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skew fields.
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The articles [9], [8], [11], [3], [1], [10], [7], [4], [2], [5], and [6] provide the notation
and terminology for this paper. In the sequel F; will denote a field structure.
Let us consider Fj. A scalar of Fj is an element of the carrier of F}.

In the sequel z, y will denote scalars of Fy. Let us consider Fy, z, y. The
functor x — y yields a scalar of £ and is defined as follows:

(Defl) z—y=x+(—y).
In the sequel F' denotes a field. A field structure is called a ring if:
(Def.2)  Let x, y, z be scalars of it . Then

(i) z+y=y+ux,
(i) (z+y)+z=z+(y+2),
(iii) xz+ 0 = x,
(iv) =+ (—z) = 0y,
(v) z-(1y) ==,
(vi) (1) -z ==,
(vi)) z-(y+z2)=z-y+z-z,

(viii) (y+2z2)-z=y-x+z-

The following proposition is true
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(1)  The following conditions are equivalent:

(i) for all scalars z, y, z of F} holds x+y = y+x and (z+y)+2z = x+(y+2)
and ¢ +0p, =z and v+ (—2) =0p, and z- (1) =z and (1p,) -z ==
andz-(y+z)=x-y+z-zand (y+z2)-x2=y-z+z2-z,

(il)  Fy is a ring.

In the sequel R is a ring and z, y, z are scalars of R. Next we state several
propositions:

(2) z+y=y+a

B) (@+y+z=z+(@y+2).

(4) z+0p=ux.

(5) x4+ (—x)=0g.

(6) z-(lgr)=zand (1g) -z ==x.

(1) z-(y+z)=z-y+z-zand (y+2)-z=y o+ 2.

A ring is called an associative ring if:
(Def.3)  for all scalars x, y, z of it holds (z-y) -z =z (y - 2).

The following proposition is true

(8) For all scalars z, y, z of R holds (z-y)-z==x-(y-z) if and only if R
is an associative ring.

In the sequel R will denote an associative ring and x, y, z will denote scalars
of R. One can prove the following proposition

9 @y -z=z-(y-2).
An associative ring is said to be a commutative ring if:

(Def.4)  for all scalars x, y of it holds z -y =y - .

One can prove the following proposition
(10)  If for all scalars x, y of R holds x -y = y -z, then R is a commutative
ring.
In the sequel R will denote a commutative ring and z, y will denote scalars
of R. The following proposition is true
(11) z-y=y-x.
A commutative ring is said to be an integral domain if:
(Def.5) 0y # 1 and for all scalars x, y of it such that z - y = O3 holds x = 0y
or y = 0.
We now state two propositions:

(12) IfOgr # 1g and for all z, y such that -y = Og holds 2 = O or y = O,
then R is an integral domain.

(13)  Fis an integral domain.

In the sequel R denotes an integral domain and z, y denote scalars of R. The
following propositions are true:

(14) O # 1p.
(15) Ifx-y=0g, then x =0g or y = Opy.
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An associative ring is called a skew field if:
(Def.6)  for every scalar z of it holds if x # 0j, then there exists a scalar y of it
such that z -y = 1j; but Oy # 1j.
In the sequel R denotes an associative ring. The following proposition is true

(16)  If for every scalar x of R holds if x # O, then there exists a scalar y of
R such that -y = 1g but Or # 1g, then R is a skew field.

In the sequel S; will denote a skew field and z, y will denote scalars of S7.
The following propositions are true:

(17)  If x # Og,, then there exists y such that z -y = 1g,.
(18) 0g, # 1g,.
(19) F is a skew field.
We see that the field is a skew field.
In the sequel R is a ring and x, y, z are scalars of R. Next we state a number
of propositions:
(20) z-y=z+(-y).

(21) —0p = Op.

(22) z+4+y==zifandonlyifz =2—ybutz+y=zifand only if y = 2z —z.
(23) z—0gp=zandOp —x = —x.

(24) Ifzx+y=ax+2 theny=zbutifz+y=z+y, then x = 2.
(25)  —(z+y)=(-2)+(-y)

(26) .CC‘ORZOR andOR~x:0R.

