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Summary. We introduce properties of a series of nonnegative
�

numbers, where
�

denotes the enlarged set of real numbers,
�

=
�
∪

{−∞, +∞}. The paper contains definitions of sup F and inf F , for F

being function, and a definition of a sumable subset of
�

. We prove the
basic theorems regarding the definitions mentioned above. The work is
the second part of a series of articles concerning the Lebesgue measure
theory.

MML Identifier: SUPINF 2.

The notation and terminology used here are introduced in the following articles:
[6], [5], [2], [3], [4], and [1]. Let x, y be Real numbers. Let us assume that neither
x = +∞ and y = −∞ nor x = −∞ and y = +∞. The functor x + y yielding a
Real number is defined by:

(Def.1) there exist real numbers a, b such that x = a and y = b and x+y = a+b

or x = +∞ and x + y = +∞ or y = +∞ and x + y = +∞ or x = −∞

and x + y = −∞ or y = −∞ and x + y = −∞.

Next we state four propositions:

(1) Let x, y be Real numbers. Suppose neither x = +∞ and y = −∞ nor
x = −∞ and y = +∞. Then

(i) there exist real numbers a, b such that x = a and y = b and x+y = a+b,
or

(ii) x = +∞ and x + y = +∞, or
(iii) y = +∞ and x + y = +∞, or
(iv) x = −∞ and x + y = −∞, or
(v) y = −∞ and x + y = −∞.

(2) For all Real numbers x, y and for all real numbers a, b such that x = a

and y = b holds x + y = a + b.
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(3) For every Real number x such that x 6= −∞ holds +∞ + x = +∞ and
x + +∞ = +∞.

(4) For every Real number x such that x 6= +∞ holds −∞ + x = −∞ and
x + −∞ = −∞.

Let x, y be Real numbers. Let us assume that neither x = +∞ and y = +∞

nor x = −∞ and y = −∞. The functor x− y yielding a Real number is defined
by:

(Def.2) there exist real numbers a, b such that x = a and y = b and x−y = a−b

or x = +∞ and x − y = +∞ or y = +∞ and x − y = −∞ or x = −∞

and x − y = −∞ or y = −∞ and x − y = +∞.

We now state a number of propositions:

(5) Let x, y be Real numbers. Suppose neither x = +∞ and y = +∞ nor
x = −∞ and y = −∞. Then

(i) there exist real numbers a, b such that x = a and y = b and x−y = a−b,
or

(ii) x = +∞ and x − y = +∞, or
(iii) y = +∞ and x − y = −∞, or
(iv) x = −∞ and x − y = −∞, or
(v) y = −∞ and x − y = +∞.

(6) For all Real numbers x, y and for all real numbers a, b such that x = a

and y = b holds x − y = a − b.

(7) For every Real number x such that x 6= +∞ holds +∞− x = +∞ and
x − +∞ = −∞.

(8) For every Real number x such that x 6= −∞ holds −∞− x = −∞ and
x −−∞ = +∞.

(9) For all Real numbers x, s such that x + s = +∞ holds x = +∞ or
s = +∞.

(10) For all Real numbers x, s such that x + s = −∞ holds x = −∞ or
s = −∞.

(11) For all Real numbers x, s such that x − s = +∞ holds x = +∞ or
s = −∞.

(12) For all Real numbers x, s such that x − s = −∞ holds x = −∞ or
s = +∞.

(13) For all Real numbers x, s such that neither x = +∞ and s = −∞ nor
x = −∞ and s = +∞ and x + s ∈

�
holds x ∈

�
and s ∈

�
.

(14) For all Real numbers x, s such that neither x = +∞ and s = +∞ nor
x = −∞ and s = −∞ and x − s ∈

�
holds x ∈

�
and s ∈

�
.

(15) Let x, y, s, t be Real numbers. Then if neither x = +∞ and s = −∞

nor x = −∞ and s = +∞ and neither y = +∞ and t = −∞ nor y = −∞

and t = +∞ and x ≤ y and s ≤ t, then x + s ≤ y + t.

(16) Let x, y, s, t be Real numbers. Then if neither x = +∞ and t = +∞

nor x = −∞ and t = −∞ and neither y = +∞ and s = +∞ nor y = −∞
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and s = −∞ and x ≤ y and s ≤ t, then x − t ≤ y − s.

Let x be a Real number. The functor −x yields a Real number and is defined
by:

(Def.3) there exists a real number a such that x = a and −x = −a or x = +∞

and −x = −∞ or x = −∞ and −x = +∞.

We now state several propositions:

(17) For every Real number x and for every Real number z holds z = −x if
and only if there exists a real number a such that x = a and z = −a or
x = +∞ and z = −∞ or x = −∞ and z = +∞.

(18) For every Real number x holds there exists a real number a such that
x = a and −x = −a or x = +∞ and −x = −∞ or x = −∞ and
−x = +∞.

