , a_2 and y are collinear and a_1 , a_2 and b_1 are not collinear, then x = y.
- (19)² If o, a_1 and a_2 are not collinear and o, a_1 and b_1 are collinear and o, a_2 and b_2 are collinear and $o \neq b_1$ and $o \neq b_2$, then o, b_1 and b_2 are not collinear.

We follow a convention: P_1 denotes a Pappian projective plane defined in terms of collinearity and a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , c_1 , c_2 , c_3 , o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 denote elements of the points of P_1 . We now state two propositions:

- (20) Suppose that
 - (i) $p_2 \neq p_3$,
 - (ii) $p_1 \neq p_3$,
 - (iii) $q_2 \neq q_3$,
 - (iv) $q_1 \neq q_2$,
 - (v) $q_1 \neq q_3$,
- (vi) p_1, p_2 and q_1 are not collinear,
- (vii) p_1, p_2 and p_3 are collinear,
- (viii) q_1, q_2 and q_3 are collinear,
- (ix) p_1, q_2 and r_3 are collinear,
- (x) q_1, p_2 and r_3 are collinear,
- (xi) p_1, q_3 and r_2 are collinear,
- (xii) p_3 , q_1 and r_2 are collinear,

²The proposition (18) was either repeated or obvious.

- (xiii) p_2, q_3 and r_1 are collinear,
- (xiv) p_3 , q_2 and r_1 are collinear.

Then r_1 , r_2 and r_3 are collinear.

- (21) Suppose that
 - (i) $o \neq b_1$,
 - (ii) $a_1 \neq b_1$,
 - (iii) $o \neq b_2$,
 - (iv) $a_2 \neq b_2$,
 - (v) $o \neq b_3$,
 - (vi) $a_3 \neq b_3$,
- (vii) $o, a_1 \text{ and } a_2 \text{ are not collinear},$
- (viii) $o, a_1 \text{ and } a_3 \text{ are not collinear},$
- (ix) o, a_2 and a_3 are not collinear,
- (x) a_1, a_2 and c_3 are collinear,
- (xi) b_1, b_2 and c_3 are collinear,
- (xii) a_2, a_3 and c_1 are collinear,
- (xiii) b_2, b_3 and c_1 are collinear,
- (xiv) a_1, a_3 and c_2 are collinear,
- (xv) b_1 , b_3 and c_2 are collinear,
- (xvi) $o, a_1 \text{ and } b_1 \text{ are collinear},$
- (xvii) o, a_2 and b_2 are collinear,
- (xviii) o, a_3 and b_3 are collinear.

Then c_1 , c_2 and c_3 are collinear.

We see that the Pappian projective plane defined in terms of collinearity is a Desarguesian projective plane defined in terms of collinearity.

We see that the Pappian projective space defined in terms of collinearity is a Desarguesian projective space defined in terms of collinearity.

References

- Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part I. Formalized Mathematics, 1(4):767–776, 1990.
- [2] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part II. Formalized Mathematics, 1(5):901–907, 1990.
- Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part III. Formalized Mathematics, 1(5):909–918, 1990.
- [4] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part IV. Formalized Mathematics, 1(5):919–927, 1990.
- [5] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part V. Formalized Mathematics, 1(5):929–938, 1990.
- [6] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part VI. Formalized Mathematics, 1(5):939–947, 1990.
- [7] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657–659, 1990.

Received October 2, 1990