Construction of Rings and Left-, Right-, and Bi-Modules over a Ring

Michał Muzalewski¹ Warsaw University Białystok

Summary. Definitions of some classes of rings and left-, right-, and bi-modules over a ring and some elementary theorems on rings and skew fields.

MML Identifier: VECTSP_2.

The articles [9], [8], [11], [3], [1], [10], [7], [4], [2], [5], and [6] provide the notation and terminology for this paper. In the sequel F_1 will denote a field structure. Let us consider F_1 . A scalar of F_1 is an element of the carrier of F_1 .

In the sequel x, y will denote scalars of F_1 . Let us consider F_1 , x, y. The functor x - y yields a scalar of F_1 and is defined as follows:

(Def.1) x - y = x + (-y).

In the sequel F denotes a field. A field structure is called a ring if:

(Def.2) Let x, y, z be scalars of it . Then

(i)
$$x + y = y + x$$
,

- (ii) (x+y) + z = x + (y+z),
- (iii) $x + 0_{it} = x$,
- (iv) $x + (-x) = 0_{it}$,
- $(\mathbf{v}) \quad x \cdot (\mathbf{1}_{\mathrm{it}}) = x,$
- $(vi) \quad (1_{it}) \cdot x = x,$
- (vii) $x \cdot (y+z) = x \cdot y + x \cdot z$,
- (viii) $(y+z) \cdot x = y \cdot x + z \cdot x.$

The following proposition is true

¹Supported by RPBP.III-24.C6.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (1) The following conditions are equivalent:
 - (i) for all scalars x, y, z of F_1 holds x+y = y+x and (x+y)+z = x+(y+z)and $x + 0_{F_1} = x$ and $x + (-x) = 0_{F_1}$ and $x \cdot (1_{F_1}) = x$ and $(1_{F_1}) \cdot x = x$ and $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$,
- (ii) F_1 is a ring.

In the sequel R is a ring and x, y, z are scalars of R. Next we state several propositions:

- $(2) \quad x+y=y+x.$
- (3) (x+y) + z = x + (y+z).
- $(4) \quad x + 0_R = x.$
- (5) $x + (-x) = 0_R.$
- (6) $x \cdot (1_R) = x$ and $(1_R) \cdot x = x$.
- (7) $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$.

A ring is called an associative ring if:

(Def.3) for all scalars x, y, z of it holds $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

The following proposition is true

- (8) For all scalars x, y, z of R holds $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ if and only if R is an associative ring.
- In the sequel R will denote an associative ring and x, y, z will denote scalars of R. One can prove the following proposition
 - (9) $(x \cdot y) \cdot z = x \cdot (y \cdot z).$

An associative ring is said to be a commutative ring if:

(Def.4) for all scalars x, y of it holds $x \cdot y = y \cdot x$.

One can prove the following proposition

(10) If for all scalars x, y of R holds $x \cdot y = y \cdot x$, then R is a commutative ring.

In the sequel R will denote a commutative ring and x, y will denote scalars of R. The following proposition is true

(11) $x \cdot y = y \cdot x.$

A commutative ring is said to be an integral domain if:

(Def.5) $0_{it} \neq 1_{it}$ and for all scalars x, y of it such that $x \cdot y = 0_{it}$ holds $x = 0_{it}$ or $y = 0_{it}$.

We now state two propositions:

- (12) If $0_R \neq 1_R$ and for all x, y such that $x \cdot y = 0_R$ holds $x = 0_R$ or $y = 0_R$, then R is an integral domain.
- (13) F is an integral domain.

In the sequel R denotes an integral domain and x, y denote scalars of R. The following propositions are true:

- $(14) \quad 0_R \neq 1_R.$
- (15) If $x \cdot y = 0_R$, then $x = 0_R$ or $y = 0_R$.

4

An associative ring is called a skew field if:

(Def.6) for every scalar x of it holds if $x \neq 0_{it}$, then there exists a scalar y of it such that $x \cdot y = 1_{it}$ but $0_{it} \neq 1_{it}$.

In the sequel R denotes an associative ring. The following proposition is true

(16) If for every scalar x of R holds if $x \neq 0_R$, then there exists a scalar y of R such that $x \cdot y = 1_R$ but $0_R \neq 1_R$, then R is a skew field.

