Series of Positive Real Numbers. Measure Theory

Józef Białas
University of Łódź

Abstract

Summary. We introduce properties of a series of nonnegative $\overline{\mathbb{R}}$ numbers, where $\overline{\mathbb{R}}$ denotes the enlarged set of real numbers, $\overline{\mathbb{R}}=\mathbb{R} \cup$ $\{-\infty,+\infty\}$. The paper contains definitions of $\sup F$ and $\inf F$, for F being function, and a definition of a sumable subset of $\overline{\mathbb{R}}$. We prove the basic theorems regarding the definitions mentioned above. The work is the second part of a series of articles concerning the Lebesgue measure theory.

MML Identifier: SUPINF_2.

The notation and terminology used here are introduced in the following articles: [6], [5], [2], [3], [4], and [1]. Let x, y be Real numbers. Let us assume that neither $x=+\infty$ and $y=-\infty$ nor $x=-\infty$ and $y=+\infty$. The functor $x+y$ yielding a Real number is defined by:
(Def.1) there exist real numbers a, b such that $x=a$ and $y=b$ and $x+y=a+b$ or $x=+\infty$ and $x+y=+\infty$ or $y=+\infty$ and $x+y=+\infty$ or $x=-\infty$ and $x+y=-\infty$ or $y=-\infty$ and $x+y=-\infty$.
Next we state four propositions:
(1) Let x, y be Real numbers. Suppose neither $x=+\infty$ and $y=-\infty$ nor $x=-\infty$ and $y=+\infty$. Then
(i) there exist real numbers a, b such that $x=a$ and $y=b$ and $x+y=a+b$, or
(ii) $\quad x=+\infty$ and $x+y=+\infty$, or
(iii) $y=+\infty$ and $x+y=+\infty$, or
(iv) $x=-\infty$ and $x+y=-\infty$, or
(v) $y=-\infty$ and $x+y=-\infty$.
(2) For all Real numbers x, y and for all real numbers a, b such that $x=a$ and $y=b$ holds $x+y=a+b$.
(3) For every Real number x such that $x \neq-\infty$ holds $+\infty+x=+\infty$ and $x++\infty=+\infty$.
(4) For every Real number x such that $x \neq+\infty$ holds $-\infty+x=-\infty$ and $x+-\infty=-\infty$.
Let x, y be Real numbers. Let us assume that neither $x=+\infty$ and $y=+\infty$ nor $x=-\infty$ and $y=-\infty$. The functor $x-y$ yielding a Real number is defined by:
(Def.2) there exist real numbers a, b such that $x=a$ and $y=b$ and $x-y=a-b$ or $x=+\infty$ and $x-y=+\infty$ or $y=+\infty$ and $x-y=-\infty$ or $x=-\infty$ and $x-y=-\infty$ or $y=-\infty$ and $x-y=+\infty$.
We now state a number of propositions:
(5) Let x, y be Real numbers. Suppose neither $x=+\infty$ and $y=+\infty$ nor $x=-\infty$ and $y=-\infty$. Then
(i) there exist real numbers a, b such that $x=a$ and $y=b$ and $x-y=a-b$, or
(ii) $\quad x=+\infty$ and $x-y=+\infty$, or
(iii) $y=+\infty$ and $x-y=-\infty$, or
(iv) $\quad x=-\infty$ and $x-y=-\infty$, or
(v) $\quad y=-\infty$ and $x-y=+\infty$.
(6) For all Real numbers x, y and for all real numbers a, b such that $x=a$ and $y=b$ holds $x-y=a-b$.
(7) For every Real number x such that $x \neq+\infty$ holds $+\infty-x=+\infty$ and $x-+\infty=-\infty$.
(8) For every Real number x such that $x \neq-\infty$ holds $-\infty-x=-\infty$ and $x--\infty=+\infty$.
(9) For all Real numbers x, s such that $x+s=+\infty$ holds $x=+\infty$ or $s=+\infty$.
(10) For all Real numbers x, s such that $x+s=-\infty$ holds $x=-\infty$ or $s=-\infty$.
(11) For all Real numbers x, s such that $x-s=+\infty$ holds $x=+\infty$ or $s=-\infty$.
(12) For all Real numbers x, s such that $x-s=-\infty$ holds $x=-\infty$ or $s=+\infty$.
(13) For all Real numbers x, s such that neither $x=+\infty$ and $s=-\infty$ nor $x=-\infty$ and $s=+\infty$ and $x+s \in \mathbb{R}$ holds $x \in \mathbb{R}$ and $s \in \mathbb{R}$.
(14) For all Real numbers x, s such that neither $x=+\infty$ and $s=+\infty$ nor $x=-\infty$ and $s=-\infty$ and $x-s \in \mathbb{R}$ holds $x \in \mathbb{R}$ and $s \in \mathbb{R}$.
(15) Let x, y, s, t be Real numbers. Then if neither $x=+\infty$ and $s=-\infty$ nor $x=-\infty$ and $s=+\infty$ and neither $y=+\infty$ and $t=-\infty$ nor $y=-\infty$ and $t=+\infty$ and $x \leq y$ and $s \leq t$, then $x+s \leq y+t$.
(16) Let x, y, s, t be Real numbers. Then if neither $x=+\infty$ and $t=+\infty$ nor $x=-\infty$ and $t=-\infty$ and neither $y=+\infty$ and $s=+\infty$ nor $y=-\infty$
and $s=-\infty$ and $x \leq y$ and $s \leq t$, then $x-t \leq y-s$.
Let x be a Real number. The functor $-x$ yields a Real number and is defined by:
(Def.3) there exists a real number a such that $x=a$ and $-x=-a$ or $x=+\infty$ and $-x=-\infty$ or $x=-\infty$ and $-x=+\infty$.

