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The articles [9], [8], [11], [3], [1], [10], [7], [4], [2], [5], and [6] provide the notation
and terminology for this paper. In the sequel F1 will denote a field structure.
Let us consider F1. A scalar of F1 is an element of the carrier of F1.

In the sequel x, y will denote scalars of F1. Let us consider F1, x, y. The
functor x − y yields a scalar of F1 and is defined as follows:

(Def.1) x − y = x + (−y).

In the sequel F denotes a field. A field structure is called a ring if:

(Def.2) Let x, y, z be scalars of it . Then

(i) x + y = y + x,

(ii) (x + y) + z = x + (y + z),

(iii) x + 0it = x,

(iv) x + (−x) = 0it,

(v) x · (1it) = x,

(vi) (1it) · x = x,

(vii) x · (y + z) = x · y + x · z,

(viii) (y + z) · x = y · x + z · x.

The following proposition is true
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(1) The following conditions are equivalent:
(i) for all scalars x, y, z of F1 holds x+y = y+x and (x+y)+z = x+(y+z)

and x + 0F1
= x and x + (−x) = 0F1

and x · (1F1
) = x and (1F1

) · x = x

and x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x,
(ii) F1 is a ring.

In the sequel R is a ring and x, y, z are scalars of R. Next we state several
propositions:

(2) x + y = y + x.

(3) (x + y) + z = x + (y + z).

(4) x + 0R = x.

(5) x + (−x) = 0R.

(6) x · (1R) = x and (1R) · x = x.

(7) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x.

A ring is called an associative ring if:

(Def.3) for all scalars x, y, z of it holds (x · y) · z = x · (y · z).

The following proposition is true

(8) For all scalars x, y, z of R holds (x · y) · z = x · (y · z) if and only if R

is an associative ring.

In the sequel R will denote an associative ring and x, y, z will denote scalars
of R. One can prove the following proposition

(9) (x · y) · z = x · (y · z).

An associative ring is said to be a commutative ring if:

(Def.4) for all scalars x, y of it holds x · y = y · x.

One can prove the following proposition

(10) If for all scalars x, y of R holds x · y = y · x, then R is a commutative
ring.

In the sequel R will denote a commutative ring and x, y will denote scalars
of R. The following proposition is true

(11) x · y = y · x.

A commutative ring is said to be an integral domain if:

(Def.5) 0it 6= 1it and for all scalars x, y of it such that x · y = 0it holds x = 0it

or y = 0it.

We now state two propositions:

(12) If 0R 6= 1R and for all x, y such that x · y = 0R holds x = 0R or y = 0R,
then R is an integral domain.

(13) F is an integral domain.

In the sequel R denotes an integral domain and x, y denote scalars of R. The
following propositions are true:

(14) 0R 6= 1R.

(15) If x · y = 0R, then x = 0R or y = 0R.
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An associative ring is called a skew field if:

(Def.6) for every scalar x of it holds if x 6= 0it, then there exists a scalar y of it
such that x · y = 1it but 0it 6= 1it.

In the sequel R denotes an associative ring. The following proposition is true

(16) If for every scalar x of R holds if x 6= 0R, then there exists a scalar y of
R such that x · y = 1R but 0R 6= 1R, then R is a skew field.

In the sequel S1 will denote a skew field and x, y will denote scalars of S1.
The following propositions are true:

(17) If x 6= 0S1
, then there exists y such that x · y = 1S1

.

(18) 0S1
6= 1S1

.

(19) F is a skew field.

We see that the field is a skew field.

In the sequel R is a ring and x, y, z are scalars of R. Next we state a number
of propositions:

(20) x − y = x + (−y).

(21) −0R = 0R.

(22) x+ y = z if and only if x = z − y but x+ y = z if and only if y = z −x.

(23) x − 0R = x and 0R − x = −x.

(24) If x + y = x + z, then y = z but if x + y = z + y, then x = z.

(25) −(x + y) = (−x) + (−y).

(26) x · 0R = 0R and 0R · x = 0R.

(27) −(−x) = x.

(28) (−x) · y = −x · y.

(29) x · (−y) = −x · y.

(30) (−x) · (−y) = x · y.

