Construction of Rings and Left-, Right-, and Bi-Modules over a Ring

Michał Muzalewski ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Definitions of some classes of rings and left-, right-, and bi-modules over a ring and some elementary theorems on rings and skew fields.

MML Identifier: VECTSP_2.

The articles [9], [8], [11], [3], [1], [10], [7], [4], [2], [5], and [6] provide the notation and terminology for this paper. In the sequel F_{1} will denote a field structure. Let us consider F_{1}. A scalar of F_{1} is an element of the carrier of F_{1}.

In the sequel x, y will denote scalars of F_{1}. Let us consider F_{1}, x, y. The functor $x-y$ yields a scalar of F_{1} and is defined as follows:
(Def.1) $\quad x-y=x+(-y)$.
In the sequel F denotes a field. A field structure is called a ring if:
(Def.2) Let x, y, z be scalars of it. Then
(i) $x+y=y+x$,
(ii) $(x+y)+z=x+(y+z)$,
(iii) $x+0_{\text {it }}=x$,
(iv) $x+(-x)=0_{i \mathrm{it}}$,
(v) $x \cdot\left(1_{\mathrm{it}}\right)=x$,
(vi) $\left(1_{\text {it }}\right) \cdot x=x$,
(vii) $x \cdot(y+z)=x \cdot y+x \cdot z$,
(viii) $(y+z) \cdot x=y \cdot x+z \cdot x$.

The following proposition is true

[^0](1) The following conditions are equivalent:
(i) for all scalars x, y, z of F_{1} holds $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{F_{1}}=x$ and $x+(-x)=0_{F_{1}}$ and $x \cdot\left(1_{F_{1}}\right)=x$ and $\left(1_{F_{1}}\right) \cdot x=x$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$,
(ii) $\quad F_{1}$ is a ring.

In the sequel R is a ring and x, y, z are scalars of R. Next we state several propositions:
(2) $x+y=y+x$.
(3) $(x+y)+z=x+(y+z)$.
(4) $x+0_{R}=x$.
(5) $x+(-x)=0_{R}$.
(6) $x \cdot\left(1_{R}\right)=x$ and $\left(1_{R}\right) \cdot x=x$.
(7) $\quad x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$.

A ring is called an associative ring if:
(Def.3) for all scalars x, y, z of it holds $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
The following proposition is true
(8) For all scalars x, y, z of R holds $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ if and only if R is an associative ring.
In the sequel R will denote an associative ring and x, y, z will denote scalars of R. One can prove the following proposition
(9) $\quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$.

An associative ring is said to be a commutative ring if:
(Def.4) for all scalars x, y of it holds $x \cdot y=y \cdot x$.
One can prove the following proposition
(10) If for all scalars x, y of R holds $x \cdot y=y \cdot x$, then R is a commutative ring.
In the sequel R will denote a commutative ring and x, y will denote scalars of R. The following proposition is true

$$
\begin{equation*}
x \cdot y=y \cdot x \tag{11}
\end{equation*}
$$

A commutative ring is said to be an integral domain if:
(Def.5) $\quad 0_{\text {it }} \neq 1_{\text {it }}$ and for all scalars x, y of it such that $x \cdot y=0_{\text {it }}$ holds $x=0_{\text {it }}$ or $y=0_{\mathrm{it}}$.
We now state two propositions:
(12) If $0_{R} \neq 1_{R}$ and for all x, y such that $x \cdot y=0_{R}$ holds $x=0_{R}$ or $y=0_{R}$, then R is an integral domain.
(13) $\quad F$ is an integral domain.

In the sequel R denotes an integral domain and x, y denote scalars of R. The following propositions are true:
(14) $\quad 0_{R} \neq 1_{R}$.

$$
\begin{equation*}
\text { If } x \cdot y=0_{R} \text {, then } x=0_{R} \text { or } y=0_{R} \text {. } \tag{15}
\end{equation*}
$$

An associative ring is called a skew field if:
(Def.6) for every scalar x of it holds if $x \neq 0_{i \text { it }}$, then there exists a scalar y of it such that $x \cdot y=1_{\text {it }}$ but $0_{\text {it }} \neq 1_{\mathrm{it}}$.
In the sequel R denotes an associative ring. The following proposition is true (16) If for every scalar x of R holds if $x \neq 0_{R}$, then there exists a scalar y of R such that $x \cdot y=1_{R}$ but $0_{R} \neq 1_{R}$, then R is a skew field.
In the sequel S_{1} will denote a skew field and x, y will denote scalars of S_{1}. The following propositions are true:
(17) If $x \neq 0_{S_{1}}$, then there exists y such that $x \cdot y=1_{S_{1}}$.
(18) $0_{S_{1}} \neq 1_{S_{1}}$.
(19) F is a skew field.