(27) —(—z)==.

(28)  (—z)-y=—z-y.

(29) @-(—y)=—z-y.

30)  (=z)-(-y)=z-y.

3l) z-(y—2)=x-y—a-=z

32) (r—y)-z=xz-2—y-=2.

33) (x+y)—z=z+(y—2).

(34) x =0g if and only if —z = 0p.

(35) z—(y+2)=(z—-y)—=

(36) z—-(y—2)=(@—-y +=

(37) z—x=0gand (—z) +x =0pg.

(

38)  For every z, y there exists z such that z =y + z and z = z + y.

In the sequel S; denotes a skew field and z, y, z denote scalars of S;. We
now state four propositions:

(39) Ifx-y=1g, then x # 0g, and y # Og, .

(40) If x # Og,, then there exists y such that y -z = 1g,.
(41) Ifzx-y=1g,theny- -z =1g,.
(42)

42) Ifz-y=z-zand z # 0g,, then y = 2.
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Let us consider S7, z. Let us assume that = # 0g,. The functor 27! yielding
a scalar of Sy is defined by:

(Def.7)  x-(z71) =1g,.

Let us consider Si, x, y. Let us assume that y # 0g,. The functor £ yielding
. Y
a scalar of Sy is defined by:

(Def.8) 2 =u- y~L.

One can prove the following propositions:

(43) Ifx#0g,thenz- 27! =1g, and 271 2 = 1g,.
(44) If y # 0g,, then % =z-y L

(45) Ifz-y=1g,thenz =y landy=a"1

(46) If x # 0g, and y # Og,, then x71 -y~ 1 = (y - z)~L.
(47) Ifx-y=0g,, then z = 0g, or y = Og,.

(48) If x # Og,, then 71 # 0g, .

(49) If z # 0s,, then (z71)~! = 2.

(50) If z # Og,, then 1% =z~ ! and % =x

(51) Ifa?;é()sl,thenaf‘l%:lgl andl%-wzlgl.
(62) Ifx # 0g,, then £ = 1g,.

(53) Ify#0s, and z # Og,, then £ = 2=,

(54) If y # 0g,, then -4 = and 5 = -2

(55) If z#0g,, then £ + ¥ =2 apd £ — ¥ = 22V,
(56) If y # 0g, and z # Og,, then § = %

(57)

(@)
g

Ify;é()sl,then%'y:m.

Let us consider F;. We consider left module structures over F; which are
systems

(a carrier, a left multiplication),
where the carrier is an Abelian group and the left multiplication is a function
from [ the carrier of F}, the carrier of the carrier | into the carrier of the carrier.

In the sequel L denotes a left module structure over F;. We now define two
new modes. Let us consider F7, Li. A scalar of Lq is a scalar of Fy.

A vector of L is an element of the carrier of L.

Let us consider F;. We consider right module structures over F; which are
systems

(a carrier, a right multiplication),
where the carrier is an Abelian group and the right multiplication is a function
from [ the carrier of the carrier, the carrier of F | into the carrier of the carrier.

In the sequel Ry will denote a right module structure over 7. We now define
two new modes. Let us consider Fy, Ry. A scalar of Ry is a scalar of 7.

A vector of R; is an element of the carrier of Rj.
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Let us consider F}. We consider bimodule structures over F; which are
systems

(a carrier, a left multiplication, a right multiplication),
where the carrier is an Abelian group, the left multiplication is a function from
[ the carrier of Fj, the carrier of the carrier | into the carrier of the carrier,
and the right multiplication is a function from | the carrier of the carrier, the
carrier of F} | into the carrier of the carrier.

In the sequel By will denote a bimodule structure over F}. We now define
two new modes. Let us consider Fy, By. A scalar of By is a scalar of .

A vector of Bj is an element of the carrier of Bj.

In the sequel R is a ring. Let us consider R. The functor AbGr(R) yields an
Abelian group and is defined by:

(Def.9)  AbGr(R) = ( the carrier of R, the addition of R, the reverse-map of R,
the zero of R).