(31) x · (y − z) = x · y − x · z.

(32) (x − y) · z = x · z − y · z.

(33) (x + y) − z = x + (y − z).

(34) x = 0R if and only if −x = 0R.

(35) x − (y + z) = (x − y) − z.

(36) x − (y − z) = (x − y) + z.

(37) x − x = 0R and (−x) + x = 0R.

(38) For every x, y there exists z such that x = y + z and x = z + y.

In the sequel S1 denotes a skew field and x, y, z denote scalars of S1. We
now state four propositions:

(39) If x · y = 1S1
, then x 6= 0S1

and y 6= 0S1
.

(40) If x 6= 0S1
, then there exists y such that y · x = 1S1

.

(41) If x · y = 1S1
, then y · x = 1S1

.

(42) If x · y = x · z and x 6= 0S1
, then y = z.
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Let us consider S1, x. Let us assume that x 6= 0S1
. The functor x−1 yielding

a scalar of S1 is defined by:

(Def.7) x · (x−1) = 1S1
.

Let us consider S1, x, y. Let us assume that y 6= 0S1
. The functor x

y
yielding

a scalar of S1 is defined by:

(Def.8) x
y

= x · y−1.

One can prove the following propositions:

(43) If x 6= 0S1
, then x · x−1 = 1S1

and x−1 · x = 1S1
.

(44) If y 6= 0S1
, then x

y
= x · y−1.

(45) If x · y = 1S1
, then x = y−1 and y = x−1.

(46) If x 6= 0S1
and y 6= 0S1

, then x−1 · y−1 = (y · x)−1.

(47) If x · y = 0S1
, then x = 0S1

or y = 0S1
.

(48) If x 6= 0S1
, then x−1 6= 0S1

.

(49) If x 6= 0S1
, then (x−1)−1 = x.

(50) If x 6= 0S1
, then

1S1

x
= x−1 and

1S1

x−1 = x.

(51) If x 6= 0S1
, then x ·

1S1

x
= 1S1

and
1S1

x
· x = 1S1

.

(52) If x 6= 0S1
, then x

x
= 1S1

.

(53) If y 6= 0S1
and z 6= 0S1

, then x
y

= x·z
y·z

.

(54) If y 6= 0S1
, then −x

y
= −x

y
and x

−y
= −x

y
.

(55) If z 6= 0S1
, then x

z
+ y

z
= x+y

z
and x

z
− y

z
= x−y

z
.

(56) If y 6= 0S1
and z 6= 0S1

, then x
y

z

= x·z
y

.

(57) If y 6= 0S1
, then x

y
· y = x.

Let us consider F1. We consider left module structures over F1 which are
systems

〈a carrier, a left multiplication〉,
where the carrier is an Abelian group and the left multiplication is a function
from [: the carrier of F1, the carrier of the carrier :] into the carrier of the carrier.

In the sequel L1 denotes a left module structure over F1. We now define two
new modes. Let us consider F1, L1. A scalar of L1 is a scalar of F1.

A vector of L1 is an element of the carrier of L1.

Let us consider F1. We consider right module structures over F1 which are
systems

〈a carrier, a right multiplication〉,
where the carrier is an Abelian group and the right multiplication is a function
from [: the carrier of the carrier, the carrier of F1 :] into the carrier of the carrier.

In the sequel R1 will denote a right module structure over F1. We now define
two new modes. Let us consider F1, R1. A scalar of R1 is a scalar of F1.

A vector of R1 is an element of the carrier of R1.



Construction of Rings and Left-, Right-, and . . . 7

Let us consider F1. We consider bimodule structures over F1 which are
systems

〈a carrier, a left multiplication, a right multiplication〉,
where the carrier is an Abelian group, the left multiplication is a function from
[: the carrier of F1, the carrier of the carrier :] into the carrier of the carrier,
and the right multiplication is a function from [: the carrier of the carrier, the
carrier of F1 :] into the carrier of the carrier.

In the sequel B1 will denote a bimodule structure over F1. We now define
two new modes. Let us consider F1, B1. A scalar of B1 is a scalar of F1.

A vector of B1 is an element of the carrier of B1.

