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Summary. We study the theory of one-dimensional congruence of
segments. The theory is characterized by a suitable formal axiom system;
as a model of this system one can take the structure obtained from any
weak directed geometrical bundle, with the congruence interpreted as in
the case of ”classical” vectors. Preliminary consequences of our axiom
system are proved, basic relations of maximal distance and of midpoint
are defined, and several fundamental properties of them are established.

MML Identifier: AFVECT01.

The papers [8], [2], [3], [10], [7], [4], [1], [5], [6], and [9] provide the terminology
and notation for this paper. In the sequel A1 will be a weak affine vector space.
Let us consider A1, and let a, b, c, d be elements of the points of A1. The
predicate a, b 	 
 c, d is defined as follows:

(Def.1) a, b 
 c, d or a, b 
 d, c.

An affine structure is called a weak segment-congruence space if:

(Def.2) (i) there exist elements a, b of the points of it such that a 6= b,
(ii) for all elements a, b of the points of it holds a, b 
 b, a,
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(iii) for all elements a, b of the points of it such that a, b 
 a, a holds a = b,
(iv) for all elements a, b, c, d, p, q of the points of it such that a, b 
 p, q

and c, d 
 p, q holds a, b 
 c, d,
(v) for every elements a, c of the points of it there exists an element b of

the points of it such that a, b 
 b, c,
(vi) for all elements a, a′, b, b′, p of the points of it such that a 6= a′ and

b 6= b′ and p, a 
 p, a′ and p, b 
 p, b′ holds a, b 
 a′, b′,
(vii) for all elements a, b of the points of it holds a = b or there exists an

element c of the points of it such that a 6= c and a, b 
 b, c or there exist
elements p, p′ of the points of it such that p 6= p′ and a, b 
 p, p′ and
a, p 
 p, b and a, p′ 
 p′, b,

(viii) for all elements a, b, b′, p, p′, c of the points of it such that a, b 
 b, c

and b, b′ 
 p, p′ and b, p 
 p, b′ and b, p′ 
 p′, b′ holds a, b′ 
 b′, c,
(ix) for all elements a, b, b′, c of the points of it such that a 6= c and b 6= b′

and a, b 
 b, c and a, b′ 
 b′, c there exist elements p, p′ of the points of
it such that p 6= p′ and b, b′ 
 p, p′ and b, p 
 p, b′ and b, p′ 
 p′, b′,

(x) for all elements a, b, c, p, p′, q, q′ of the points of it such that a, b 
 p, p′

and a, c 
 q, q′ and a, p 
 p, b and a, q 
 q, c and a, p′ 
 p′, b and
a, q′ 
 q′, c there exist elements r, r′ of the points of it such that b, c 
 r, r′

and b, r 
 r, c and b, r′ 
 r′, c.

We adopt the following rules: A1 is a weak segment-congruence space and a,
b, b′, b′′, c, d, p, p′ are elements of the points of A1. Let us consider A1, and let
a, b, c, d be elements of the points of A1. The predicate a, b 	 
 c, d is defined by:

(Def.3) a, b 
 c, d.

We now state several propositions:

(1) a, b 	 
 a, b.

(2) If a, b 	 
 c, d, then c, d 	 
 a, b.

(3) If a, b 	 
 c, d, then a, b 	 
 d, c.

(4) If a, b 	 
 c, d, then b, a 	 
 c, d.

(5) For all a, b holds a, a 	 
 b, b.

(6) If a, b 	 
 c, c, then a = b.

(7) If a, b 	 
 p, p′ and p, p′ 	 
 b, c and a, b 	 
 b, c and a, p 	 
 p, b and a, p′ 	 
 p′, b,
then a = c.

(8) If a, b 	 
 a, b′ and a, b′ 	 
 a, b′′ and a, b 	 
 a, b′′, then b = b′ or b = b′′ or
b′ = b′′.

Let us consider A1, a, b. We say that a, b are in a maximal distance if and
only if:

(Def.4) there exist p, p′ such that p 6= p′ and a, b 	 
 p, p′ and a, p 	 
 p, b and
a, p′ 	 
 p′, b.

Let us consider A1, a, b, c. We say that b is a midpoint of a, c if and only if:

(Def.5) a = b and b = c and a = c or a = c and a, b are in a maximal distance
or a 6= c and a, b 	 
 b, c.
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Next we state three propositions:

(11)2 If a 6= b and a, b are not in a maximal distance, then there exists c such
that a 6= c and a, b 	 
 b, c.

(12) If a, b are in a maximal distance and a, b 	 
 b, c, then a = c.

(13) If a, b are in a maximal distance, then a 6= b.
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[4] Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[5] Grzegorz Lewandowski and Krzysztof Prażmowski. A construction of an abstract space
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2The propositions (9)–(10) were either repeated or obvious.