We now state several propositions:
(17) For every Real number x and for every Real number z holds $z=-x$ if and only if there exists a real number a such that $x=a$ and $z=-a$ or $x=+\infty$ and $z=-\infty$ or $x=-\infty$ and $z=+\infty$.
(18) For every Real number x holds there exists a real number a such that $x=a$ and $-x=-a$ or $x=+\infty$ and $-x=-\infty$ or $x=-\infty$ and $-x=+\infty$.
(19) For every Real number x and for every real number a such that $x=a$ holds $-x=-a$.
(20) For every Real number x holds if $x=+\infty$, then $-x=-\infty$ but if $x=-\infty$, then $-x=+\infty$.
(21) For every Real number x holds $-(-x)=x$.
(22) For all Real numbers x, y holds $x \leq y$ if and only if $-y \leq-x$.
(23) For all Real numbers x, y holds $x<y$ if and only if $-y<-x$.
(24) For all Real numbers x, y such that $x=y$ holds $x \leq y$.

The Real number $0_{\overline{\mathbb{R}}}$ is defined by:
(Def.4) $0_{\overline{\mathbb{R}}}=0$.
We now state several propositions:
(25) $0_{\bar{R}}=0$.
(26) For every Real number x holds $x+0_{\overline{\mathbb{R}}}=x$ and $0_{\overline{\mathbb{R}}}+x=x$.
(27) $\quad-\infty<0_{\overline{\mathbb{R}}}$ and $0_{\overline{\mathrm{R}}}<+\infty$.
(28) For all Real numbers x, y, z such that $0_{\overline{\mathbb{R}}} \leq z$ and $0_{\overline{\mathbb{R}}} \leq x$ and $y=x+z$ holds $x \leq y$.
(29) For every real number x such that $x \in \mathbb{N}$ holds $0 \leq x$.
(30) For every Real number x such that $x \in \mathbb{N}$ holds $0_{\overline{\mathbb{R}}} \leq x$.