In the sequel S_1 will denote a skew field and x, y will denote scalars of S_1 . The following propositions are true:

- (17) If $x \neq 0_{S_1}$, then there exists y such that $x \cdot y = 1_{S_1}$.
- (18) $0_{S_1} \neq 1_{S_1}$.
- (19) F is a skew field.

We see that the field is a skew field.

In the sequel R is a ring and x, y, z are scalars of R. Next we state a number of propositions:

- (20) x y = x + (-y).
- (21) $-0_R = 0_R.$

(22)
$$x+y=z$$
 if and only if $x=z-y$ but $x+y=z$ if and only if $y=z-x$.

(23)
$$x - 0_R = x$$
 and $0_R - x = -x$.

- (24) If x + y = x + z, then y = z but if x + y = z + y, then x = z.
- (25) -(x+y) = (-x) + (-y).
- (26) $x \cdot 0_R = 0_R$ and $0_R \cdot x = 0_R$.
- $(27) \quad -(-x) = x.$
- $(28) \quad (-x) \cdot y = -x \cdot y.$
- $(29) \quad x \cdot (-y) = -x \cdot y.$
- $(30) \quad (-x) \cdot (-y) = x \cdot y.$
- (31) $x \cdot (y z) = x \cdot y x \cdot z.$
- $(32) \quad (x-y) \cdot z = x \cdot z y \cdot z.$
- (33) (x+y) z = x + (y z).
- (34) $x = 0_R$ if and only if $-x = 0_R$.
- (35) x (y + z) = (x y) z.
- (36) x (y z) = (x y) + z.
- (37) $x x = 0_R$ and $(-x) + x = 0_R$.
- (38) For every x, y there exists z such that x = y + z and x = z + y.

In the sequel S_1 denotes a skew field and x, y, z denote scalars of S_1 . We now state four propositions:

- (39) If $x \cdot y = 1_{S_1}$, then $x \neq 0_{S_1}$ and $y \neq 0_{S_1}$.
- (40) If $x \neq 0_{S_1}$, then there exists y such that $y \cdot x = 1_{S_1}$.
- (41) If $x \cdot y = 1_{S_1}$, then $y \cdot x = 1_{S_1}$.
- (42) If $x \cdot y = x \cdot z$ and $x \neq 0_{S_1}$, then y = z.

Let us consider S_1 , x. Let us assume that $x \neq 0_{S_1}$. The functor x^{-1} yielding a scalar of S_1 is defined by:

(Def.7)
$$x \cdot (x^{-1}) = 1_{S_1}$$
.

Let us consider S_1 , x, y. Let us assume that $y \neq 0_{S_1}$. The functor $\frac{x}{y}$ yielding a scalar of S_1 is defined by:

(Def.8)
$$\frac{x}{y} = x \cdot y^{-1}$$
.

One can prove the following propositions:

- (43) If $x \neq 0_{S_1}$, then $x \cdot x^{-1} = 1_{S_1}$ and $x^{-1} \cdot x = 1_{S_1}$.
- (44) If $y \neq 0_{S_1}$, then $\frac{x}{y} = x \cdot y^{-1}$.
- (45) If $x \cdot y = 1_{S_1}$, then $x = y^{-1}$ and $y = x^{-1}$.
- (46) If $x \neq 0_{S_1}$ and $y \neq 0_{S_1}$, then $x^{-1} \cdot y^{-1} = (y \cdot x)^{-1}$.
- (47) If $x \cdot y = 0_{S_1}$, then $x = 0_{S_1}$ or $y = 0_{S_1}$.
- (48) If $x \neq 0_{S_1}$, then $x^{-1} \neq 0_{S_1}$.
- (49) If $x \neq 0_{S_1}$, then $(x^{-1})^{-1} = x$.
- (50) If $x \neq 0_{S_1}$, then $\frac{1_{S_1}}{x} = x^{-1}$ and $\frac{1_{S_1}}{x^{-1}} = x$.
- (51) If $x \neq 0_{S_1}$, then $x \cdot \frac{1_{S_1}}{x} = 1_{S_1}$ and $\frac{1_{S_1}}{x} \cdot x = 1_{S_1}$.
- (52) If $x \neq 0_{S_1}$, then $\frac{x}{x} = 1_{S_1}$.
- (53) If $y \neq 0_{S_1}$ and $z \neq 0_{S_1}$, then $\frac{x}{y} = \frac{x \cdot z}{y \cdot z}$.
- (54) If $y \neq 0_{S_1}$, then $-\frac{x}{y} = \frac{-x}{y}$ and $\frac{x}{-y} = -\frac{x}{y}$.
- (55) If $z \neq 0_{S_1}$, then $\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z}$ and $\frac{x}{z} \frac{y}{z} = \frac{x-y}{z}$.
- (56) If $y \neq 0_{S_1}$ and $z \neq 0_{S_1}$, then $\frac{x}{\underline{x}} = \frac{x \cdot z}{y}$.

