Definable Functions

Grzegorz Bancerek
Warsow University
Białystok

Abstract

Summary. The article is contituation of [6] and [5]. It deals with concepts of variables occuring in a formula and free variables, replacement of variables in a formula and definable functions. The goal is to create a base of facts which are neccesary to show that every model of ZF set theory is a good model, i.e. it is closed under fundamental settheoretical operations (union, intersection, Cartesian product ect.). The base includes the facts concerning the composition and conditional sum of two definable functions.

MML Identifier: ZFMODEL2.

The notation and terminology used here are introduced in the following articles: [12], [1], [11], [8], [7], [10], [4], [9], [2], [3], [5], and [6]. For simplicity we follow a convention: $x, y, z, x_{1}, x_{2}, x_{3}, x_{4}$ will denote variables, M will denote a nonempty set, i, j will denote natural numbers, $m, m_{1}, m_{2}, m_{3}, m_{4}$ will denote elements of M, H, H_{1}, H_{2} will denote ZF-formulae, and v, v_{1}, v_{2} will denote functions from VAR into M. One can prove the following propositions:
(1) $\operatorname{Free}\left(H\left(\frac{x}{y}\right)\right) \subseteq($ Free $H \backslash\{x\}) \cup\{y\}$.
(2) If $y \notin \operatorname{Var}_{H}$, then if $x \in$ Free H, then Free $\left(H\left(\frac{x}{y}\right)\right)=($ Free $H \backslash\{x\}) \cup\{y\}$ but if $x \notin$ Free H, then $\operatorname{Free}\left(H\left(\frac{x}{y}\right)\right)=$ Free H.
(3) Var_{H} is finite.
(4) There exists i such that for every j such that $x_{j} \in \operatorname{Var}_{H}$ holds $j<i$ and there exists x such that $x \notin \operatorname{Var}_{H}$.
(5) If $x \notin \operatorname{Var}_{H}$, then $M, v \models H$ if and only if $M, v \models \forall_{x} H$.
(6) If $x \notin \operatorname{Var}_{H}$, then $M, v \models H$ if and only if $M, v\left(\frac{x}{m}\right) \models H$.
(7) Suppose $x \neq y$ and $y \neq z$ and $z \neq x$. Then $\left(\left(v\left(\frac{x}{m_{1}}\right)\right)\left(\frac{y}{m_{2}}\right)\right)\left(\frac{z}{m_{3}}\right)=$ $\left(\left(v\left(\frac{z}{m_{3}}\right)\right)\left(\frac{y}{m_{2}}\right)\right)\left(\frac{x}{m_{1}}\right)$ and $\left(\left(v\left(\frac{x}{m_{1}}\right)\right)\left(\frac{y}{m_{2}}\right)\right)\left(\frac{z}{m_{3}}\right)=\left(\left(v\left(\frac{y}{m_{2}}\right)\right)\left(\frac{z}{m_{3}}\right)\right)\left(\frac{x}{m_{1}}\right)$.
(8) Suppose $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{1} \neq x_{4}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{4}$ and $x_{3} \neq x_{4}$. Then
(i) $\quad\left(\left(\left(v\left(\frac{x_{1}}{m_{1}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{4}}{m_{4}}\right)=\left(\left(\left(v\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{4}}{m_{4}}\right)\right)\left(\frac{x_{1}}{m_{1}}\right)$,
(ii) $\quad\left(\left(\left(v\left(\frac{x_{1}}{m_{1}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{4}}{m_{4}}\right)=\left(\left(\left(v\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{4}}{m_{4}}\right)\right)\left(\frac{x_{1}}{m_{1}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)$,
(iii) $\quad\left(\left(\left(v\left(\frac{x_{1}}{m_{1}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{4}}{m_{4}}\right)=\left(\left(\left(v\left(\frac{x_{4}}{m_{4}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{1}}{m_{1}}\right)$.
(9) (i) $\quad\left(\left(v\left(\frac{x_{1}}{m_{1}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{1}}{m}\right)=\left(v\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{1}}{m}\right)$,
(ii) $\quad\left(\left(\left(v\left(\frac{x_{1}}{m_{1}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{1}}{m}\right)=\left(\left(v\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{1}}{m}\right)$,
(iii) $\quad\left(\left(\left(\left(v\left(\frac{x_{1}}{m_{1}}\right)\right)\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{4}}{m_{4}}\right)\right)\left(\frac{x_{1}}{m}\right)=\left(\left(\left(v\left(\frac{x_{2}}{m_{2}}\right)\right)\left(\frac{x_{3}}{m_{3}}\right)\right)\left(\frac{x_{4}}{m_{4}}\right)\right)\left(\frac{x_{1}}{m}\right)$.
(10) If $x \notin$ Free H, then $M, v \models H$ if and only if $M, v\left(\frac{x}{m}\right) \models H$.
(11) Suppose $x_{0} \notin$ Free H and $M, v \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H \Leftrightarrow x_{4}=x_{0}\right)\right)$. Then for all m_{1}, m_{2} holds $\mathrm{f}_{H}[v]\left(m_{1}\right)=m_{2}$ if and only if $M,\left(v\left(\frac{x_{3}}{m_{1}}\right)\right)\left(\frac{x_{4}}{m_{2}}\right) \models H$.
(12) If Free $H \subseteq\left\{x_{3}, x_{4}\right\}$ and $M \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H \Leftrightarrow x_{4}=x_{0}\right)\right)$, then $\mathrm{f}_{H}[v]=$ $\mathrm{f}_{H}[M]$.
(13) If $x \notin \operatorname{Var}_{H}$, then $M, v \models H\left(\frac{y}{x}\right)$ if and only if $M, v\left(\frac{y}{v(x)}\right) \models H$.
(14) If $x \notin \operatorname{Var}_{H}$ and $M, v \models H$, then $M, v\left(\frac{x}{v(y)}\right) \models H\left(\frac{y}{x}\right)$.
(15) Suppose that
(i) $\quad x_{0} \notin$ Free H,
(ii) $M, v \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H \Leftrightarrow x_{4}=x_{0}\right)\right)$,
(iii) $x \notin \operatorname{Var}_{H}$,
(iv) $y \neq x_{3}$,
(v) $y \neq x_{4}$,
(vi) $y \notin$ Free H,
(vii) $x \neq x_{0}$,
(viii) $\quad x \neq x_{3}$,
(ix) $x \neq x_{4}$.