Let X, Y be non-empty subsets of $\overline{\mathbb{R}}$. Let us assume that neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$. The functor $X+Y$ yielding a non-empty subset of $\mathbb{\mathbb { R }}$ is defined as follows:
(Def.5) for every Real number z holds $z \in X+Y$ if and only if there exist Real numbers x, y such that $x \in X$ and $y \in Y$ and $z=x+y$.

We now state two propositions:
(31) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$ for every Real number z holds $z \in X+Y$ if and only if there exist Real numbers x, y such that $x \in X$ and $y \in Y$ and $z=x+y$.
(32) Let X, Y, Z be non-empty subsets of $\overline{\mathbb{R}}$. Then if neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$, then $Z=X+Y$ if and only if for every Real number z holds $z \in Z$ if and only if there exist Real numbers x, y such that $x \in X$ and $y \in Y$ and $z=x+y$.
Let X be a non-empty subset of $\overline{\mathbb{R}}$. The functor $-X$ yielding a non-empty subset of $\overline{\mathbb{R}}$ is defined as follows:
(Def.6) for every Real number z holds $z \in-X$ if and only if there exists a Real number x such that $x \in X$ and $z=-x$.
Next we state a number of propositions:
(33) For every non-empty subset X of $\mathbb{\mathbb { R }}$ and for every Real number z holds $z \in-X$ if and only if there exists a Real number x such that $x \in X$ and $z=-x$.
(34) For all non-empty subsets X, Z of $\overline{\mathbb{R}}$ holds $Z=-X$ if and only if for every Real number z holds $z \in Z$ if and only if there exists a Real number x such that $x \in X$ and $z=-x$.
(35) For every non-empty subset X of $\overline{\mathbb{R}}$ holds $-(-X)=X$.
(36) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number z holds $z \in X$ if and only if $-z \in-X$.
(37) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ holds $X \subseteq Y$ if and only if $-X \subseteq$ $-Y$.
(38) For every Real number z holds $z \in \mathbb{R}$ if and only if $-z \in \mathbb{R}$.
(39) Let X, Y be non-empty subsets of $\overline{\mathbb{R}}$. Then if neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$ and neither $\sup X=+\infty$ and $\sup Y=-\infty$ nor $\sup X=-\infty$ and $\sup Y=+\infty$, then $\sup (X+Y) \leq$ $\sup X+\sup Y$.
(40) Let X, Y be non-empty subsets of $\overline{\mathbb{R}}$. Then if neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$ and neither $\inf X=+\infty$ and $\inf Y=$ $-\infty$ nor $\inf X=-\infty$ and $\inf Y=+\infty$, then $\inf X+\inf Y \leq \inf (X+Y)$.
(41) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that X is upper bounded and Y is upper bounded holds $\sup (X+Y) \leq \sup X+\sup Y$.
(42) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that X is lower bounded and Y is lower bounded holds $\inf X+\inf Y \leq \inf (X+Y)$.
(43) For every non-empty subset X of $\mathbb{\mathbb { R }}$ and for every Real number a holds a is a majorant of X if and only if $-a$ is a minorant of $-X$.
(44) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number a holds a is a minorant of X if and only if $-a$ is a majorant of $-X$.
(45) For every non-empty subset X of \mathbb{R} holds $\inf (-X)=-\sup X$.
(46) For every non-empty subset X of $\overline{\mathbb{R}}$ holds $\sup (-X)=-\inf X$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. Then $\operatorname{rng} F$ is a non-empty subset of $\overline{\mathbb{R}}$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. The functor sup F yielding a Real number is
defined by:
(Def.7) $\quad \sup F=\sup (\operatorname{rng} F)$.
The following proposition is true
(47) For every non-empty set X and for every non-empty subset Y of $\mathbb{\mathbb { R }}$ and for every function F from X into Y holds $\sup F=\sup (\operatorname{rng} F)$.
Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. The functor $\inf F$ yields a Real number and is defined by:
(Def.8) $\quad \inf F=\inf (\operatorname{rng} F)$.
Next we state the proposition
(48) For every non-empty set X and for every non-empty subset Y of $\mathbb{\mathbb { R }}$ and for every function F from X into Y holds $\inf F=\inf (\operatorname{rng} F)$.
Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y, and let x be an element of X. Then $F(x)$ is a Real number.

