Relations of Tolerance¹

Krzysztof Hryniewiecki Warsaw University

Summary. Introduces notions of relations of tolerance, tolerance set and neighbourhood of an element. The basic properties of relations of tolerance are proved.

MML Identifier: TOLER_1.

The notation and terminology used here have been introduced in the following papers: [2], [3], [4], [5], and [1]. We adopt the following rules: X, Y, Z denote sets, x, y are arbitrary, and R denotes a relation between X and X. The following propositions are true:

(1) field $\emptyset = \emptyset$.

- (2) \emptyset is pseudo reflexive.
- (3) \emptyset is symmetric.
- (4) \emptyset is irreflexive.
- (5) \emptyset is antisymmetric.
- (6) \emptyset is asymmetric.
- (7) \emptyset is connected.
- (8) \emptyset is strongly connected.
- (9) \emptyset is transitive.

Let us consider X. The functor ∇_X yielding a relation between X and X is defined by:

(Def.1) $\nabla_X = [X, X].$

Let us consider X, R, Y. Then $R \mid^2 Y$ is a relation between Y and Y.

The following propositions are true:

(10) For every relation R between X and X holds $R = \nabla_X$ if and only if R = [X, X].

105

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by Philippe le Hodey Foundation. This work had been done on Mizar Workshop '89 (Fourdrain, France) in Summer '89.

(11)
$$\nabla_X = [X, X].$$

(12) dom $\nabla_X = X$.

- (13) $\operatorname{rng} \nabla_X = X.$
- (14) field $\nabla_X = X$.
- (15) For all x, y such that $x \in X$ and $y \in X$ holds $\langle x, y \rangle \in \nabla_X$.
- (16) For all x, y such that $x \in \text{field } \nabla_X$ and $y \in \text{field } \nabla_X$ holds $\langle x, y \rangle \in \nabla_X$.
- (17) ∇_X is pseudo reflexive.
- (18) ∇_X is symmetric.
- (19) ∇_X is strongly connected.
- (20) ∇_X is transitive.
- (21) ∇_X is connected.

Let us consider X. A relation between X and X is said to be a tolerance of X if:

(Def.2) it is pseudo reflexive and it is symmetric and field it = X.

In the sequel T, R denote tolerances of X. The following propositions are true:

- $(23)^2$ For every tolerance R of X holds R is pseudo reflexive and R is symmetric and field R = X.
- (24) For every tolerance T of X holds dom T = X.
- (25) For every tolerance T of X holds $\operatorname{rng} T = X$.
- (26) For every tolerance T of X holds field T = X.
- (27) For every tolerance T of X holds $x \in X$ if and only if $\langle x, x \rangle \in T$.
- (28) For every tolerance T of X holds T is reflexive in X.
- (29) For every tolerance T of X holds T is symmetric in X.
- (30) For every tolerance T of X such that $\langle x, y \rangle \in T$ holds $\langle y, x \rangle \in T$.
- (31) For every tolerance T of X and for all x, y such that $\langle x, y \rangle \in T$ holds $x \in X$ and $y \in X$.
- (32) For every relation R between X and Y such that R is symmetric holds $R |^2 Z$ is symmetric.

Let us consider X, T, and let Y be a subset of X. Then $T |^2 Y$ is a tolerance of Y.

Next we state the proposition

(33) If $Y \subseteq X$, then $T \mid^2 Y$ is a tolerance of Y.

Let us consider X, and let T be a tolerance of X. A set is called a set of mutually elements w.r.t. T if:

(Def.3) for all x, y such that $x \in \text{it and } y \in \text{it holds } \langle x, y \rangle \in T$.

We now state the proposition

(34) \emptyset is a set of mutually elements w.r.t. T.

^{2}The proposition (22) was either repeated or obvious.

Let us consider X, and let T be a tolerance of X. A set of mutually elements w.r.t. T is called a tolerance class of T if:

(Def.4) for every x such that $x \notin it$ and $x \in X$ there exists y such that $y \in it$ and $\langle x, y \rangle \notin T$.

Next we state a number of propositions:

- $(36)^3$ Y is a set of mutually elements w.r.t. T if and only if for all x, y such that $x \in Y$ and $y \in Y$ holds $\langle x, y \rangle \in T$.
- (38)⁴ For every tolerance T of X such that \emptyset is a tolerance class of T holds $T = \emptyset$.
- (39) \emptyset is a tolerance of \emptyset .
- (40) For all x, y such that $\langle x, y \rangle \in T$ holds $\{x, y\}$ is a set of mutually elements w.r.t. T.
- (41) For every x such that $x \in X$ holds $\{x\}$ is a set of mutually elements w.r.t. T.
- (42) For all Y, Z such that Y is a set of mutually elements w.r.t. T and Z is a set of mutually elements w.r.t. T holds $Y \cap Z$ is a set of mutually elements w.r.t. T.
- (43) If Y is a set of mutually elements w.r.t. T, then $Y \subseteq X$.
- (44) If Y is a tolerance class of T, then $Y \subseteq X$.
- (45) For every set Y of mutually elements w.r.t. T there exists a tolerance class Z of T such that $Y \subseteq Z$.
- (46) For all x, y such that $\langle x, y \rangle \in T$ there exists a tolerance class Z of T such that $x \in Z$ and $y \in Z$.
- (47) For every x such that $x \in X$ there exists a tolerance class Z of T such that $x \in Z$.