(57) If $y \neq 0_{S_1}$, then $\frac{x}{y} \cdot y = x$.

Let us consider F_1 . We consider left module structures over F_1 which are systems

 $\langle a \text{ carrier}, a \text{ left multiplication} \rangle$,

where the carrier is an Abelian group and the left multiplication is a function from [: the carrier of F_1 , the carrier of the carrier] into the carrier of the carrier.

In the sequel L_1 denotes a left module structure over F_1 . We now define two new modes. Let us consider F_1 , L_1 . A scalar of L_1 is a scalar of F_1 .

A vector of L_1 is an element of the carrier of L_1 .

Let us consider F_1 . We consider right module structures over F_1 which are systems

 $\langle a \text{ carrier}, a \text{ right multiplication} \rangle$,

where the carrier is an Abelian group and the right multiplication is a function from [: the carrier of the carrier, the carrier of F_1 :] into the carrier of the carrier.

In the sequel R_1 will denote a right module structure over F_1 . We now define two new modes. Let us consider F_1 , R_1 . A scalar of R_1 is a scalar of F_1 .

A vector of R_1 is an element of the carrier of R_1 .

Let us consider F_1 . We consider bimodule structures over F_1 which are systems

 $\langle a \text{ carrier}, a \text{ left multiplication}, a \text{ right multiplication} \rangle$,

where the carrier is an Abelian group, the left multiplication is a function from [the carrier of F_1 , the carrier of the carrier] into the carrier of the carrier, and the right multiplication is a function from [the carrier of the carrier, the carrier of F_1] into the carrier of the carrier.

In the sequel B_1 will denote a bimodule structure over F_1 . We now define two new modes. Let us consider F_1 , B_1 . A scalar of B_1 is a scalar of F_1 .

A vector of B_1 is an element of the carrier of B_1 .

In the sequel R is a ring. Let us consider R. The functor AbGr(R) yields an Abelian group and is defined by:

(Def.9) AbGr $(R) = \langle$ the carrier of R, the addition of R, the reverse-map of R, the zero of $R \rangle$.

Next we state the proposition

(58) AbGr $(R) = \langle$ the carrier of R, the addition of R, the reverse-map of R, the zero of $R \rangle$.

Let us consider R. The functor LeftModMult(R) yielding a function from [the carrier of R, the carrier of AbGr(R)] into the carrier of AbGr(R) is defined as follows:

(Def.10) LeftModMult(R) = the multiplication of R.

Next we state the proposition

(59) LeftModMult(R) = the multiplication of R.

Let us consider R. The functor LeftMod(R) yielding a left module structure over R is defined as follows:

(Def.11) LeftMod(R) = $\langle AbGr(R), LeftModMult(R) \rangle$.

We now state the proposition

(60) LeftMod(R) = $\langle AbGr(R), LeftModMult(R) \rangle$.

In the sequel V will be a left module structure over R. Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $x \cdot v$ yielding a vector of V is defined as follows:

(Def.12) for every scalar x' of V such that x' = x holds $x \cdot v =$ (the left multiplication of V)(x', v).

The following proposition is true

(62)² For every V being a left module structure over R and for every scalar x of R and for every vector v of V and for every scalar x' of V such that x' = x holds $x \cdot v =$ (the left multiplication of V)(x', v).

Let us consider R. The functor RightModMult(R) yields a function from [the carrier of AbGr(R), the carrier of R] into the carrier of AbGr(R) and is defined as follows:

^{2}The proposition (61) was either repeated or obvious.

(Def.13) RightModMult(R) = the multiplication of R.

We now state the proposition

(63) RightModMult(R) = the multiplication of R.