The scheme FunctR_ealEx concerns a non-empty set \mathcal{A}, a set \mathcal{B}, and a unary functor \mathcal{F} and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f(x)=\mathcal{F}(x)$
provided the parameters have the following property:

- for every element x of \mathcal{A} holds $\mathcal{F}(x) \in \mathcal{B}$.

Let X be a non-empty set, and let Y, Z be non-empty subsets of $\overline{\mathbb{R}}$, and let F be a function from X into Y, and let G be a function from X into Z. Let us assume that neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. The functor $F+G$ yields a function from X into $Y+Z$ and is defined by:
(Def.9) for every element x of X holds $(F+G)(x)=F(x)+G(x)$.
Next we state several propositions:
(49) Let X be a non-empty set. Let Y, Z be non-empty subsets of $\overline{\mathbb{R}}$. Suppose neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. Then for every function F from X into Y and for every function G from X into Z and for every function H from X into $Y+Z$ holds $H=F+G$ if and only if for every element x of X holds $H(x)=F(x)+G(x)$.
(50) Let X be a non-empty set. Then for all non-empty subsets Y, Z of $\overline{\mathbb{R}}$ such that neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$ for every function F from X into Y and for every function G from X into Z and for every element x of X holds $(F+G)(x)=F(x)+G(x)$.
(51) For every non-empty set X and for all non-empty subsets Y, Z of $\overline{\mathbb{R}}$ such that neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$ for every function F from X into Y and for every function G from X into Z holds $\operatorname{rng}(F+G) \subseteq \operatorname{rng} F+\operatorname{rng} G$.
(52) Let X be a non-empty set. Let Y, Z be non-empty subsets of $\overline{\mathbb{R}}$. Suppose neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. Then for
every function F from X into Y and for every function G from X into Z such that neither $\sup F=+\infty$ and $\sup G=-\infty$ nor $\sup F=-\infty$ and $\sup G=+\infty$ holds $\sup (F+G) \leq \sup F+\sup G$.
(53) Let X be a non-empty set. Let Y, Z be non-empty subsets of $\overline{\mathbb{R}}$. Suppose neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. Then for every function F from X into Y and for every function G from X into Z such that neither $\inf F=+\infty$ and $\inf G=-\infty$ nor $\inf F=-\infty$ and $\inf G=+\infty$ holds $\inf F+\inf G \leq \inf (F+G)$.
Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. The functor $-F$ yielding a function from X into $-Y$ is defined by:
(Def.10) for every element x of X holds $(-F)(x)=-F(x)$.
One can prove the following three propositions:
(54) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every function G from X into $-Y$ holds $G=-F$ if and only if for every element x of X holds $G(x)=-F(x)$.
(55) For every non-empty set X and for every non-empty subset Y of $\mathbb{\mathbb { R }}$ and for every function F from X into Y holds $\operatorname{rng}(-F)=-\operatorname{rng} F$.
(56) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds $\inf (-F)=-\sup F$ and $\sup (-F)=-\inf F$.
Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. We say that F is upper bounded if and only if:
(Def.11) $\sup F<+\infty$.
Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. We say that F is lower bounded if and only if:

$$
\begin{equation*}
-\infty<\inf F \tag{Def.12}
\end{equation*}
$$

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. We say that F is bounded if and only if:
(Def.13) $\quad F$ is upper bounded and F is lower bounded.
We now state a number of propositions:
$(60)^{1}$ For every non-empty set X and for every non-empty subset Y of \mathbb{R} and for every function F from X into Y holds F is bounded if and only if $\sup F<+\infty$ and $-\infty<\inf F$.
(61) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds F is upper bounded if and only if $-F$ is lower bounded.

