Series of Positive Real Numbers. Measure Theory

Józef Białas University of Łódź

Summary. We introduce properties of a series of nonnegative \mathbb{R} numbers, where \mathbb{R} denotes the enlarged set of real numbers, $\mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$. The paper contains definitions of sup F and inf F, for F being function, and a definition of a sumable subset of \mathbb{R} . We prove the basic theorems regarding the definitions mentioned above. The work is the second part of a series of articles concerning the Lebesgue measure theory.

MML Identifier: SUPINF_2.

The notation and terminology used here are introduced in the following articles: [6], [5], [2], [3], [4], and [1]. Let x, y be *Real numbers*. Let us assume that neither $x = +\infty$ and $y = -\infty$ nor $x = -\infty$ and $y = +\infty$. The functor x + y yielding a *Real number* is defined by:

(Def.1) there exist real numbers a, b such that x = a and y = b and x + y = a + bor $x = +\infty$ and $x + y = +\infty$ or $y = +\infty$ and $x + y = +\infty$ or $x = -\infty$ and $x + y = -\infty$ or $y = -\infty$ and $x + y = -\infty$.

Next we state four propositions:

- (1) Let x, y be Real numbers. Suppose neither $x = +\infty$ and $y = -\infty$ nor $x = -\infty$ and $y = +\infty$. Then
- (i) there exist real numbers a, b such that x = a and y = b and x+y = a+b, or
- (ii) $x = +\infty$ and $x + y = +\infty$, or
- (iii) $y = +\infty$ and $x + y = +\infty$, or
- (iv) $x = -\infty$ and $x + y = -\infty$, or
- (v) $y = -\infty$ and $x + y = -\infty$.
- (2) For all *Real numbers* x, y and for all real numbers a, b such that x = a and y = b holds x + y = a + b.

173

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (3) For every Real number x such that $x \neq -\infty$ holds $+\infty + x = +\infty$ and $x + +\infty = +\infty$.
- (4) For every Real number x such that $x \neq +\infty$ holds $-\infty + x = -\infty$ and $x + -\infty = -\infty$.

Let x, y be Real numbers. Let us assume that neither $x = +\infty$ and $y = +\infty$ nor $x = -\infty$ and $y = -\infty$. The functor x - y yielding a Real number is defined by:

(Def.2) there exist real numbers a, b such that x = a and y = b and x - y = a - bor $x = +\infty$ and $x - y = +\infty$ or $y = +\infty$ and $x - y = -\infty$ or $x = -\infty$ and $x - y = -\infty$ or $y = -\infty$ and $x - y = +\infty$.

We now state a number of propositions:

- (5) Let x, y be Real numbers. Suppose neither $x = +\infty$ and $y = +\infty$ nor $x = -\infty$ and $y = -\infty$. Then
- (i) there exist real numbers a, b such that x = a and y = b and x y = a b, or
- (ii) $x = +\infty$ and $x y = +\infty$, or
- (iii) $y = +\infty$ and $x y = -\infty$, or
- (iv) $x = -\infty$ and $x y = -\infty$, or
- (v) $y = -\infty$ and $x y = +\infty$.
- (6) For all *Real numbers* x, y and for all real numbers a, b such that x = a and y = b holds x y = a b.
- (7) For every Real number x such that $x \neq +\infty$ holds $+\infty x = +\infty$ and $x +\infty = -\infty$.
- (8) For every Real number x such that $x \neq -\infty$ holds $-\infty x = -\infty$ and $x -\infty = +\infty$.
- (9) For all Real numbers x, s such that $x + s = +\infty$ holds $x = +\infty$ or $s = +\infty$.
- (10) For all Real numbers x, s such that $x + s = -\infty$ holds $x = -\infty$ or $s = -\infty$.
- (11) For all Real numbers x, s such that $x s = +\infty$ holds $x = +\infty$ or $s = -\infty$.
- (12) For all Real numbers x, s such that $x s = -\infty$ holds $x = -\infty$ or $s = +\infty$.
- (13) For all *Real numbers* x, s such that neither $x = +\infty$ and $s = -\infty$ nor $x = -\infty$ and $s = +\infty$ and $x + s \in \mathbb{R}$ holds $x \in \mathbb{R}$ and $s \in \mathbb{R}$.
- (14) For all *Real numbers* x, s such that neither $x = +\infty$ and $s = +\infty$ nor $x = -\infty$ and $s = -\infty$ and $x s \in \mathbb{R}$ holds $x \in \mathbb{R}$ and $s \in \mathbb{R}$.
- (15) Let x, y, s, t be *Real numbers*. Then if neither $x = +\infty$ and $s = -\infty$ nor $x = -\infty$ and $s = +\infty$ and neither $y = +\infty$ and $t = -\infty$ nor $y = -\infty$ and $t = +\infty$ and $x \le y$ and $s \le t$, then $x + s \le y + t$.
- (16) Let x, y, s, t be Real numbers. Then if neither $x = +\infty$ and $t = +\infty$ nor $x = -\infty$ and $t = -\infty$ and neither $y = +\infty$ and $s = +\infty$ nor $y = -\infty$