Let us consider R. The functor RightMod(R) yielding a right module structure over R is defined as follows:

(Def.14) $\operatorname{RightMod}(R) = \langle \operatorname{AbGr}(R), \operatorname{RightModMult}(R) \rangle.$

We now state the proposition

(64) RightMod(R) = $\langle AbGr(R), RightModMult(<math>R$) \rangle .

In the sequel V will denote a right module structure over R. Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $v \cdot x$ yielding a vector of V is defined as follows:

(Def.15) for every scalar x' of V such that x' = x holds $v \cdot x =$ (the right multiplication of V)(v, x').

We now state the proposition

(66)³ For every V being a right module structure over R and for every scalar x of R and for every vector v of V and for every scalar x' of V such that x' = x holds $v \cdot x =$ (the right multiplication of V)(v, x').

Let us consider R. The functor BiMod(R) yielding a bimodule structure over R is defined as follows:

(Def.16) $\operatorname{BiMod}(R) = \langle \operatorname{AbGr}(R), \operatorname{LeftModMult}(R), \operatorname{RightModMult}(R) \rangle.$

The following proposition is true

(67) $\operatorname{BiMod}(R) = \langle \operatorname{AbGr}(R), \operatorname{LeftModMult}(R), \operatorname{RightModMult}(R) \rangle.$

In the sequel V is a bimodule structure over R. Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $x \cdot v$ yields a vector of V and is defined as follows:

(Def.17) for every scalar x' of V such that x' = x holds $x \cdot v =$ (the left multiplication of V)(x', v).

One can prove the following proposition

(69)⁴ For every V being a bimodule structure over R and for every scalar x of R and for every vector v of V and for every scalar x' of V such that x' = x holds $x \cdot v =$ (the left multiplication of V)(x', v).

Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $v \cdot x$ yields a vector of V and is defined by:

(Def.18) for every scalar x' of V such that x' = x holds $v \cdot x =$ (the right multiplication of V)(v, x').

The following proposition is true

³The proposition (65) was either repeated or obvious.

⁴The proposition (68) was either repeated or obvious.

(70) For every V being a bimodule structure over R and for every scalar x of R and for every vector v of V and for every scalar x' of V such that x' = x holds $v \cdot x =$ (the right multiplication of V)(v, x').

In the sequel R will denote an associative ring. Next we state the proposition

(71) Let x, y be scalars of R. Let v, w be vectors of LeftMod(R). Then $x \cdot (v+w) = x \cdot v + x \cdot w$ and $(x+y) \cdot v = x \cdot v + y \cdot v$ and $(x \cdot y) \cdot v = x \cdot (y \cdot v)$ and $(1_R) \cdot v = v$.

Let us consider R. A left module structure over R is called a left module over R if:

(Def.19) Let x, y be scalars of R. Let v, w be vectors of it. Then $x \cdot (v+w) = x \cdot v + x \cdot w$ and $(x+y) \cdot v = x \cdot v + y \cdot v$ and $(x \cdot y) \cdot v = x \cdot (y \cdot v)$ and $(1_R) \cdot v = v$.

We now state the proposition

- (72) Let V be a left module structure over R. Then the following conditions are equivalent:
 - (i) for all scalars x, y of R and for all vectors v, w of V holds $x \cdot (v+w) = x \cdot v + x \cdot w$ and $(x+y) \cdot v = x \cdot v + y \cdot v$ and $(x \cdot y) \cdot v = x \cdot (y \cdot v)$ and $(1_R) \cdot v = v$,
 - (ii) V is a left module over R.

Let us consider R. Then LeftMod(R) is a left module over R.

For simplicity we adopt the following rules: R is an associative ring, x, y are scalars of R, L_2 is a left module over R, and v, w are vectors of L_2 . We now state several propositions:

- (73) $x \cdot (v+w) = x \cdot v + x \cdot w.$
- (74) $(x+y) \cdot v = x \cdot v + y \cdot v.$
- (75) $(x \cdot y) \cdot v = x \cdot (y \cdot v).$
- $(76) \quad (1_R) \cdot v = v.$
- (77) Let x, y be scalars of R. Let v, w be vectors of RightMod(R). Then $(v+w) \cdot x = v \cdot x + w \cdot x$ and $v \cdot (x+y) = v \cdot x + v \cdot y$ and $v \cdot (y \cdot x) = (v \cdot y) \cdot x$ and $v \cdot (1_R) = v$.