In the sequel R is a ring. Let us consider R. The functor AbGr(R) yields an
Abelian group and is defined by:

(Def.9) AbGr(R) = 〈 the carrier of R, the addition of R, the reverse-map of R,

the zero of R〉.

Next we state the proposition

(58) AbGr(R) = 〈 the carrier of R, the addition of R, the reverse-map of R,

the zero of R〉.

Let us consider R. The functor LeftModMult(R) yielding a function from [:
the carrier of R, the carrier of AbGr(R) :] into the carrier of AbGr(R) is defined
as follows:

(Def.10) LeftModMult(R) = the multiplication of R.

Next we state the proposition

(59) LeftModMult(R) = the multiplication of R.

Let us consider R. The functor LeftMod(R) yielding a left module structure
over R is defined as follows:

(Def.11) LeftMod(R) = 〈AbGr(R),LeftModMult(R)〉.

We now state the proposition

(60) LeftMod(R) = 〈AbGr(R),LeftModMult(R)〉.

In the sequel V will be a left module structure over R. Let us consider R, V ,
and let x be a scalar of R, and let v be a vector of V . The functor x · v yielding
a vector of V is defined as follows:

(Def.12) for every scalar x′ of V such that x′ = x holds x · v = (the left multipli-
cation of V )(x′, v).

The following proposition is true

(62)2 For every V being a left module structure over R and for every scalar
x of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds x · v = (the left multiplication of V )(x′, v).

Let us consider R. The functor RightModMult(R) yields a function from [:
the carrier of AbGr(R), the carrier of R :] into the carrier of AbGr(R) and is
defined as follows:

2The proposition (61) was either repeated or obvious.
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(Def.13) RightModMult(R) = the multiplication of R.

We now state the proposition

(63) RightModMult(R) = the multiplication of R.

Let us consider R. The functor RightMod(R) yielding a right module struc-
ture over R is defined as follows:

(Def.14) RightMod(R) = 〈AbGr(R),RightModMult(R)〉.

We now state the proposition

(64) RightMod(R) = 〈AbGr(R),RightModMult(R)〉.

In the sequel V will denote a right module structure over R. Let us consider
R, V , and let x be a scalar of R, and let v be a vector of V . The functor v · x
yielding a vector of V is defined as follows:

(Def.15) for every scalar x′ of V such that x′ = x holds v · x = (the right
multiplication of V )(v, x′).

We now state the proposition

(66)3 For every V being a right module structure over R and for every scalar
x of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds v · x = (the right multiplication of V )(v, x′).

Let us consider R. The functor BiMod(R) yielding a bimodule structure over
R is defined as follows:

(Def.16) BiMod(R) = 〈AbGr(R),LeftModMult(R),RightModMult(R)〉.

The following proposition is true

(67) BiMod(R) = 〈AbGr(R),LeftModMult(R),RightModMult(R)〉.

In the sequel V is a bimodule structure over R. Let us consider R, V , and
let x be a scalar of R, and let v be a vector of V . The functor x · v yields a
vector of V and is defined as follows:

(Def.17) for every scalar x′ of V such that x′ = x holds x · v = (the left multipli-
cation of V )(x′, v).

One can prove the following proposition

(69)4 For every V being a bimodule structure over R and for every scalar x

of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds x · v = (the left multiplication of V )(x′, v).

Let us consider R, V , and let x be a scalar of R, and let v be a vector of V .
The functor v · x yields a vector of V and is defined by:

(Def.18) for every scalar x′ of V such that x′ = x holds v · x = (the right
multiplication of V )(v, x′).

The following proposition is true

3The proposition (65) was either repeated or obvious.
4The proposition (68) was either repeated or obvious.
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(70) For every V being a bimodule structure over R and for every scalar x

of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds v · x = (the right multiplication of V )(v, x′).

In the sequel R will denote an associative ring. Next we state the proposition

(71) Let x, y be scalars of R. Let v, w be vectors of LeftMod(R). Then
x · (v+w) = x ·v+x ·w and (x+y) ·v = x ·v+y ·v and (x ·y) ·v = x · (y ·v)
and (1R) · v = v.