Next we state the proposition
(58)  AbGr(R) = ( the carrier of R, the addition of R, the reverse-map of R,
the zero of R).

Let us consider R. The functor LeftModMult(R) yielding a function from |
the carrier of R, the carrier of AbGr(R) ] into the carrier of AbGr(R) is defined
as follows:

(Def.10)  LeftModMult(R) = the multiplication of R.

Next we state the proposition
(59)  LeftModMult(R) = the multiplication of R.
Let us consider R. The functor LeftMod(R) yielding a left module structure
over R is defined as follows:
(Def.11)  LeftMod(R) = (AbGr(R), LeftModMult(R)).

We now state the proposition
(60)  LeftMod(R) = (AbGr(R), LeftModMult(R)).

In the sequel V' will be a left module structure over R. Let us consider R, V',
and let z be a scalar of R, and let v be a vector of V. The functor x - v yielding
a vector of V is defined as follows:

(Def.12)  for every scalar 2’ of V such that 2’ = x holds z - v = (the left multipli-
cation of V)(2/, v).
The following proposition is true
(62)2 For every V being a left module structure over R and for every scalar
x of R and for every vector v of V and for every scalar z’ of V such that
2’ = x holds x - v = (the left multiplication of V)(z’, v).
Let us consider R. The functor RightModMult(R) yields a function from |
the carrier of AbGr(R), the carrier of R into the carrier of AbGr(R) and is
defined as follows:

2The proposition (61) was either repeated or obvious.
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(Def.13)  RightModMult(R) = the multiplication of R.

We now state the proposition
(63) RightModMult(R) = the multiplication of R.
Let us consider R. The functor RightMod(R) yielding a right module struc-
ture over R is defined as follows:
(Def.14)  RightMod(R) = (AbGr(R), RightModMult(R)).

We now state the proposition
(64) RightMod(R) = (AbGr(R), RightModMult(R)).
In the sequel V' will denote a right module structure over R. Let us consider

R, V, and let x be a scalar of R, and let v be a vector of V. The functor v - x
yielding a vector of V is defined as follows:

(Def.15)  for every scalar ' of V such that 2’ = z holds v - z = (the right
multiplication of V')(v, ).
We now state the proposition

(66)% For every V being a right module structure over R and for every scalar
x of R and for every vector v of V and for every scalar z’ of V' such that
2’ =z holds v - & = (the right multiplication of V')(v, z’).

Let us consider R. The functor BiMod(R) yielding a bimodule structure over
R is defined as follows:

(Def.16)  BiMod(R) = (AbGr(R), LeftModMult(R), RightModMult(R)).

The following proposition is true
(67) BiMod(R) = (AbGr(R), LeftModMult(R), RightModMult(R)).
In the sequel V is a bimodule structure over R. Let us consider R, V, and

let x be a scalar of R, and let v be a vector of V. The functor z - v yields a
vector of V' and is defined as follows:

(Def.17)  for every scalar 2’ of V such that 2’ = x holds z - v = (the left multipli-
cation of V)(2/, v).
One can prove the following proposition

(69)* For every V being a bimodule structure over R and for every scalar
of R and for every vector v of V and for every scalar 2’ of V such that
2’ = z holds x - v = (the left multiplication of V')(z’, v).

Let us consider R, V, and let x be a scalar of R, and let v be a vector of V.
The functor v - x yields a vector of V' and is defined by:

(Def.18)  for every scalar 2’ of V such that 2’ = z holds v - = (the right
multiplication of V) (v, z’).