and $s = -\infty$ and $x \leq y$ and $s \leq t$, then $x - t \leq y - s$.

Let x be a *Real number*. The functor -x yields a *Real number* and is defined by:

(Def.3) there exists a real number a such that x = a and -x = -a or $x = +\infty$ and $-x = -\infty$ or $x = -\infty$ and $-x = +\infty$.

We now state several propositions:

- (17) For every Real number x and for every Real number z holds z = -x if and only if there exists a real number a such that x = a and z = -a or $x = +\infty$ and $z = -\infty$ or $x = -\infty$ and $z = +\infty$.
- (18) For every Real number x holds there exists a real number a such that x = a and -x = -a or $x = +\infty$ and $-x = -\infty$ or $x = -\infty$ and $-x = +\infty$.
- (19) For every Real number x and for every real number a such that x = a holds -x = -a.
- (20) For every Real number x holds if $x = +\infty$, then $-x = -\infty$ but if $x = -\infty$, then $-x = +\infty$.
- (21) For every Real number x holds -(-x) = x.
- (22) For all Real numbers x, y holds $x \leq y$ if and only if $-y \leq -x$.
- (23) For all Real numbers x, y holds x < y if and only if -y < -x.
- (24) For all *Real numbers* x, y such that x = y holds $x \le y$.

The *Real number* $0_{\overline{\mathbb{R}}}$ is defined by:

$$(\text{Def.4}) \quad 0_{\overline{\mathbb{R}}} = 0.$$

We now state several propositions:

- $(25) \quad 0_{\overline{\mathbb{R}}} = 0.$
- (26) For every Real number x holds $x + 0_{\overline{\mathbb{R}}} = x$ and $0_{\overline{\mathbb{R}}} + x = x$.
- (27) $-\infty < 0_{\overline{\mathbb{R}}}$ and $0_{\overline{\mathbb{R}}} < +\infty$.
- (28) For all Real numbers x, y, z such that $0_{\overline{\mathbb{R}}} \leq z$ and $0_{\overline{\mathbb{R}}} \leq x$ and y = x + z holds $x \leq y$.
- (29) For every real number x such that $x \in \mathbb{N}$ holds $0 \le x$.
- (30) For every Real number x such that $x \in \mathbb{N}$ holds $0_{\overline{\mathbb{R}}} \leq x$.

Let X, Y be non-empty subsets of $\overline{\mathbb{R}}$. Let us assume that neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$. The functor X + Y yielding a non-empty subset of $\overline{\mathbb{R}}$ is defined as follows:

(Def.5) for every Real number z holds $z \in X + Y$ if and only if there exist Real numbers x, y such that $x \in X$ and $y \in Y$ and z = x + y.

We now state two propositions:

(31) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$ for every *Real number* z holds $z \in X + Y$ if and only if there exist *Real numbers* x, y such that $x \in X$ and $y \in Y$ and z = x + y.

(32) Let X, Y, Z be non-empty subsets of $\overline{\mathbb{R}}$. Then if neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$, then Z = X + Y if and only if for every *Real number* z holds $z \in Z$ if and only if there exist *Real numbers* x, y such that $x \in X$ and $y \in Y$ and z = x + y.

Let X be a non-empty subset of $\overline{\mathbb{R}}$. The functor -X yielding a non-empty subset of $\overline{\mathbb{R}}$ is defined as follows:

(Def.6) for every Real number z holds $z \in -X$ if and only if there exists a Real number x such that $x \in X$ and z = -x.