[^0](62) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds F is lower bounded if and only if $-F$ is upper bounded.
(63) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds F is bounded if and only if $-F$ is bounded.
(64) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every element x of X holds $-\infty \leq F(x)$ and $F(x) \leq+\infty$.
(65) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every element x of X such that $Y \subseteq \mathbb{R}$ holds $-\infty<F(x)$ and $F(x)<+\infty$.
(66) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every element x of X holds $\inf F \leq F(x)$ and $F(x) \leq \sup F$.
(67) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y such that $Y \subseteq \mathbb{R}$ holds F is upper bounded if and only if $\sup F \in \mathbb{R}$.
(68) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y such that $Y \subseteq \mathbb{R}$ holds F is lower bounded if and only if inf $F \in \mathbb{R}$.
(69) For every non-empty set X and for every non-empty subset Y of $\mathbb{\mathbb { R }}$ and for every function F from X into Y such that $Y \subseteq \mathbb{R}$ holds F is bounded if and only if $\inf F \in \mathbb{R}$ and $\sup F \in \mathbb{R}$.
(70) For every non-empty set X and for all non-empty subsets Y, Z of $\overline{\mathbb{R}}$ such that $Y \subseteq \mathbb{R}$ and $Z \subseteq \mathbb{R}$ for every function F_{1} from X into Y and for every function F_{2} from X into Z such that F_{1} is upper bounded and F_{2} is upper bounded holds $F_{1}+F_{2}$ is upper bounded.
(71) For every non-empty set X and for all non-empty subsets Y, Z of $\overline{\mathbb{R}}$ such that $Y \subseteq \mathbb{R}$ and $Z \subseteq \mathbb{R}$ for every function F_{1} from X into Y and for every function F_{2} from X into Z such that F_{1} is lower bounded and F_{2} is lower bounded holds $F_{1}+F_{2}$ is lower bounded.
(72) For every non-empty set X and for all non-empty subsets Y, Z of $\overline{\mathbb{R}}$ such that $Y \subseteq \mathbb{R}$ and $Z \subseteq \mathbb{R}$ for every function F_{1} from X into Y and for every function F_{2} from X into Z such that F_{1} is bounded and F_{2} is bounded holds $F_{1}+F_{2}$ is bounded.
(73) There exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is one-to-one and $\mathbb{N}=\operatorname{rng} F$ and $\operatorname{rng} F$ is a non-empty subset of $\overline{\mathbb{R}}$.
A non-empty subset of $\overline{\mathbb{R}}$ is called a denumerable set of larged real if:
(Def.14) there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that it $=\operatorname{rng} F$.
Next we state the proposition
$(75)^{2} \quad \mathbb{N}$ is a denumerable set of larged real.
A denumerable set of larged real is said to be a denumerable set of positive larged real if:
(Def.15) for every Real number x such that $x \in$ it holds $0_{\overline{\mathbb{R}}} \leq x$.
Let D be a denumerable set of larged real. A function from \mathbb{N} into $\overline{\mathbb{R}}$ is said to be a numeration of D if:
(Def.16) $D=$ rngit.
One can prove the following proposition
$(78)^{3}$ For every denumerable set D of positive larged real and for every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds F is a numeration of D if and only if $D=\operatorname{rng} F$.
Let N be a function from \mathbb{N} into $\overline{\mathbb{R}}$, and let n be a natural number. Then $N(n)$ is a Real number.