The following proposition is true

3The proposition (65) was either repeated or obvious.
4The proposition (68) was either repeated or obvious.
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(70)  For every V being a bimodule structure over R and for every scalar z
of R and for every vector v of V and for every scalar z’ of V such that
2’ = x holds v - = (the right multiplication of V')(v, x’).
In the sequel R will denote an associative ring. Next we state the proposition
(71)  Let x, y be scalars of R. Let v, w be vectors of LeftMod(R). Then
z-(vtw)=z-v+z-wand (x+y)-v=x-v+y-vand (x-y)-v=2x-(y-v)
and (1) -v =w.
Let us consider R. A left module structure over R is called a left module
over R if:
(Def.19)  Let x, y be scalars of R. Let v, w be vectors of it . Then z - (v + w) =
z-v+zx-wand (x+y)-v=z-v+y-vand (z-y)-v==x-(y-v) and
(13) U =0.
We now state the proposition
(72)  Let V be a left module structure over R. Then the following conditions
are equivalent:
(i)  for all scalars x, y of R and for all vectors v, w of V holds z - (v +w) =
z-v+x-wand (t+y)-v=z-v+y-vand (z-y)-v==x-(y-v) and
(1R) U=,
(ii) V is a left module over R.
Let us consider R. Then LeftMod(R) is a left module over R.

For simplicity we adopt the following rules: R is an associative ring, x, y are
scalars of R, Ls is a left module over R, and v, w are vectors of Ly. We now
state several propositions:

73) z-(vtw)=z-v+z-w.

(

(14) (z+y) - v=x-v+y-v.

(75) (z-y)-v=z-(y-v).

(76)  (1g)-v=w.

(77)  Let z, y be scalars of R. Let v, w be vectors of RightMod(R). Then

(v+w)-z=v-r+w-rzandv-(r+y)=v-z+v-yandv-(y-z) = (v-y)-x
and v- (1g) = v.
Let us consider R. A right module structure over R is said to be a right
module over R if:

(Def.20)  Let x, y be scalars of R. Let v, w be vectors of it . Then (v +w) -z =
vez+w-zandv-(r+y)=v-x+v-yandv-(y-z)= (v-y) 2z and
v-(1g) =w.

The following proposition is true
(78)  Let V be aright module structure over R. Then the following conditions
are equivalent:

(i)  for all scalars z, y of R and for all vectors v, w of V holds (v+w) -z =
vezt+w-zandv-(r+y)=v-x+v-yandv-(y-z)= (v-y) 2z and
v-(1g) =,

(ii) V is a right module over R.
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Let us consider R. Then RightMod(R) is a right module over R.

For simplicity we follow the rules: R is an associative ring, x, y are scalars
of R, R is a right module over R, and v, w are vectors of Ro. We now state
four propositions:

(719) (v4w) z=v-z+w-
(80) wv-(z+y) =v-x4v-y.
@) vy -z)=(v-y)
(82) wv-(1g) =wv.

Let us consider R. A bimodule structure over R is said to be a bimodule
over R if:

(Def.21)  Let x, y be scalars of R. Let v, w be vectors of it . Then
r-(v+w)=z-v+x-w,
(x+y)-v=z-v+y-v,

v W) -r=0v-Tr+w-x,
(vi) v-(z4y)=v-x+uv-y,
(vii) v (y-z)=(v-y)-z,
(viii) v-(1gr) =w,

() 2 (v-)=(0)y

Next we state two propositions:

(83) Let V be a bimodule structure over R. Then the following conditions
are equivalent:

(i)  for all scalars z, y of R and for all vectors v, w of V holds z - (v +w) =
z-v+z-wand (z+y) - v=z-v+y-vand (z-y)-v=2x-(y-v) and
(l1g)-v=wvand (v4+w) - z=v-z4+w-zandv-(x+y)=v-z+v-y
andv-(y-z)=@w-y)-zandv-(1g) =vand z-(v-y) = (x-v) -y,

(i) V is a bimodule over R.

(84) BiMod(R) is a bimodule over R.
Let us consider R. Then BiMod(R) is a bimodule over R.
For simplicity we follow the rules: R will be an associative ring, x, y will be
scalars of R, R will be a bimodule over R, and v, w will be vectors of Ry. The
following propositions are true:

(85) x-(v+w)=z-v+z- W
86) (z+y)-v=x-v+y-v.
(@-y)-v=2u-(y-v)
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(93) z-(v-y)=(z-v)- vy
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