Hessenberg Theorem ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok
Wojciech Leończuk
Warsaw University
Białystok

Abstract

Summary. We prove the Hessenberg theorem which states that every Pappian projective space is Desarguesian.

MML Identifier: HESSENBE.

The terminology and notation used in this paper are introduced in the following articles: [7], [1], [2], [3], [4], [5], and [6]. We follow a convention: P_{1} denotes a projective space defined in terms of collinearity and $a, a^{\prime}, a_{1}, a_{2}, a_{3}, b, b^{\prime}, b_{1}$, $b_{2}, c, c^{\prime}, c_{1}, c_{3}, d, d^{\prime}, e, o, p, p_{1}, p_{2}, p_{3}, q, q_{1}, q_{2}, q_{3}, r, s, x, y, z$ denote elements of the points of P_{1}. One can prove the following propositions:
(1) If a, b and c are collinear, then b, a and c are collinear.
(2) If a, b and c are collinear, then a, c and b are collinear.
(3) If a, b and c are collinear, then b, c and a are collinear and c, a and b are collinear and b, a and c are collinear and a, c and b are collinear and c, b and a are collinear.
(4) If $a \neq b$ and a, b and c are collinear and a, b and d are collinear, then a, c and d are collinear.
(5) If $p \neq q$ and a, b and p are collinear and a, b and q are collinear and p, q and r are collinear, then a, b and r are collinear.
(6) If $p \neq q$, then there exists r such that p, q and r are not collinear.
(7) There exist q, r such that p, q and r are not collinear.
(8) If a, b and c are not collinear and a, b and b^{\prime} are collinear and $a \neq b^{\prime}$, then a, b^{\prime} and c are not collinear.
(9) If a, b and c are not collinear and a, b and d are collinear and a, c and d are collinear, then $a=d$.

[^0](10) If o, a and d are not collinear and o, d and d^{\prime} are collinear and a, d and s are collinear and $d \neq d^{\prime}$ and a^{\prime}, d^{\prime} and s are collinear and o, a and a^{\prime} are collinear and $o \neq a^{\prime}$, then $s \neq d$.
(11) If a, b and c are not collinear and a, b and b^{\prime} are collinear and a, c and c^{\prime} are collinear and $a \neq b^{\prime}$, then $b^{\prime} \neq c^{\prime}$.
(12) If a_{1}, a_{2} and a_{3} are not collinear and a_{1}, a_{2} and c_{3} are collinear and a_{2}, a_{3} and c_{1} are collinear and a_{1}, a_{3} and z are collinear and c_{1}, c_{3} and z are collinear and $c_{3} \neq a_{1}$ and $c_{3} \neq a_{2}$ and $c_{1} \neq a_{2}$ and $c_{1} \neq a_{3}$, then $a_{1} \neq z$ and $a_{3} \neq z$.
(13) If a, b and c are not collinear and a, b and d are collinear and c, e and d are collinear and $e \neq c$ and $d \neq a$, then e, a and c are not collinear.
(14) If p_{1}, p_{2} and q_{1} are not collinear and p_{1}, p_{2} and q_{2} are collinear and q_{1}, q_{2} and q_{3} are collinear and $p_{1} \neq q_{2}$ and $q_{2} \neq q_{3}$, then p_{2}, p_{1} and q_{3} are not collinear.
(15) If p_{1}, p_{2} and q_{1} are not collinear and p_{1}, p_{2} and p_{3} are collinear and q_{1}, q_{2} and p_{3} are collinear and $p_{3} \neq q_{2}$ and $p_{2} \neq p_{3}$, then p_{3}, p_{2} and q_{2} are not collinear.
(16) If p_{1}, p_{2} and q_{1} are not collinear and p_{1}, p_{2} and p_{3} are collinear and q_{1}, q_{2} and p_{1} are collinear and $p_{1} \neq p_{3}$ and $p_{1} \neq q_{2}$, then p_{3}, p_{1} and q_{2} are not collinear.
(17) If $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$ and b_{1}, b_{2} and x are collinear and b_{1}, b_{2} and y are collinear and a_{1}, a_{2} and x are collinear and a_{1}, a_{2} and y are collinear and a_{1}, a_{2} and b_{1} are not collinear, then $x=y$.
$(19)^{2}$ If o, a_{1} and a_{2} are not collinear and o, a_{1} and b_{1} are collinear and o, a_{2} and b_{2} are collinear and $o \neq b_{1}$ and $o \neq b_{2}$, then o, b_{1} and b_{2} are not collinear.
We follow a convention: P_{1} denotes a Pappian projective plane defined in terms of collinearity and $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}$, r_{1}, r_{2}, r_{3} denote elements of the points of P_{1}. We now state two propositions:
(20) Suppose that
(i) $p_{2} \neq p_{3}$,
(ii) $p_{1} \neq p_{3}$,
(iii) $q_{2} \neq q_{3}$,
(iv) $q_{1} \neq q_{2}$,
(v) $q_{1} \neq q_{3}$,
(vi) p_{1}, p_{2} and q_{1} are not collinear,
(vii) p_{1}, p_{2} and p_{3} are collinear,
(viii) q_{1}, q_{2} and q_{3} are collinear,
(ix) p_{1}, q_{2} and r_{3} are collinear,
(x) q_{1}, p_{2} and r_{3} are collinear,
(xi) p_{1}, q_{3} and r_{2} are collinear,
(xii) p_{3}, q_{1} and r_{2} are collinear,

[^1](xiii) $\quad p_{2}, q_{3}$ and r_{1} are collinear,
(xiv) $\quad p_{3}, q_{2}$ and r_{1} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
(21) Suppose that
(i) $o \neq b_{1}$,
(ii) $a_{1} \neq b_{1}$,
(iii) $o \neq b_{2}$,
(iv) $a_{2} \neq b_{2}$,
(v) $o \neq b_{3}$,
(vi) $a_{3} \neq b_{3}$,
(vii) o, a_{1} and a_{2} are not collinear,
(viii) o, a_{1} and a_{3} are not collinear,
(ix) o, a_{2} and a_{3} are not collinear,
(x) a_{1}, a_{2} and c_{3} are collinear,
(xi) b_{1}, b_{2} and c_{3} are collinear,
(xii) a_{2}, a_{3} and c_{1} are collinear,
(xiii) b_{2}, b_{3} and c_{1} are collinear,
(xiv) a_{1}, a_{3} and c_{2} are collinear,
(xv) b_{1}, b_{3} and c_{2} are collinear,
(xvi) o, a_{1} and b_{1} are collinear,
(xvii) o, a_{2} and b_{2} are collinear,
(xviii) $\quad o, a_{3}$ and b_{3} are collinear.

Then c_{1}, c_{2} and c_{3} are collinear.
We see that the Pappian projective plane defined in terms of collinearity is a Desarguesian projective plane defined in terms of collinearity.

We see that the Pappian projective space defined in terms of collinearity is a Desarguesian projective space defined in terms of collinearity.

References

[1] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part I. Formalized Mathematics, 1(4):767-776, 1990.
[2] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part II. Formalized Mathematics, 1(5):901-907, 1990.
[3] Wojciech Leoñczuk and Krzysztof Prażmowski. Projective spaces - part III. Formalized Mathematics, 1(5):909-918, 1990.
[4] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part IV. Formalized Mathematics, 1(5):919-927, 1990.
[5] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part V. Formalized Mathematics, 1(5):929-938, 1990.
[6] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part VI. Formalized Mathematics, 1(5):939-947, 1990.
[7] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6

[^1]: ${ }^{2}$ The proposition (18) was either repeated or obvious.