We see that the Real number is an element of $\overline{\mathbb{R}}$.
The scheme RecFuncExR_eal concerns a Real number \mathcal{A} and a binary functor \mathcal{F} yielding a Real number and states that:
there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that $F(0)=\mathcal{A}$ and for every natural number n and for every Real number x such that $x=F(n)$ holds $F(n+$ $1)=\mathcal{F}(n, x)$
for all values of the parameters.
We now state the proposition
(79) For every denumerable set D of larged real and for every numeration N of D there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that $F(0)=N(0)$ and for every natural number n and for every Real number y such that $y=F(n)$ holds $F(n+1)=y+N(n+1)$.
Let D be a denumerable set of larged real, and let N be a numeration of D. The functor $\operatorname{Ser}(D, N)$ yields a function from \mathbb{N} into $\overline{\mathbb{R}}$ and is defined by:
(Def.17) $\operatorname{Ser}(D, N)(0)=N(0)$ and for every natural number n and for every Real number y such that $y=\operatorname{Ser}(D, N)(n)$ holds $\operatorname{Ser}(D, N)(n+1)=$ $y+N(n+1)$.

The following propositions are true:
(80) Let D be a denumerable set of larged real. Then for every numeration N of D and for every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds $F=\operatorname{Ser}(D, N)$ if and only if $F(0)=N(0)$ and for every natural number n and for every Real number y such that $y=F(n)$ holds $F(n+1)=y+N(n+1)$.
(81) For every denumerable set D of larged real and for every numeration N of D holds $\operatorname{Ser}(D, N)(0)=N(0)$ and for every natural number n and for every Real number y such that $y=\operatorname{Ser}(D, N)(n)$ holds $\operatorname{Ser}(D, N)(n+1)=$ $y+N(n+1)$.
(82) For every denumerable set D of positive larged real and for every numeration N of D and for every natural number n holds $0_{\overline{\mathbb{R}}} \leq N(n)$.

[^1](83) For every denumerable set D of positive larged real and for every numeration N of D and for every natural number n holds $\operatorname{Ser}(D, N)(n) \leq$ $\operatorname{Ser}(D, N)(n+1)$ and $0_{\overline{\mathbb{R}}} \leq \operatorname{Ser}(D, N)(n)$.
(84) For every denumerable set D of positive larged real and for every numeration N of D and for all natural numbers n, m holds $\operatorname{Ser}(D, N)(n) \leq$ $\operatorname{Ser}(D, N)(n+m)$.
Let D be a denumerable set of larged real. A non-empty subset of $\overline{\mathbb{R}}$ is called a set of series of D if:
(Def.18) there exists a numeration N of D such that it $=\operatorname{rng} \operatorname{Ser}(D, N)$.
Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Then rng F is a non-empty subset of $\overline{\mathbb{R}}$.
Let D be a denumerable set of positive larged real, and let N be a numeration of D. The functor $\sum_{D} N$ yields a Real number and is defined as follows:
(Def.19) $\quad \sum_{D} N=\sup (\operatorname{rng} \operatorname{Ser}(D, N))$.
One can prove the following propositions:
$(86)^{4}$ For every denumerable set D of positive larged real and for every numeration N of D and for every Real number s holds $s=\sum_{D} N$ if and only if $s=\sup (\operatorname{rng} \operatorname{Ser}(D, N))$.
(87) For every denumerable set D of positive larged real and for every numeration N of D holds $\sum_{D} N=\sup (\operatorname{rng} \operatorname{Ser}(D, N))$.
Let D be a denumerable set of positive larged real, and let N be a numeration of D. We say that D is N sumable if and only if:
(Def.20) $\quad \sum_{D} N \in \mathbb{R}$.
One can prove the following proposition
$(89)^{5}$ For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds $\operatorname{rng} F$ is a denumerable set of larged real.
Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Then $\mathrm{rng} F$ is a denumerable set of larged real.

Next we state the proposition
(90) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds F is a numeration of $\operatorname{rng} F$.

Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. The functor Ser F yields a function from \mathbb{N} into $\overline{\mathbb{R}}$ and is defined by:
(Def.21) for every numeration N of $\operatorname{rng} F$ such that $N=F$ holds Ser $F=$ $\operatorname{Ser}(\operatorname{rng} F, N)$.
We now state the proposition
(91) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ and for every numeration N of $\operatorname{rng} F$ such that $N=F$ holds $\operatorname{Ser} F=\operatorname{Ser}(\operatorname{rng} F, N)$.
Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. We say that F is non-negative if and only if:

[^2](Def.22) $\quad \operatorname{rng} F$ is a denumerable set of positive larged real.
Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Let us assume that F is non-negative. The functor $\sum F$ yields a Real number and is defined by:
(Def.23) $\quad \sum F=\sup (\operatorname{rng} \operatorname{Ser} F)$.
The following propositions are true:
$(93)^{6}$ For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds $\sum F=\sup (\operatorname{rng} \operatorname{Ser} F)$.
(94) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds F is non-negative if and only if for every natural number n holds $0_{\overline{\mathbb{R}}} \leq F(n)$.
(95) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ and for every natural number n such that F is non-negative holds $\operatorname{Ser} F(n) \leq \operatorname{Ser} F(n+1)$ and $0_{\overline{\mathbb{R}}} \leq \operatorname{Ser} F(n)$.
(96) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative for all natural numbers n, m holds $\operatorname{Ser} F(n) \leq \operatorname{Ser} F(n+m)$.
(97) For all functions F_{1}, F_{2} from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_{1} is non-negative holds if for every natural number n holds $F_{1}(n) \leq F_{2}(n)$, then for every natural number n holds $\operatorname{Ser} F_{1}(n) \leq \operatorname{Ser} F_{2}(n)$.
(98) For all functions F_{1}, F_{2} from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_{1} is non-negative holds if for every natural number n holds $F_{1}(n) \leq F_{2}(n)$, then $\sum F_{1} \leq \sum F_{2}$.
(99) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds $\operatorname{Ser} F(0)=F(0)$ and for every natural number n and for every Real number y such that $y=\operatorname{Ser} F(n)$ holds $\operatorname{Ser} F(n+1)=y+F(n+1)$.
(100) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds if there exists a natural number n such that $F(n)=+\infty$, then $\sum F=+\infty$.
Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Let us assume that F is non-negative. We say that F is sumable if and only if:
(Def.24) $\quad \sum F \in \mathbb{R}$.
One can prove the following propositions:
$(102)^{7} \quad$ For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds if there exists a natural number n such that $F(n)=+\infty$, then F is not sumable.
(103) For all functions F_{1}, F_{2} from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_{1} is non-negative holds if for every natural number n holds $F_{1}(n) \leq F_{2}(n)$, then if F_{2} is sumable, then F_{1} is sumable.
(104) For all functions F_{1}, F_{2} from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_{1} is non-negative holds if for every natural number n holds $F_{1}(n) \leq F_{2}(n)$, then if F_{1} is not sumable, then F_{2} is not sumable.
(105) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative for every natural number n such that for every natural number r such that $n \leq r$ holds $F(r)=0_{\overline{\mathbb{R}}}$ holds $\sum F=\operatorname{Ser} F(n)$.

[^3](106) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every natural number n holds $F(n) \in \mathbb{R}$ for every natural number n holds $\operatorname{Ser} F(n) \in \mathbb{R}$.
(107) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds if there exists a natural number n such that for every natural number k such that $n \leq k$ holds $F(k)=0_{\overline{\mathbb{R}}}$ and for every natural number k such that $k \leq n$ holds $F(k) \neq+\infty$, then F is sumable.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[^0]: ${ }^{1}$ The propositions (57)-(59) were either repeated or obvious.

[^1]: ${ }^{2}$ The proposition (74) was either repeated or obvious.
 ${ }^{3}$ The propositions (76)-(77) were either repeated or obvious.

[^2]: ${ }^{4}$ The proposition (85) was either repeated or obvious.
 ${ }^{5}$ The proposition (88) was either repeated or obvious.

[^3]: ${ }^{6}$ The proposition (92) was either repeated or obvious.
 ${ }^{7}$ The proposition (101) was either repeated or obvious.