(19) For every Real number x and for every real number a such that x = a

holds −x = −a.

(20) For every Real number x holds if x = +∞, then −x = −∞ but if
x = −∞, then −x = +∞.

(21) For every Real number x holds −(−x) = x.

(22) For all Real numbers x, y holds x ≤ y if and only if −y ≤ −x.

(23) For all Real numbers x, y holds x < y if and only if −y < −x.

(24) For all Real numbers x, y such that x = y holds x ≤ y.

The Real number 0 � is defined by:

(Def.4) 0 � = 0.

We now state several propositions:

(25) 0 � = 0.

(26) For every Real number x holds x + 0 � = x and 0 � + x = x.

(27) −∞ < 0 � and 0 � < +∞.

(28) For all Real numbers x, y, z such that 0 � ≤ z and 0 � ≤ x and y = x+ z

holds x ≤ y.

(29) For every real number x such that x ∈ � holds 0 ≤ x.

(30) For every Real number x such that x ∈ � holds 0 � ≤ x.

Let X, Y be non-empty subsets of
�
. Let us assume that neither −∞ ∈ X

and +∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y . The functor X + Y yielding a
non-empty subset of

�
is defined as follows:

(Def.5) for every Real number z holds z ∈ X + Y if and only if there exist Real

numbers x, y such that x ∈ X and y ∈ Y and z = x + y.

We now state two propositions:

(31) For all non-empty subsets X, Y of
�

such that neither −∞ ∈ X and
+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y for every Real number z holds
z ∈ X + Y if and only if there exist Real numbers x, y such that x ∈ X

and y ∈ Y and z = x + y.
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(32) Let X, Y , Z be non-empty subsets of
�
. Then if neither −∞ ∈ X and

+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y , then Z = X + Y if and only if for
every Real number z holds z ∈ Z if and only if there exist Real numbers

x, y such that x ∈ X and y ∈ Y and z = x + y.

Let X be a non-empty subset of
�
. The functor −X yielding a non-empty

subset of
�

is defined as follows:

(Def.6) for every Real number z holds z ∈ −X if and only if there exists a Real

number x such that x ∈ X and z = −x.

Next we state a number of propositions:

(33) For every non-empty subset X of
�

and for every Real number z holds
z ∈ −X if and only if there exists a Real number x such that x ∈ X and
z = −x.

(34) For all non-empty subsets X, Z of
�

holds Z = −X if and only if for
every Real number z holds z ∈ Z if and only if there exists a Real number

x such that x ∈ X and z = −x.

(35) For every non-empty subset X of
�

holds −(−X) = X.

(36) For every non-empty subset X of
�

and for every Real number z holds
z ∈ X if and only if −z ∈ −X.

(37) For all non-empty subsets X, Y of
�

holds X ⊆ Y if and only if −X ⊆

−Y .

(38) For every Real number z holds z ∈
�

if and only if −z ∈
�
.

(39) Let X, Y be non-empty subsets of
�
. Then if neither −∞ ∈ X and

+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y and neither supX = +∞ and
supY = −∞ nor supX = −∞ and supY = +∞, then sup(X + Y ) ≤

supX + supY .

(40) Let X, Y be non-empty subsets of
�
. Then if neither −∞ ∈ X and

+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y and neither inf X = +∞ and inf Y =
−∞ nor inf X = −∞ and inf Y = +∞, then inf X + inf Y ≤ inf(X + Y ).

(41) For all non-empty subsets X, Y of
�

such that X is upper bounded and
Y is upper bounded holds sup(X + Y ) ≤ supX + supY .

(42) For all non-empty subsets X, Y of
�

such that X is lower bounded and
Y is lower bounded holds inf X + inf Y ≤ inf(X + Y ).

(43) For every non-empty subset X of
�

and for every Real number a holds
a is a majorant of X if and only if −a is a minorant of −X.

(44) For every non-empty subset X of
�

and for every Real number a holds
a is a minorant of X if and only if −a is a majorant of −X.

(45) For every non-empty subset X of
�

holds inf(−X) = − supX.

(46) For every non-empty subset X of
�

holds sup(−X) = − inf X.

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . Then rng F is a non-empty subset of
�
.

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let

F be a function from X into Y . The functor supF yielding a Real number is
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defined by:

(Def.7) supF = sup(rng F ).

The following proposition is true

(47) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds supF = sup(rng F ).

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let

F be a function from X into Y . The functor inf F yields a Real number and is
defined by:

(Def.8) inf F = inf(rng F ).

Next we state the proposition

(48) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds inf F = inf(rng F ).

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let

F be a function from X into Y , and let x be an element of X. Then F (x) is a
Real number.

