Definable Functions

Grzegorz Bancerek Warsow University Białystok

Summary. The article is contituation of [6] and [5]. It deals with concepts of variables occuring in a formula and free variables, replacement of variables in a formula and definable functions. The goal is to create a base of facts which are neccesary to show that every model of ZF set theory is a good model, i.e. it is closed under fundamental set-theoretical operations (union, intersection, Cartesian product ect.). The base includes the facts concerning the composition and conditional sum of two definable functions.

MML Identifier: ZFMODEL2.

The notation and terminology used here are introduced in the following articles: [12], [1], [11], [8], [7], [10], [4], [9], [2], [3], [5], and [6]. For simplicity we follow a convention: $x, y, z, x_1, x_2, x_3, x_4$ will denote variables, M will denote a non-empty set, i, j will denote natural numbers, m, m_1, m_2, m_3, m_4 will denote elements of M, H, H_1, H_2 will denote ZF-formulae, and v, v_1, v_2 will denote functions from VAR into M. One can prove the following propositions:

- (1) Free $(H(\frac{x}{y})) \subseteq (Free H \setminus \{x\}) \cup \{y\}.$
- (2) If $y \notin \operatorname{Var}_H$, then if $x \in \operatorname{Free} H$, then $\operatorname{Free}(H(\frac{x}{y})) = (\operatorname{Free} H \setminus \{x\}) \cup \{y\}$ but if $x \notin \operatorname{Free} H$, then $\operatorname{Free}(H(\frac{x}{y})) = \operatorname{Free} H$.
- (3) Var_H is finite.
- (4) There exists *i* such that for every *j* such that $x_j \in \operatorname{Var}_H$ holds j < i and there exists *x* such that $x \notin \operatorname{Var}_H$.
- (5) If $x \notin \operatorname{Var}_H$, then $M, v \models H$ if and only if $M, v \models \forall_x H$.
- (6) If $x \notin \operatorname{Var}_H$, then $M, v \models H$ if and only if $M, v(\frac{x}{m}) \models H$.
- (7) Suppose $x \neq y$ and $y \neq z$ and $z \neq x$. Then $((v(\frac{x}{m_1}))(\frac{y}{m_2}))(\frac{z}{m_3}) = ((v(\frac{z}{m_3}))(\frac{y}{m_2}))(\frac{x}{m_1})$ and $((v(\frac{x}{m_1}))(\frac{y}{m_2}))(\frac{z}{m_3}) = ((v(\frac{y}{m_2}))(\frac{z}{m_3}))(\frac{x}{m_1})$.
- (8) Suppose $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then

143

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

GRZEGORZ BANCEREK

- $(((v(\frac{x_1}{m_1}))(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_4}{m_4}) = (((v(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_4}{m_4}))(\frac{x_1}{m_1}),$ $(((v(\frac{x_1}{m_1}))(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_4}{m_4}) = (((v(\frac{x_3}{m_3}))(\frac{x_1}{m_4}))(\frac{x_1}{m_1}))(\frac{x_2}{m_2}),$ $(((v(\frac{x_1}{m_1}))(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_4}{m_4}) = (((v(\frac{x_4}{m_4}))(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_1}{m_1}).$ (i)
- (ii)
- (iii)