We see that the field is a skew field.
In the sequel R is a ring and x, y, z are scalars of R. Next we state a number of propositions:
(20) $x-y=x+(-y)$.
(21) $-0_{R}=0_{R}$.
(22) $x+y=z$ if and only if $x=z-y$ but $x+y=z$ if and only if $y=z-x$.
(23) $x-0_{R}=x$ and $0_{R}-x=-x$.
(24) If $x+y=x+z$, then $y=z$ but if $x+y=z+y$, then $x=z$.
(25) $-(x+y)=(-x)+(-y)$.
(26) $x \cdot 0_{R}=0_{R}$ and $0_{R} \cdot x=0_{R}$.
(27) $\quad-(-x)=x$.
(28) $\quad(-x) \cdot y=-x \cdot y$.
(29) $x \cdot(-y)=-x \cdot y$.
(30) $(-x) \cdot(-y)=x \cdot y$.
(31) $x \cdot(y-z)=x \cdot y-x \cdot z$.
(32) $(x-y) \cdot z=x \cdot z-y \cdot z$.
(33) $(x+y)-z=x+(y-z)$.
(34) $x=0_{R}$ if and only if $-x=0_{R}$.
(35) $x-(y+z)=(x-y)-z$.
(36) $x-(y-z)=(x-y)+z$.
(37) $\quad x-x=0_{R}$ and $(-x)+x=0_{R}$.
(38) For every x, y there exists z such that $x=y+z$ and $x=z+y$.

In the sequel S_{1} denotes a skew field and x, y, z denote scalars of S_{1}. We now state four propositions:
(39) If $x \cdot y=1_{S_{1}}$, then $x \neq 0_{S_{1}}$ and $y \neq 0_{S_{1}}$.
(40) If $x \neq 0_{S_{1}}$, then there exists y such that $y \cdot x=1_{S_{1}}$.
(41) If $x \cdot y=1_{S_{1}}$, then $y \cdot x=1_{S_{1}}$.
(42) If $x \cdot y=x \cdot z$ and $x \neq 0_{S_{1}}$, then $y=z$.

Let us consider S_{1}, x ．Let us assume that $x \neq 0_{S_{1}}$ ．The functor x^{-1} yielding a scalar of S_{1} is defined by：
（Def．7）$\quad x \cdot\left(x^{-1}\right)=1_{S_{1}}$ ．
Let us consider S_{1}, x, y ．Let us assume that $y \neq 0_{S_{1}}$ ．The functor $\frac{x}{y}$ yielding a scalar of S_{1} is defined by：

$$
\begin{equation*}
\frac{x}{y}=x \cdot y^{-1} . \tag{Def.8}
\end{equation*}
$$

One can prove the following propositions：
（43）If $x \neq 0_{S_{1}}$ ，then $x \cdot x^{-1}=1_{S_{1}}$ and $x^{-1} \cdot x=1_{S_{1}}$ ．
（45）If $x \cdot y=1_{S_{1}}$ ，then $x=y^{-1}$ and $y=x^{-1}$ ．
（46）If $x \neq 0_{S_{1}}$ and $y \neq 0_{S_{1}}$ ，then $x^{-1} \cdot y^{-1}=(y \cdot x)^{-1}$ ．
（47）If $x \cdot y=0_{S_{1}}$ ，then $x=0_{S_{1}}$ or $y=0_{S_{1}}$ ．
（48）If $x \neq 0_{S_{1}}$ ，then $x^{-1} \neq 0_{S_{1}}$ ．
（49）If $x \neq 0_{S_{1}}$ ，then $\left(x^{-1}\right)^{-1}=x$ ．
（50）If $x \neq 0_{S_{1}}$ ，then $\frac{1_{S_{1}}}{x}=x^{-1}$ and $\frac{1_{S_{1}}}{x^{-1}}=x$ ．
（51）If $x \neq 0_{S_{1}}$ ，then $x \cdot \frac{1_{S_{1}}}{x}=1_{S_{1}}$ and $\frac{1_{S_{1}}}{x} \cdot x=1_{S_{1}}$ ．
（52）If $x \neq 0_{S_{1}}$ ，then $\frac{x}{x}=1_{S_{1}}$ ．
（53）If $y \neq 0_{S_{1}}$ and $z \neq 0_{S_{1}}$ ，then $\frac{x}{y}=\frac{x \cdot z}{y \cdot z}$ ．
（54）If $y \neq 0_{S_{1}}$ ，then $-\frac{x}{y}=\frac{-x}{y}$ and $\frac{x}{-y}=-\frac{x}{y}$ ．
（55）If $z \neq 0_{S_{1}}$ ，then $\frac{x}{z}+\frac{y}{z}=\frac{x+y}{z}$ and $\frac{x}{z}-\frac{y}{z}=\frac{x-y}{z}$ ．
（56）If $y \neq 0_{S_{1}}$ and $z \neq 0_{S_{1}}$ ，then $\frac{x}{\frac{y}{z}}=\frac{x \cdot z}{y}$ ．
（57）If $y \neq 0_{S_{1}}$ ，then $\frac{x}{y} \cdot y=x$ ．
Let us consider F_{1} ．We consider left module structures over F_{1} which are systems