The scheme FunctR ealEx concerns a non-empty set A, a set B, and a unary
functor F and states that:

there exists a function f from A into B such that for every element x of A
holds f(x) = F(x)
provided the parameters have the following property:

• for every element x of A holds F(x) ∈ B.
Let X be a non-empty set, and let Y , Z be non-empty subsets of

�
, and let

F be a function from X into Y , and let G be a function from X into Z. Let us
assume that neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. The
functor F + G yields a function from X into Y + Z and is defined by:

(Def.9) for every element x of X holds (F + G)(x) = F (x) + G(x).

Next we state several propositions:

(49) Let X be a non-empty set. Let Y , Z be non-empty subsets of
�
. Sup-

pose neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. Then for
every function F from X into Y and for every function G from X into Z

and for every function H from X into Y +Z holds H = F +G if and only
if for every element x of X holds H(x) = F (x) + G(x).

(50) Let X be a non-empty set. Then for all non-empty subsets Y , Z of
�

such that neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z for
every function F from X into Y and for every function G from X into Z

and for every element x of X holds (F + G)(x) = F (x) + G(x).

(51) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z for
every function F from X into Y and for every function G from X into Z

holds rng(F + G) ⊆ rng F + rng G.

(52) Let X be a non-empty set. Let Y , Z be non-empty subsets of
�
. Sup-

pose neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. Then for
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every function F from X into Y and for every function G from X into Z

such that neither supF = +∞ and supG = −∞ nor supF = −∞ and
supG = +∞ holds sup(F + G) ≤ supF + supG.

(53) Let X be a non-empty set. Let Y , Z be non-empty subsets of
�
. Sup-

pose neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. Then for
every function F from X into Y and for every function G from X into
Z such that neither inf F = +∞ and inf G = −∞ nor inf F = −∞ and
inf G = +∞ holds inf F + inf G ≤ inf(F + G).

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . The functor −F yielding a function from X into
−Y is defined by:

(Def.10) for every element x of X holds (−F )(x) = −F (x).

One can prove the following three propositions:

(54) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every function G from X

into −Y holds G = −F if and only if for every element x of X holds
G(x) = −F (x).

(55) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds rng(−F ) = − rng F .

(56) For every non-empty set X and for every non-empty subset Y of
�

and for every function F from X into Y holds inf(−F ) = − supF and
sup(−F ) = − inf F .

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . We say that F is upper bounded if and only if:

(Def.11) supF < +∞.

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . We say that F is lower bounded if and only if:

(Def.12) −∞ < inf F .

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . We say that F is bounded if and only if:

(Def.13) F is upper bounded and F is lower bounded.

We now state a number of propositions:

(60)1 For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is bounded if and only if
supF < +∞ and −∞ < inf F .

(61) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is upper bounded if and only
if −F is lower bounded.

1The propositions (57)–(59) were either repeated or obvious.
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(62) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is lower bounded if and only
if −F is upper bounded.

(63) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is bounded if and only if −F

is bounded.

(64) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every element x of X holds
−∞ ≤ F (x) and F (x) ≤ +∞.

(65) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every element x of X such
that Y ⊆

�
holds −∞ < F (x) and F (x) < +∞.

(66) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every element x of X holds
inf F ≤ F (x) and F (x) ≤ supF .

(67) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y such that Y ⊆

�
holds F is upper

bounded if and only if supF ∈
�
.

(68) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y such that Y ⊆

�
holds F is lower

bounded if and only if inf F ∈
�
.

(69) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y such that Y ⊆

�
holds F is bounded

if and only if inf F ∈
�

and supF ∈
�
.

(70) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that Y ⊆
�

and Z ⊆
�

for every function F1 from X into Y and for
every function F2 from X into Z such that F1 is upper bounded and F2

is upper bounded holds F1 + F2 is upper bounded.

(71) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that Y ⊆
�

and Z ⊆
�

for every function F1 from X into Y and for
every function F2 from X into Z such that F1 is lower bounded and F2

is lower bounded holds F1 + F2 is lower bounded.

(72) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that Y ⊆
�

and Z ⊆
�

for every function F1 from X into Y and
for every function F2 from X into Z such that F1 is bounded and F2 is
bounded holds F1 + F2 is bounded.

(73) There exists a function F from � into
�

such that F is one-to-one and
� = rng F and rng F is a non-empty subset of

�
.

A non-empty subset of
�

is called a denumerable set of larged real if:

(Def.14) there exists a function F from � into
�

such that it = rng F .

Next we state the proposition
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(75)2 � is a denumerable set of larged real.

A denumerable set of larged real is said to be a denumerable set of positive
larged real if:

(Def.15) for every Real number x such that x ∈ it holds 0 � ≤ x.

Let D be a denumerable set of larged real. A function from � into
�

is said
to be a numeration of D if:

(Def.16) D = rng it.

One can prove the following proposition

(78)3 For every denumerable set D of positive larged real and for every func-
tion F from � into

�
holds F is a numeration of D if and only if D = rng F .