Next we state a number of propositions:

- (33) For every non-empty subset X of \mathbb{R} and for every Real number z holds $z \in -X$ if and only if there exists a Real number x such that $x \in X$ and z = -x.
- (34) For all non-empty subsets X, Z of \mathbb{R} holds Z = -X if and only if for every *Real number* z holds $z \in Z$ if and only if there exists a *Real number* x such that $x \in X$ and z = -x.
- (35) For every non-empty subset X of $\overline{\mathbb{R}}$ holds -(-X) = X.
- (36) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number z holds $z \in X$ if and only if $-z \in -X$.
- (37) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ holds $X \subseteq Y$ if and only if $-X \subseteq -Y$.
- (38) For every Real number z holds $z \in \mathbb{R}$ if and only if $-z \in \mathbb{R}$.
- (39) Let X, Y be non-empty subsets of $\overline{\mathbb{R}}$. Then if neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$ and neither $\sup X = +\infty$ and $\sup Y = -\infty$ nor $\sup X = -\infty$ and $\sup Y = +\infty$, then $\sup(X + Y) \leq \sup X + \sup Y$.
- (40) Let X, Y be non-empty subsets of $\overline{\mathbb{R}}$. Then if neither $-\infty \in X$ and $+\infty \in Y$ nor $+\infty \in X$ and $-\infty \in Y$ and neither $\operatorname{inf} X = +\infty$ and $\operatorname{inf} Y = -\infty$ nor $\operatorname{inf} X = -\infty$ and $\operatorname{inf} Y = +\infty$, then $\operatorname{inf} X + \operatorname{inf} Y \leq \operatorname{inf}(X+Y)$.
- (41) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that X is upper bounded and Y is upper bounded holds $\sup(X + Y) \leq \sup X + \sup Y$.
- (42) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that X is lower bounded and Y is lower bounded holds $\inf X + \inf Y \leq \inf(X + Y)$.
- (43) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every *Real number a* holds a is a majorant of X if and only if -a is a minorant of -X.
- (44) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every *Real number a* holds a is a minorant of X if and only if -a is a majorant of -X.
- (45) For every non-empty subset X of $\overline{\mathbb{R}}$ holds $\inf(-X) = -\sup X$.
- (46) For every non-empty subset X of $\overline{\mathbb{R}}$ holds $\sup(-X) = -\inf X$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. Then rng F is a non-empty subset of $\overline{\mathbb{R}}$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. The functor $\sup F$ yielding a *Real number* is

defined by:

(Def.7) $\sup F = \sup(\operatorname{rng} F).$

The following proposition is true

(47) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds sup $F = \sup(\operatorname{rng} F)$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. The functor inf F yields a *Real number* and is defined by:

(Def.8) $\inf F = \inf(\operatorname{rng} F).$

Next we state the proposition

(48) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds inf $F = \inf(\operatorname{rng} F)$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y, and let x be an element of X. Then F(x) is a *Real number*.

The scheme $FunctR_ealEx$ concerns a non-empty set \mathcal{A} , a set \mathcal{B} , and a unary functor \mathcal{F} and states that:

there exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f(x) = \mathcal{F}(x)$

provided the parameters have the following property:

• for every element x of \mathcal{A} holds $\mathcal{F}(x) \in \mathcal{B}$.

Let X be a non-empty set, and let Y, Z be non-empty subsets of $\overline{\mathbb{R}}$, and let F be a function from X into Y, and let G be a function from X into Z. Let us assume that neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. The functor F + G yields a function from X into Y + Z and is defined by:

(Def.9) for every element x of X holds (F+G)(x) = F(x) + G(x).

Next we state several propositions:

- (49) Let X be a non-empty set. Let Y, Z be non-empty subsets of $\overline{\mathbb{R}}$. Suppose neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. Then for every function F from X into Y and for every function G from X into Z and for every function H from X into Y + Z holds H = F + G if and only if for every element x of X holds H(x) = F(x) + G(x).
- (50) Let X be a non-empty set. Then for all non-empty subsets Y, Z of $\overline{\mathbb{R}}$ such that neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$ for every function F from X into Y and for every function G from X into Z and for every element x of X holds (F + G)(x) = F(x) + G(x).
- (51) For every non-empty set X and for all non-empty subsets Y, Z of \mathbb{R} such that neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$ for every function F from X into Y and for every function G from X into Z holds $\operatorname{rng}(F+G) \subseteq \operatorname{rng} F + \operatorname{rng} G$.
- (52) Let X be a non-empty set. Let Y, Z be non-empty subsets of $\overline{\mathbb{R}}$. Suppose neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. Then for

every function F from X into Y and for every function G from X into Z such that neither $\sup F = +\infty$ and $\sup G = -\infty$ nor $\sup F = -\infty$ and $\sup G = +\infty$ holds $\sup(F + G) \leq \sup F + \sup G$.