Let us consider R. A left module structure over R is called a left module
over R if:

(Def.19) Let x, y be scalars of R. Let v, w be vectors of it . Then x · (v + w) =
x · v + x · w and (x + y) · v = x · v + y · v and (x · y) · v = x · (y · v) and
(1R) · v = v.

We now state the proposition

(72) Let V be a left module structure over R. Then the following conditions
are equivalent:

(i) for all scalars x, y of R and for all vectors v, w of V holds x · (v +w) =
x · v + x · w and (x + y) · v = x · v + y · v and (x · y) · v = x · (y · v) and
(1R) · v = v,

(ii) V is a left module over R.

Let us consider R. Then LeftMod(R) is a left module over R.

For simplicity we adopt the following rules: R is an associative ring, x, y are
scalars of R, L2 is a left module over R, and v, w are vectors of L2. We now
state several propositions:

(73) x · (v + w) = x · v + x · w.

(74) (x + y) · v = x · v + y · v.

(75) (x · y) · v = x · (y · v).

(76) (1R) · v = v.

(77) Let x, y be scalars of R. Let v, w be vectors of RightMod(R). Then
(v+w) ·x = v ·x+w ·x and v · (x+y) = v ·x+v ·y and v · (y ·x) = (v ·y) ·x
and v · (1R) = v.

Let us consider R. A right module structure over R is said to be a right
module over R if:

(Def.20) Let x, y be scalars of R. Let v, w be vectors of it . Then (v + w) · x =
v · x + w · x and v · (x + y) = v · x + v · y and v · (y · x) = (v · y) · x and
v · (1R) = v.

The following proposition is true

(78) Let V be a right module structure over R. Then the following conditions
are equivalent:

(i) for all scalars x, y of R and for all vectors v, w of V holds (v +w) ·x =
v · x + w · x and v · (x + y) = v · x + v · y and v · (y · x) = (v · y) · x and
v · (1R) = v,

(ii) V is a right module over R.
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Let us consider R. Then RightMod(R) is a right module over R.

For simplicity we follow the rules: R is an associative ring, x, y are scalars
of R, R2 is a right module over R, and v, w are vectors of R2. We now state
four propositions:

(79) (v + w) · x = v · x + w · x.

(80) v · (x + y) = v · x + v · y.

(81) v · (y · x) = (v · y) · x.

(82) v · (1R) = v.

Let us consider R. A bimodule structure over R is said to be a bimodule
over R if:

(Def.21) Let x, y be scalars of R. Let v, w be vectors of it . Then
(i) x · (v + w) = x · v + x · w,
(ii) (x + y) · v = x · v + y · v,
(iii) (x · y) · v = x · (y · v),
(iv) (1R) · v = v,
(v) (v + w) · x = v · x + w · x,
(vi) v · (x + y) = v · x + v · y,
(vii) v · (y · x) = (v · y) · x,
(viii) v · (1R) = v,
(ix) x · (v · y) = (x · v) · y.

Next we state two propositions:

(83) Let V be a bimodule structure over R. Then the following conditions
are equivalent:

(i) for all scalars x, y of R and for all vectors v, w of V holds x · (v +w) =
x · v + x · w and (x + y) · v = x · v + y · v and (x · y) · v = x · (y · v) and
(1R) · v = v and (v + w) · x = v · x + w · x and v · (x + y) = v · x + v · y
and v · (y · x) = (v · y) · x and v · (1R) = v and x · (v · y) = (x · v) · y,

(ii) V is a bimodule over R.

(84) BiMod(R) is a bimodule over R.

Let us consider R. Then BiMod(R) is a bimodule over R.

For simplicity we follow the rules: R will be an associative ring, x, y will be
scalars of R, R2 will be a bimodule over R, and v, w will be vectors of R2. The
following propositions are true:

(85) x · (v + w) = x · v + x · w.

(86) (x + y) · v = x · v + y · v.

(87) (x · y) · v = x · (y · v).

(88) (1R) · v = v.

(89) (v + w) · x = v · x + w · x.

(90) v · (x + y) = v · x + v · y.

(91) v · (y · x) = (v · y) · x.

(92) v · (1R) = v.
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(93) x · (v · y) = (x · v) · y.
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