〈a carrier，a left multiplication〉，
where the carrier is an Abelian group and the left multiplication is a function from ：the carrier of F_{1} ，the carrier of the carrier：］into the carrier of the carrier．

In the sequel L_{1} denotes a left module structure over F_{1} ．We now define two new modes．Let us consider F_{1}, L_{1} ．A scalar of L_{1} is a scalar of F_{1} ．

A vector of L_{1} is an element of the carrier of L_{1} ．
Let us consider F_{1} ．We consider right module structures over F_{1} which are systems

〈a carrier，a right multiplication＞，
where the carrier is an Abelian group and the right multiplication is a function from ：the carrier of the carrier，the carrier of $F_{1} 引$ into the carrier of the carrier．

In the sequel R_{1} will denote a right module structure over F_{1} ．We now define two new modes．Let us consider F_{1}, R_{1} ．A scalar of R_{1} is a scalar of F_{1} ．

A vector of R_{1} is an element of the carrier of R_{1} ．

Let us consider F_{1}. We consider bimodule structures over F_{1} which are systems

〈a carrier, a left multiplication, a right multiplication〉, where the carrier is an Abelian group, the left multiplication is a function from : the carrier of F_{1}, the carrier of the carrier : into the carrier of the carrier, and the right multiplication is a function from : the carrier of the carrier, the carrier of F_{1} : into the carrier of the carrier.

In the sequel B_{1} will denote a bimodule structure over F_{1}. We now define two new modes. Let us consider F_{1}, B_{1}. A scalar of B_{1} is a scalar of F_{1}.

A vector of B_{1} is an element of the carrier of B_{1}.
In the sequel R is a ring. Let us consider R. The functor $\operatorname{AbGr}(R)$ yields an Abelian group and is defined by:
(Def.9) $\quad \operatorname{AbGr}(R)=\langle$ the carrier of R, the addition of R, the reverse-map of R, the zero of $R\rangle$.
Next we state the proposition
(58) $\operatorname{AbGr}(R)=\langle$ the carrier of R, the addition of R, the reverse-map of R, the zero of $R\rangle$.
Let us consider R. The functor $\operatorname{LeftModMult}(R)$ yielding a function from : the carrier of R, the carrier of $\operatorname{AbGr}(R)$; into the carrier of $\operatorname{AbGr}(R)$ is defined as follows:
(Def.10) LeftModMult $(R)=$ the multiplication of R.
Next we state the proposition
(59) LeftModMult $(R)=$ the multiplication of R.

Let us consider R. The functor $\operatorname{LeftMod}(R)$ yielding a left module structure over R is defined as follows:
(Def.11) $\operatorname{LeftMod}(R)=\langle\operatorname{AbGr}(R), \operatorname{LeftModMult}(R)\rangle$.
We now state the proposition
(60) $\operatorname{LeftMod}(R)=\langle\operatorname{AbGr}(R), \operatorname{LeftModMult}(R)\rangle$.

In the sequel V will be a left module structure over R. Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $x \cdot v$ yielding a vector of V is defined as follows:
(Def.12) for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $x \cdot v=$ (the left multiplication of $V)\left(x^{\prime}, v\right)$.
The following proposition is true
$(62)^{2}$ For every V being a left module structure over R and for every scalar x of R and for every vector v of V and for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $x \cdot v=($ the left multiplication of $V)\left(x^{\prime}, v\right)$.
Let us consider R. The functor $\operatorname{RightModMult}(R)$ yields a function from : the carrier of $\operatorname{AbGr}(R)$, the carrier of R : into the carrier of $\operatorname{AbGr}(R)$ and is defined as follows:

[^1](Def.13) $\quad \operatorname{RightModMult}(R)=$ the multiplication of R.
We now state the proposition
(63) $\operatorname{RightModMult}(R)=$ the multiplication of R.