Let us consider X. Then \triangle_X is a tolerance of X.

We now state three propositions:

- (48) ∇_X is a tolerance of X.
- (49) $T \subseteq \nabla_X$.
- (50) $\triangle_X \subseteq T$.

The scheme *ToleranceEx* concerns a set \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists a tolerance T of A such that for all x, y such that $x \in A$ and $y \in A$ holds $\langle x, y \rangle \in T$ if and only if $\mathcal{P}[x, y]$

provided the parameters satisfy the following conditions:

• for every x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x, x]$,

• for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{A}$ and $\mathcal{P}[x, y]$ holds $\mathcal{P}[y, x]$. One can prove the following propositions:

³The proposition (35) was either repeated or obvious.

⁴The proposition (37) was either repeated or obvious.

- (51) For every Y there exists a tolerance T of $\bigcup Y$ such that for every Z such that $Z \in Y$ holds Z is a set of mutually elements w.r.t. T.
- (52) Let Y be a set. Let T, R be tolerances of $\bigcup Y$. Then if for all x, y holds $\langle x, y \rangle \in T$ if and only if there exists Z such that $Z \in Y$ and $x \in Z$ and $y \in Z$ and for all x, y holds $\langle x, y \rangle \in R$ if and only if there exists Z such that $Z \in Y$ and $x \in Z$ and $y \in Z$, then T = R.
- (53) For all tolerances T, R of X such that for every Z holds Z is a tolerance class of T if and only if Z is a tolerance class of R holds T = R.

Let us consider X, and let T be a tolerance of X, and let us consider x. The functor neighbourhood(x, T) yielding a set is defined by:

(Def.5) for every y holds $y \in \text{neighbourhood}(x, T)$ if and only if $\langle x, y \rangle \in T$.

One can prove the following propositions:

- (54) For every tolerance T of X and for every x and for every set Y holds Y = neighbourhood(x,T) if and only if for every y holds $y \in Y$ if and only if $\langle x, y \rangle \in T$.
- (55) For every tolerance T of X holds $y \in \text{neighbourhood}(x, T)$ if and only if $\langle x, y \rangle \in T$.
- (56) If $x \in X$, then $x \in \text{neighbourhood}(x, T)$.
- (57) neighbourhood $(x,T) \subseteq X$.
- (58) For every Y such that for every set Z holds $Z \in Y$ if and only if $x \in Z$ and Z is a tolerance class of T holds neighbourhood $(x, T) = \bigcup Y$.
- (59) For every Y such that for every Z holds $Z \in Y$ if and only if $x \in Z$ and Z is a set of mutually elements w.r.t. T holds neighbourhood $(x, T) = \bigcup Y$.

We now define two new functors. Let us consider X, and let T be a tolerance of X. The functor TolSets T yields a set and is defined by:

(Def.6) for every Y holds $Y \in \text{TolSets } T$ if and only if Y is a set of mutually elements w.r.t. T.

The functor TolClasses T yields a set and is defined by:

(Def.7) for every Y holds $Y \in \text{TolClasses } T$ if and only if Y is a tolerance class of T.

The following propositions are true:

- (60) For every set Y and for every tolerance T of X holds Y = TolSets T if and only if for every Z holds $Z \in Y$ if and only if Z is a set of mutually elements w.r.t. T.
- (61) For every tolerance T of X and for every Z holds $Z \in \text{TolSets } T$ if and only if Z is a set of mutually elements w.r.t. T.
- (62) For every set Y and for every tolerance T of X holds Y = TolClasses T if and only if for every Z holds $Z \in Y$ if and only if Z is a tolerance class of T.
- (63) For every tolerance T of X holds $Z \in \text{TolClasses } T$ if and only if Z is a tolerance class of T.

- (64) If TolClasses $R \subseteq$ TolClasses T, then $R \subseteq T$.
- (65) For all tolerances T, R of X such that TolClasses T = TolClasses R holds T = R.
- (66) \bigcup (TolClasses T) = X.
- (67) \bigcup (TolSets T) = X.
- (68) If for every x such that $x \in X$ holds neighbourhood(x, T) is a set of mutually elements w.r.t. T, then T is transitive.
- (69) If T is transitive, then for every x such that $x \in X$ holds neighbourhood(x, T)is a tolerance class of T.
- (70) For every x and for every tolerance class Y of T such that $x \in Y$ holds $Y \subseteq \text{neighbourhood}(x, T)$.
- (71) TolSets $R \subseteq$ TolSets T if and only if $R \subseteq T$.
- (72) TolClasses $T \subseteq$ TolSets T.
- (73) If for every x such that $x \in X$ holds neighbourhood $(x, R) \subseteq$ neighbourhood(x, T), then $R \subseteq T$.
- $(74) \quad T \subseteq T \cdot T.$
- (75) If $T = T \cdot T$, then T is transitive.

References

- Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129, 1990.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [3] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [4] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [5] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received September 20, 1990