(53) Let X be a non-empty set. Let Y, Z be non-empty subsets of \mathbb{R} . Suppose neither $-\infty \in Y$ and $+\infty \in Z$ nor $+\infty \in Y$ and $-\infty \in Z$. Then for every function F from X into Y and for every function G from X into Z such that neither $F = +\infty$ and $F = -\infty$ nor $F = -\infty$ and $F = -\infty$ and $F = -\infty$ holds $F = -\infty$ holds $F = -\infty$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. The functor -F yielding a function from X into -Y is defined by:

(Def.10) for every element x of X holds (-F)(x) = -F(x).

One can prove the following three propositions:

- (54) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every function G from X into -Y holds G = -F if and only if for every element x of X holds G(x) = -F(x).
- (55) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds $\operatorname{rng}(-F) = -\operatorname{rng} F$.
- (56) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds $\inf(-F) = -\sup F$ and $\sup(-F) = -\inf F$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. We say that F is upper bounded if and only if:

(Def.11) $\sup F < +\infty$.

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. We say that F is lower bounded if and only if:

Let X be a non-empty set, and let Y be a non-empty subset of $\overline{\mathbb{R}}$, and let F be a function from X into Y. We say that F is bounded if and only if:

(Def.13) F is upper bounded and F is lower bounded.

We now state a number of propositions:

- (60)¹ For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds F is bounded if and only if $\sup F < +\infty$ and $-\infty < \inf F$.
- (61) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds F is upper bounded if and only if -F is lower bounded.

⁽Def.12) $-\infty < \inf F$.

¹The propositions (57)–(59) were either repeated or obvious.

- (62) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds F is lower bounded if and only if -F is upper bounded.
- (63) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y holds F is bounded if and only if -F is bounded.
- (64) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every element x of X holds $-\infty \leq F(x)$ and $F(x) \leq +\infty$.
- (65) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every element x of X such that $Y \subseteq \mathbb{R}$ holds $-\infty < F(x)$ and $F(x) < +\infty$.
- (66) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y and for every element x of X holds inf $F \leq F(x)$ and $F(x) \leq \sup F$.
- (67) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y such that $Y \subseteq \mathbb{R}$ holds F is upper bounded if and only if $\sup F \in \mathbb{R}$.
- (68) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y such that $Y \subseteq \mathbb{R}$ holds F is lower bounded if and only if $F \in \mathbb{R}$.
- (69) For every non-empty set X and for every non-empty subset Y of $\overline{\mathbb{R}}$ and for every function F from X into Y such that $Y \subseteq \mathbb{R}$ holds F is bounded if and only if $\inf F \in \mathbb{R}$ and $\sup F \in \mathbb{R}$.
- (70) For every non-empty set X and for all non-empty subsets Y, Z of \mathbb{R} such that $Y \subseteq \mathbb{R}$ and $Z \subseteq \mathbb{R}$ for every function F_1 from X into Y and for every function F_2 from X into Z such that F_1 is upper bounded and F_2 is upper bounded holds $F_1 + F_2$ is upper bounded.
- (71) For every non-empty set X and for all non-empty subsets Y, Z of \mathbb{R} such that $Y \subseteq \mathbb{R}$ and $Z \subseteq \mathbb{R}$ for every function F_1 from X into Y and for every function F_2 from X into Z such that F_1 is lower bounded and F_2 is lower bounded holds $F_1 + F_2$ is lower bounded.
- (72) For every non-empty set X and for all non-empty subsets Y, Z of $\overline{\mathbb{R}}$ such that $Y \subseteq \mathbb{R}$ and $Z \subseteq \mathbb{R}$ for every function F_1 from X into Y and for every function F_2 from X into Z such that F_1 is bounded and F_2 is bounded holds $F_1 + F_2$ is bounded.
- (73) There exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is one-to-one and $\mathbb{N} = \operatorname{rng} F$ and $\operatorname{rng} F$ is a non-empty subset of $\overline{\mathbb{R}}$.