- $(9) (i) \quad ((v(\frac{x_1}{m_1}))(\frac{x_2}{m_2}))(\frac{x_1}{m}) = (v(\frac{x_2}{m_2}))(\frac{x_1}{m}),$ $(ii) \quad (((v(\frac{x_1}{m_1}))(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_1}{m}) = ((v(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_1}{m}),$ $(iii) \quad ((((v(\frac{x_1}{m_1}))(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_4}{m_4}))(\frac{x_1}{m}) = (((v(\frac{x_2}{m_2}))(\frac{x_3}{m_3}))(\frac{x_4}{m_4}))(\frac{x_1}{m}).$
- If $x \notin \text{Free } H$, then $M, v \models H$ if and only if $M, v(\frac{x}{m}) \models H$. (10)
- (11)Suppose $x_0 \notin \text{Free } H$ and $M, v \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H \Leftrightarrow x_4 = x_0))$. Then for all m_1 , m_2 holds $f_H[v](m_1) = m_2$ if and only if $M, (v(\frac{x_3}{m_1}))(\frac{x_4}{m_2}) \models H$.
- If Free $H \subseteq \{x_3, x_4\}$ and $M \models \forall_{x_3}(\exists_{x_0}(\forall_{x_4}H \Leftrightarrow x_4=x_0)))$, then $f_H[v] =$ (12) $f_H[M].$
- If $x \notin \operatorname{Var}_H$, then $M, v \models H(\frac{y}{x})$ if and only if $M, v(\frac{y}{v(x)}) \models H$. (13)
- If $x \notin \operatorname{Var}_H$ and $M, v \models H$, then $M, v(\frac{x}{v(y)}) \models H(\frac{y}{x})$. (14)
- (15)Suppose that
- $x_0 \notin \operatorname{Free} H$, (i)
- $M, v \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H \Leftrightarrow x_4 = x_0)),$ (ii)
- (iii) $x \notin \operatorname{Var}_H$
- (iv) $y \neq x_3$,
- (\mathbf{v}) $y \neq x_4,$
- (vi) $y \notin \operatorname{Free} H$,
- (vii) $x \neq x_0,$
- (viii) $x \neq x_3$
- (ix) $x \neq x_4.$
 - Then
- $x_0 \notin \operatorname{Free}(H(\frac{y}{x})),$ (\mathbf{x})
- $M, v(\frac{x}{v(y)}) \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} (H(\frac{y}{x})) \Leftrightarrow x_4 = x_0)),$ (xi)
- $f_H[v] = f_{H(\frac{y}{v})}[v(\frac{x}{v(y)})].$ (xii)
- (16)If $x \notin \operatorname{Var}_H$, then $M \models H(\frac{y}{x})$ if and only if $M \models H$.
- Suppose $x_0 \notin \text{Free } H_1 \text{ and } M, v_1 \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H_1 \Leftrightarrow x_4 = x_0)).$ Then (17)there exist H_2 , v_2 such that for every j such that j < i and $x_j \in \operatorname{Var}_{H_2}$ holds j = 3 or j = 4 and $x_0 \notin \text{Free } H_2$ and $M, v_2 \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H_2 \Leftrightarrow$ $x_{4}=x_{0}$) and $f_{H_{1}}[v_{1}] = f_{H_{2}}[v_{2}].$
- Suppose $x_0 \notin \text{Free } H_1$ and $M, v_1 \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H_1 \Leftrightarrow x_4 = x_0))$. Then (18)there exist H_2 , v_2 such that Free $H_1 \cap$ Free $H_2 \subseteq \{x_3, x_4\}$ and $x_0 \notin$ Free H_2 and $M, v_2 \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H_2 \Leftrightarrow x_4 = x_0))$ and $f_{H_1}[v_1] = f_{H_2}[v_2]$.
 - In the sequel F, G are functions. One can prove the following propositions:
- (19)If F is definable in M and G is definable in M, then $F \cdot G$ is definable in M.
- If $x_0 \notin \text{Free } H$, then $M, v \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H \Leftrightarrow x_4 = x_0))$ if and only if for (20)every m_1 there exists m_2 such that for every m_3 holds $M, (v(\frac{x_3}{m_1}))(\frac{x_4}{m_3}) \models$ H if and only if $m_3 = m_2$.

- (21) Suppose F is definable in M and G is definable in M and Free $H \subseteq \{x_3\}$. Let F_1 be a function. Then if dom $F_1 = M$ and for every v holds if $M, v \models H$, then $F_1(v(x_3)) = F(v(x_3))$ but if $M, v \models \neg H$, then $F_1(v(x_3)) = G(v(x_3))$, then F_1 is definable in M.
- (22) If F is parametrically definable in M and G is parametrically definable in M, then $G \cdot F$ is parametrically definable in M.
- (23) Suppose that
 - (i) $\{x_0, x_1, x_2\}$ misses Free H_1 ,
 - (ii) $M, v \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H_1 \Leftrightarrow x_4 = x_0)),$
 - (iii) $\{x_0, x_1, x_2\}$ misses Free H_2 ,
 - (iv) $M, v \models \forall_{x_3} (\exists_{x_0} (\forall_{x_4} H_2 \Leftrightarrow x_4 = x_0)),$
 - (v) $\{x_0, x_1, x_2\}$ misses Free H,
 - (vi) $x_4 \notin \operatorname{Free} H$.

Let F_1 be a function. Then if dom $F_1 = M$ and for every m holds if $M, v(\frac{x_3}{m}) \models H$, then $F_1(m) = f_{H_1}[v](m)$ but if $M, v(\frac{x_3}{m}) \models \neg H$, then $F_1(m) = f_{H_2}[v](m)$, then F_1 is parametrically definable in M.

- (24) id_M is definable in M.
- (25) id_M is parametrically definable in M.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.
- [3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191–199, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek. Properties of ZF models. Formalized Mathematics, 1(2):277–280, 1990.
- [6] Grzegorz Bancerek. Replacing of variables in formulas of ZF theory. Formalized Mathematics, 1(5):963–972, 1990.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received September 26, 1990