Let us consider R. The functor $\operatorname{RightMod}(R)$ yielding a right module structure over R is defined as follows:
(Def.14) $\quad \operatorname{RightMod}(R)=\langle\operatorname{AbGr}(R), \operatorname{RightModMult}(R)\rangle$.
We now state the proposition
(64) $\quad \operatorname{RightMod}(R)=\langle\operatorname{AbGr}(R), \operatorname{RightModMult}(R)\rangle$.

In the sequel V will denote a right module structure over R. Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $v \cdot x$ yielding a vector of V is defined as follows:
(Def.15) for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $v \cdot x=$ (the right multiplication of $V)\left(v, x^{\prime}\right)$.

We now state the proposition
$(66)^{3}$ For every V being a right module structure over R and for every scalar x of R and for every vector v of V and for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $v \cdot x=($ the right multiplication of $V)\left(v, x^{\prime}\right)$.
Let us consider R. The functor $\operatorname{BiMod}(R)$ yielding a bimodule structure over R is defined as follows:
(Def.16) $\quad \operatorname{BiMod}(R)=\langle\operatorname{AbGr}(R), \operatorname{LeftModMult}(R), \operatorname{RightModMult}(R)\rangle$.
The following proposition is true
(67) $\quad \operatorname{BiMod}(R)=\langle\operatorname{AbGr}(R), \operatorname{LeftModMult}(R), \operatorname{RightModMult}(R)\rangle$.

In the sequel V is a bimodule structure over R. Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $x \cdot v$ yields a vector of V and is defined as follows:
(Def.17) for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $x \cdot v=$ (the left multiplication of $V)\left(x^{\prime}, v\right)$.

One can prove the following proposition
$(69)^{4}$ For every V being a bimodule structure over R and for every scalar x of R and for every vector v of V and for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $x \cdot v=($ the left multiplication of $V)\left(x^{\prime}, v\right)$.
Let us consider R, V, and let x be a scalar of R, and let v be a vector of V. The functor $v \cdot x$ yields a vector of V and is defined by:
(Def.18) for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $v \cdot x=$ (the right multiplication of $V)\left(v, x^{\prime}\right)$.

The following proposition is true

[^2](70) For every V being a bimodule structure over R and for every scalar x of R and for every vector v of V and for every scalar x^{\prime} of V such that $x^{\prime}=x$ holds $v \cdot x=($ the right multiplication of $V)\left(v, x^{\prime}\right)$.
In the sequel R will denote an associative ring. Next we state the proposition
(71) Let x, y be scalars of R. Let v, w be vectors of $\operatorname{Left} \operatorname{Mod}(R)$. Then $x \cdot(v+w)=x \cdot v+x \cdot w$ and $(x+y) \cdot v=x \cdot v+y \cdot v$ and $(x \cdot y) \cdot v=x \cdot(y \cdot v)$ and $\left(1_{R}\right) \cdot v=v$.
Let us consider R. A left module structure over R is called a left module over R if:
(Def.19) Let x, y be scalars of R. Let v, w be vectors of it. Then $x \cdot(v+w)=$ $x \cdot v+x \cdot w$ and $(x+y) \cdot v=x \cdot v+y \cdot v$ and $(x \cdot y) \cdot v=x \cdot(y \cdot v)$ and $\left(1_{R}\right) \cdot v=v$.
We now state the proposition
(72) Let V be a left module structure over R. Then the following conditions are equivalent:
(i) for all scalars x, y of R and for all vectors v, w of V holds $x \cdot(v+w)=$ $x \cdot v+x \cdot w$ and $(x+y) \cdot v=x \cdot v+y \cdot v$ and $(x \cdot y) \cdot v=x \cdot(y \cdot v)$ and $\left(1_{R}\right) \cdot v=v$,
(ii) $\quad V$ is a left module over R.

Let us consider R. Then $\operatorname{Left} \operatorname{Mod}(R)$ is a left module over R.
For simplicity we adopt the following rules: R is an associative ring, x, y are scalars of R, L_{2} is a left module over R, and v, w are vectors of L_{2}. We now state several propositions:
(73) $x \cdot(v+w)=x \cdot v+x \cdot w$.
(77) Let x, y be scalars of R. Let v, w be vectors of $\operatorname{RightMod}(R)$. Then $(v+w) \cdot x=v \cdot x+w \cdot x$ and $v \cdot(x+y)=v \cdot x+v \cdot y$ and $v \cdot(y \cdot x)=(v \cdot y) \cdot x$ and $v \cdot\left(1_{R}\right)=v$.
Let us consider R. A right module structure over R is said to be a right module over R if:
(Def.20) Let x, y be scalars of R. Let v, w be vectors of it. Then $(v+w) \cdot x=$ $v \cdot x+w \cdot x$ and $v \cdot(x+y)=v \cdot x+v \cdot y$ and $v \cdot(y \cdot x)=(v \cdot y) \cdot x$ and $v \cdot\left(1_{R}\right)=v$.
The following proposition is true
(78) Let V be a right module structure over R. Then the following conditions are equivalent:
(i) for all scalars x, y of R and for all vectors v, w of V holds $(v+w) \cdot x=$ $v \cdot x+w \cdot x$ and $v \cdot(x+y)=v \cdot x+v \cdot y$ and $v \cdot(y \cdot x)=(v \cdot y) \cdot x$ and $v \cdot\left(1_{R}\right)=v$,
(ii) $\quad V$ is a right module over R.