A non-empty subset of $\overline{\mathbb{R}}$ is called a denumerable set of larged real if:

(Def.14) there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that it = rng F.

Next we state the proposition

 $(75)^2$ N is a denumerable set of larged real.

A denumerable set of larged real is said to be a denumerable set of positive larged real if:

(Def.15) for every *Real number* x such that $x \in \text{it holds } 0_{\overline{\mathbb{R}}} \leq x$.

Let D be a denumerable set of larged real. A function from \mathbb{N} into $\overline{\mathbb{R}}$ is said to be a numeration of D if:

(Def.16) $D = \operatorname{rng} \operatorname{it}.$

One can prove the following proposition

(78)³ For every denumerable set D of positive larged real and for every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds F is a numeration of D if and only if $D = \operatorname{rng} F$.

Let N be a function from \mathbb{N} into $\overline{\mathbb{R}}$, and let n be a natural number. Then N(n) is a *Real number*.

We see that the *Real number* is an element of $\overline{\mathbb{R}}$.

The scheme $RecFuncExR_eal$ concerns a Real number \mathcal{A} and a binary functor \mathcal{F} yielding a Real number and states that:

there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that $F(0) = \mathcal{A}$ and for every natural number n and for every *Real number* x such that x = F(n) holds $F(n + 1) = \mathcal{F}(n, x)$

for all values of the parameters.

We now state the proposition

(79) For every denumerable set D of larged real and for every numeration N of D there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F(0) = N(0) and for every natural number n and for every *Real number* y such that y = F(n) holds F(n+1) = y + N(n+1).

Let D be a denumerable set of larged real, and let N be a numeration of D. The functor Ser(D, N) yields a function from N into $\overline{\mathbb{R}}$ and is defined by:

(Def.17) Ser(D, N)(0) = N(0) and for every natural number n and for every Real number y such that y = Ser(D, N)(n) holds Ser(D, N)(n + 1) = y + N(n + 1).

The following propositions are true:

- (80) Let D be a denumerable set of larged real. Then for every numeration N of D and for every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds $F = \operatorname{Ser}(D, N)$ if and only if F(0) = N(0) and for every natural number n and for every Real number y such that y = F(n) holds F(n+1) = y + N(n+1).
- (81) For every denumerable set D of larged real and for every numeration N of D holds $\operatorname{Ser}(D, N)(0) = N(0)$ and for every natural number n and for every *Real number* y such that $y = \operatorname{Ser}(D, N)(n)$ holds $\operatorname{Ser}(D, N)(n+1) = y + N(n+1)$.
- (82) For every denumerable set D of positive larged real and for every numeration N of D and for every natural number n holds $0_{\overline{\mathbb{R}}} \leq N(n)$.

²The proposition (74) was either repeated or obvious.

³The propositions (76)–(77) were either repeated or obvious.

- (83) For every denumerable set D of positive larged real and for every numeration N of D and for every natural number n holds $\operatorname{Ser}(D, N)(n) \leq \operatorname{Ser}(D, N)(n+1)$ and $0_{\overline{\mathbb{R}}} \leq \operatorname{Ser}(D, N)(n)$.
- (84) For every denumerable set D of positive larged real and for every numeration N of D and for all natural numbers n, m holds $Ser(D, N)(n) \le Ser(D, N)(n + m)$.

Let D be a denumerable set of larged real. A non-empty subset of $\overline{\mathbb{R}}$ is called a set of series of D if:

(Def.18) there exists a numeration N of D such that it = $\operatorname{rng} \operatorname{Ser}(D, N)$.

Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Then rng F is a non-empty subset of $\overline{\mathbb{R}}$. Let D be a denumerable set of positive larged real, and let N be a numeration of D. The functor $\sum_{D} N$ yields a *Real number* and is defined as follows:

(Def.19) $\sum_{D} N = \sup(\operatorname{rng}\operatorname{Ser}(D, N)).$

One can prove the following propositions:

- (86)⁴ For every denumerable set D of positive larged real and for every numeration N of D and for every *Real number* s holds $s = \sum_D N$ if and only if $s = \sup(\operatorname{rng Ser}(D, N))$.
- (87) For every denumerable set D of positive larged real and for every numeration N of D holds $\sum_D N = \sup(\operatorname{rng} \operatorname{Ser}(D, N))$.