Then
(x) $\quad x_{0} \notin \operatorname{Free}\left(H\left(\frac{y}{x}\right)\right)$,
(xi) $\quad M, v\left(\frac{x}{v(y)}\right) \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}}\left(H\left(\frac{y}{x}\right)\right) \Leftrightarrow x_{4}=x_{0}\right)\right)$,
(xii) $\mathrm{f}_{H}[v]=\mathrm{f}_{H\left(\frac{y}{x}\right)}\left[v\left(\frac{x}{v(y)}\right)\right]$.
(16) If $x \notin \operatorname{Var}_{H}$, then $M \models H\left(\frac{y}{x}\right)$ if and only if $M \models H$.
(17) Suppose $x_{0} \notin$ Free H_{1} and $M, v_{1} \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H_{1} \Leftrightarrow x_{4}=x_{0}\right)\right)$. Then there exist H_{2}, v_{2} such that for every j such that $j<i$ and $x_{j} \in \operatorname{Var}_{H_{2}}$ holds $j=3$ or $j=4$ and $x_{0} \notin$ Free H_{2} and $M, v_{2} \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H_{2} \Leftrightarrow\right.\right.$ $\left.\left.x_{4}=x_{0}\right)\right)$ and $\mathrm{f}_{H_{1}}\left[v_{1}\right]=\mathrm{f}_{H_{2}}\left[v_{2}\right]$.
(18) Suppose $x_{0} \notin$ Free H_{1} and $M, v_{1} \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H_{1} \Leftrightarrow x_{4}=x_{0}\right)\right)$. Then there exist H_{2}, v_{2} such that Free $H_{1} \cap$ Free $H_{2} \subseteq\left\{x_{3}, x_{4}\right\}$ and $x_{0} \notin$ Free H_{2} and $M, v_{2} \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H_{2} \Leftrightarrow x_{4}=x_{0}\right)\right)$ and $\mathrm{f}_{H_{1}}\left[v_{1}\right]=\mathrm{f}_{H_{2}}\left[v_{2}\right]$.
In the sequel F, G are functions. One can prove the following propositions:
(19) If F is definable in M and G is definable in M, then $F \cdot G$ is definable in M.
(20) If $x_{0} \notin$ Free H, then $M, v \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H \Leftrightarrow x_{4}=x_{0}\right)\right)$ if and only if for every m_{1} there exists m_{2} such that for every m_{3} holds $M,\left(v\left(\frac{x_{3}}{m_{1}}\right)\right)\left(\frac{x_{4}}{m_{3}}\right) \models$ H if and only if $m_{3}=m_{2}$.
(21) Suppose F is definable in M and G is definable in M and Free $H \subseteq\left\{x_{3}\right\}$. Let F_{1} be a function. Then if $\operatorname{dom} F_{1}=M$ and for every v holds if $M, v \models$ H, then $F_{1}\left(v\left(x_{3}\right)\right)=F\left(v\left(x_{3}\right)\right)$ but if $M, v \models \neg H$, then $F_{1}\left(v\left(x_{3}\right)\right)=$ $G\left(v\left(x_{3}\right)\right)$, then F_{1} is definable in M.
(22) If F is parametrically definable in M and G is parametrically definable in M, then $G \cdot F$ is parametrically definable in M.
Suppose that
(i) $\left\{x_{0}, x_{1}, x_{2}\right\}$ misses Free H_{1},
(ii) $M, v \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H_{1} \Leftrightarrow x_{4}=x_{0}\right)\right)$,
(iii) $\left\{x_{0}, x_{1}, x_{2}\right\}$ misses Free H_{2},
(iv) $M, v \models \forall_{x_{3}}\left(\exists_{x_{0}}\left(\forall_{x_{4}} H_{2} \Leftrightarrow x_{4}=x_{0}\right)\right)$,
(v) $\left\{x_{0}, x_{1}, x_{2}\right\}$ misses Free H,
(vi) $\quad x_{4} \notin$ Free H.

Let F_{1} be a function. Then if $\operatorname{dom} F_{1}=M$ and for every m holds if $M, v\left(\frac{x_{3}}{m}\right) \models H$, then $F_{1}(m)=\mathrm{f}_{H_{1}}[v](m)$ but if $M, v\left(\frac{x_{3}}{m}\right) \models \neg H$, then $F_{1}(m)=\mathrm{f}_{H_{2}}[v](m)$, then F_{1} is parametrically definable in M.
(24) $\quad \mathrm{id}_{M}$ is definable in M.
id_{M} is parametrically definable in M.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.
[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Properties of ZF models. Formalized Mathematics, 1(2):277-280, 1990.
[6] Grzegorz Bancerek. Replacing of variables in formulas of ZF theory. Formalized Mathematics, 1(5):963-972, 1990.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