Let us consider R. Then $\operatorname{RightMod}(R)$ is a right module over R.
For simplicity we follow the rules: R is an associative ring, x, y are scalars of R, R_{2} is a right module over R, and v, w are vectors of R_{2}. We now state four propositions:

$$
\begin{align*}
& (v+w) \cdot x=v \cdot x+w \cdot x . \tag{79}\\
& v \cdot(x+y)=v \cdot x+v \cdot y . \tag{80}\\
& v \cdot(y \cdot x)=(v \cdot y) \cdot x \tag{81}\\
& v \cdot\left(1_{R}\right)=v . \tag{82}
\end{align*}
$$

Let us consider R. A bimodule structure over R is said to be a bimodule over R if:
(Def.21) Let x, y be scalars of R. Let v, w be vectors of it. Then
(i) $x \cdot(v+w)=x \cdot v+x \cdot w$,
(ii) $(x+y) \cdot v=x \cdot v+y \cdot v$,
(iii) $(x \cdot y) \cdot v=x \cdot(y \cdot v)$,
(iv) $\left(1_{R}\right) \cdot v=v$,
(v) $(v+w) \cdot x=v \cdot x+w \cdot x$,
(vi) $v \cdot(x+y)=v \cdot x+v \cdot y$,
(vii) $v \cdot(y \cdot x)=(v \cdot y) \cdot x$,
(viii) $v \cdot\left(1_{R}\right)=v$,
(ix) $x \cdot(v \cdot y)=(x \cdot v) \cdot y$.

Next we state two propositions:
(83) Let V be a bimodule structure over R. Then the following conditions are equivalent:
(i) for all scalars x, y of R and for all vectors v, w of V holds $x \cdot(v+w)=$ $x \cdot v+x \cdot w$ and $(x+y) \cdot v=x \cdot v+y \cdot v$ and $(x \cdot y) \cdot v=x \cdot(y \cdot v)$ and $\left(1_{R}\right) \cdot v=v$ and $(v+w) \cdot x=v \cdot x+w \cdot x$ and $v \cdot(x+y)=v \cdot x+v \cdot y$ and $v \cdot(y \cdot x)=(v \cdot y) \cdot x$ and $v \cdot\left(1_{R}\right)=v$ and $x \cdot(v \cdot y)=(x \cdot v) \cdot y$,
(ii) $\quad V$ is a bimodule over R.
(84) $\operatorname{BiMod}(R)$ is a bimodule over R.

Let us consider R. Then $\operatorname{BiMod}(R)$ is a bimodule over R.
For simplicity we follow the rules: R will be an associative ring, x, y will be scalars of R, R_{2} will be a bimodule over R, and v, w will be vectors of R_{2}. The following propositions are true:

$$
\begin{align*}
& x \cdot(v+w)=x \cdot v+x \cdot w . \tag{85}\\
& (x+y) \cdot v=x \cdot v+y \cdot v . \tag{86}\\
& (x \cdot y) \cdot v=x \cdot(y \cdot v) . \tag{87}\\
& \left(1_{R}\right) \cdot v=v . \tag{88}\\
& (v+w) \cdot x=v \cdot x+w \cdot x . \tag{89}\\
& v \cdot(x+y)=v \cdot x+v \cdot y . \tag{90}\\
& v \cdot(y \cdot x)=(v \cdot y) \cdot x . \tag{91}\\
& v \cdot\left(1_{R}\right)=v . \tag{92}
\end{align*}
$$

$$
\begin{equation*}
x \cdot(v \cdot y)=(x \cdot v) \cdot y \tag{93}
\end{equation*}
$$

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received June 20, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.

[^1]: ${ }^{2}$ The proposition (61) was either repeated or obvious.

[^2]: ${ }^{3}$ The proposition (65) was either repeated or obvious.
 ${ }^{4}$ The proposition (68) was either repeated or obvious.