Let D be a denumerable set of positive larged real, and let N be a numeration of D. We say that D is N sumable if and only if:

(Def.20) $\sum_D N \in \mathbb{R}$.

One can prove the following proposition

(89)⁵ For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds rng F is a denumerable set of larged real.

Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Then rng F is a denumerable set of larged real.

Next we state the proposition

(90) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds F is a numeration of rng F.

Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. The functor Ser F yields a function from \mathbb{N} into $\overline{\mathbb{R}}$ and is defined by:

(Def.21) for every numeration N of rng F such that N = F holds Ser F =Ser(rng F, N).

We now state the proposition

(91) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ and for every numeration N of rng F such that N = F holds Ser F = Ser(rng F, N).

Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. We say that F is non-negative if and only if:

 $^{^{4}}$ The proposition (85) was either repeated or obvious.

⁵The proposition (88) was either repeated or obvious.

(Def.22) $\operatorname{rng} F$ is a denumerable set of positive larged real.

Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Let us assume that F is non-negative. The functor $\sum F$ yields a *Real number* and is defined by:

(Def.23) $\sum F = \sup(\operatorname{rng}\operatorname{Ser} F).$

The following propositions are true:

- (93)⁶ For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds $\sum F = \sup(\operatorname{rng} \operatorname{Ser} F).$
- (94) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds F is non-negative if and only if for every natural number n holds $0_{\overline{\mathbb{R}}} \leq F(n)$.
- (95) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ and for every natural number n such that F is non-negative holds $\operatorname{Ser} F(n) \leq \operatorname{Ser} F(n+1)$ and $0_{\overline{\mathbb{R}}} \leq \operatorname{Ser} F(n)$.
- (96) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative for all natural numbers n, m holds Ser $F(n) \leq$ Ser F(n+m).
- (97) For all functions F_1 , F_2 from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_1 is non-negative holds if for every natural number n holds $F_1(n) \leq F_2(n)$, then for every natural number n holds Ser $F_1(n) \leq$ Ser $F_2(n)$.
- (98) For all functions F_1 , F_2 from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_1 is non-negative holds if for every natural number n holds $F_1(n) \leq F_2(n)$, then $\sum F_1 \leq \sum F_2$.
- (99) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ holds Ser F(0) = F(0) and for every natural number n and for every *Real number* y such that y = Ser F(n) holds Ser F(n+1) = y + F(n+1).
- (100) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds if there exists a natural number n such that $F(n) = +\infty$, then $\sum F = +\infty$.

Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Let us assume that F is non-negative. We say that F is sumable if and only if:

(Def.24) $\sum F \in \mathbb{R}$.

One can prove the following propositions:

- $(102)^7$ For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds if there exists a natural number n such that $F(n) = +\infty$, then F is not sumable.
- (103) For all functions F_1 , F_2 from \mathbb{N} into \mathbb{R} such that F_1 is non-negative holds if for every natural number n holds $F_1(n) \leq F_2(n)$, then if F_2 is sumable, then F_1 is sumable.
- (104) For all functions F_1 , F_2 from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_1 is non-negative holds if for every natural number n holds $F_1(n) \leq F_2(n)$, then if F_1 is not sumable, then F_2 is not sumable.
- (105) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative for every natural number n such that for every natural number r such that $n \leq r$ holds $F(r) = 0_{\overline{\mathbb{R}}}$ holds $\sum F = \operatorname{Ser} F(n)$.

⁶The proposition (92) was either repeated or obvious.

⁷The proposition (101) was either repeated or obvious.

- (106) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every natural number n holds $F(n) \in \mathbb{R}$ for every natural number n holds $\operatorname{Ser} F(n) \in \mathbb{R}$.
- (107) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds if there exists a natural number n such that for every natural number ksuch that $n \leq k$ holds $F(k) = 0_{\overline{\mathbb{R}}}$ and for every natural number k such that $k \leq n$ holds $F(k) \neq +\infty$, then F is sumable.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received September 27, 1990