Let us consider R. A right module structure over R is said to be a right module over R if:

(Def.20) Let x, y be scalars of R. Let v, w be vectors of it. Then $(v + w) \cdot x = v \cdot x + w \cdot x$ and $v \cdot (x + y) = v \cdot x + v \cdot y$ and $v \cdot (y \cdot x) = (v \cdot y) \cdot x$ and $v \cdot (1_R) = v$.

The following proposition is true

- (78) Let V be a right module structure over R. Then the following conditions are equivalent:
 - (i) for all scalars x, y of R and for all vectors v, w of V holds $(v+w) \cdot x = v \cdot x + w \cdot x$ and $v \cdot (x+y) = v \cdot x + v \cdot y$ and $v \cdot (y \cdot x) = (v \cdot y) \cdot x$ and $v \cdot (1_R) = v$,
 - (ii) V is a right module over R.

Let us consider R. Then RightMod(R) is a right module over R.

For simplicity we follow the rules: R is an associative ring, x, y are scalars of R, R_2 is a right module over R, and v, w are vectors of R_2 . We now state four propositions:

- (79) $(v+w) \cdot x = v \cdot x + w \cdot x.$
- (80) $v \cdot (x+y) = v \cdot x + v \cdot y.$
- (81) $v \cdot (y \cdot x) = (v \cdot y) \cdot x.$
- $(82) \quad v \cdot (1_R) = v.$

Let us consider R. A bimodule structure over R is said to be a bimodule over R if:

(Def.21) Let x, y be scalars of R. Let v, w be vectors of it. Then

- (i) $x \cdot (v+w) = x \cdot v + x \cdot w$,
- (ii) $(x+y) \cdot v = x \cdot v + y \cdot v,$
- (iii) $(x \cdot y) \cdot v = x \cdot (y \cdot v),$
- (iv) $(1_R) \cdot v = v$,
- (v) $(v+w) \cdot x = v \cdot x + w \cdot x$,
- (vi) $v \cdot (x+y) = v \cdot x + v \cdot y$,
- (vii) $v \cdot (y \cdot x) = (v \cdot y) \cdot x$,
- (viii) $v \cdot (1_R) = v$,
- (ix) $x \cdot (v \cdot y) = (x \cdot v) \cdot y.$

Next we state two propositions:

- (83) Let V be a bimodule structure over R. Then the following conditions are equivalent:
 - (i) for all scalars x, y of R and for all vectors v, w of V holds $x \cdot (v+w) = x \cdot v + x \cdot w$ and $(x+y) \cdot v = x \cdot v + y \cdot v$ and $(x \cdot y) \cdot v = x \cdot (y \cdot v)$ and $(1_R) \cdot v = v$ and $(v+w) \cdot x = v \cdot x + w \cdot x$ and $v \cdot (x+y) = v \cdot x + v \cdot y$ and $v \cdot (y \cdot x) = (v \cdot y) \cdot x$ and $v \cdot (1_R) = v$ and $x \cdot (v \cdot y) = (x \cdot v) \cdot y$,
- (ii) V is a bimodule over R.
- (84) $\operatorname{BiMod}(R)$ is a bimodule over R.

Let us consider R. Then BiMod(R) is a bimodule over R.

For simplicity we follow the rules: R will be an associative ring, x, y will be scalars of R, R_2 will be a bimodule over R, and v, w will be vectors of R_2 . The following propositions are true:

- (85) $x \cdot (v+w) = x \cdot v + x \cdot w.$
- $(86) \quad (x+y) \cdot v = x \cdot v + y \cdot v.$
- (87) $(x \cdot y) \cdot v = x \cdot (y \cdot v).$
- $(88) \quad (1_R) \cdot v = v.$
- (89) $(v+w) \cdot x = v \cdot x + w \cdot x.$
- (90) $v \cdot (x+y) = v \cdot x + v \cdot y.$
- (91) $v \cdot (y \cdot x) = (v \cdot y) \cdot x.$
- $(92) \quad v \cdot (1_R) = v.$

(93) $x \cdot (v \cdot y) = (x \cdot v) \cdot y.$

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received June 20, 1990