Let N be a function from � into
�
, and let n be a natural number. Then

N(n) is a Real number.

We see that the Real number is an element of
�
.

The scheme RecFuncExR eal concerns a Real number A and a binary functor
F yielding a Real number and states that:

there exists a function F from � into
�

such that F (0) = A and for every
natural number n and for every Real number x such that x = F (n) holds F (n+
1) = F(n, x)
for all values of the parameters.

We now state the proposition

(79) For every denumerable set D of larged real and for every numeration
N of D there exists a function F from � into

�
such that F (0) = N(0)

and for every natural number n and for every Real number y such that
y = F (n) holds F (n + 1) = y + N(n + 1).

Let D be a denumerable set of larged real, and let N be a numeration of D.
The functor Ser(D,N) yields a function from � into

�
and is defined by:

(Def.17) Ser(D,N)(0) = N(0) and for every natural number n and for every
Real number y such that y = Ser(D,N)(n) holds Ser(D,N)(n + 1) =
y + N(n + 1).

The following propositions are true:

(80) Let D be a denumerable set of larged real. Then for every numeration
N of D and for every function F from � into

�
holds F = Ser(D,N) if

and only if F (0) = N(0) and for every natural number n and for every
Real number y such that y = F (n) holds F (n + 1) = y + N(n + 1).

(81) For every denumerable set D of larged real and for every numeration N

of D holds Ser(D,N)(0) = N(0) and for every natural number n and for
every Real number y such that y = Ser(D,N)(n) holds Ser(D,N)(n+1) =
y + N(n + 1).

(82) For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds 0 � ≤ N(n).

2The proposition (74) was either repeated or obvious.
3The propositions (76)–(77) were either repeated or obvious.
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(83) For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds Ser(D,N)(n) ≤

Ser(D,N)(n + 1) and 0 � ≤ Ser(D,N)(n).

(84) For every denumerable set D of positive larged real and for every nu-
meration N of D and for all natural numbers n, m holds Ser(D,N)(n) ≤
Ser(D,N)(n + m).

Let D be a denumerable set of larged real. A non-empty subset of
�

is called
a set of series of D if:

(Def.18) there exists a numeration N of D such that it = rng Ser(D,N).

Let F be a function from � into
�
. Then rng F is a non-empty subset of

�
.

Let D be a denumerable set of positive larged real, and let N be a numeration
of D. The functor

∑
D

N yields a Real number and is defined as follows:

(Def.19)
∑

D
N = sup(rng Ser(D,N)).

One can prove the following propositions:

(86)4 For every denumerable set D of positive larged real and for every nu-
meration N of D and for every Real number s holds s =

∑
D

N if and
only if s = sup(rng Ser(D,N)).

(87) For every denumerable set D of positive larged real and for every nu-
meration N of D holds

∑
D

N = sup(rng Ser(D,N)).

Let D be a denumerable set of positive larged real, and let N be a numeration
of D. We say that D is N sumable if and only if:

(Def.20)
∑

D
N ∈

�
.

One can prove the following proposition

(89)5 For every function F from � into
�

holds rng F is a denumerable set of
larged real.

Let F be a function from � into
�
. Then rng F is a denumerable set of larged

real.

Next we state the proposition

(90) For every function F from � into
�

holds F is a numeration of rng F .

Let F be a function from � into
�
. The functor SerF yields a function from

� into
�

and is defined by:

(Def.21) for every numeration N of rng F such that N = F holds SerF =
Ser(rng F,N).

We now state the proposition

(91) For every function F from � into
�

and for every numeration N of
rng F such that N = F holds SerF = Ser(rng F,N).

Let F be a function from � into
�
. We say that F is non-negative if and

only if:

4The proposition (85) was either repeated or obvious.
5The proposition (88) was either repeated or obvious.
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(Def.22) rng F is a denumerable set of positive larged real.

Let F be a function from � into
�
. Let us assume that F is non-negative.

The functor
∑

F yields a Real number and is defined by:

(Def.23)
∑

F = sup(rng SerF ).

The following propositions are true:

(93)6 For every function F from � into
�

such that F is non-negative holds
∑

F = sup(rng SerF ).

(94) For every function F from � into
�

holds F is non-negative if and only
if for every natural number n holds 0 � ≤ F (n).

(95) For every function F from � into
�

and for every natural number n such
that F is non-negative holds Ser F (n) ≤ SerF (n + 1) and 0 � ≤ Ser F (n).

(96) For every function F from � into
�

such that F is non-negative for all
natural numbers n, m holds Ser F (n) ≤ Ser F (n + m).

(97) For all functions F1, F2 from � into
�

such that F1 is non-negative
holds if for every natural number n holds F1(n) ≤ F2(n), then for every
natural number n holds Ser F1(n) ≤ Ser F2(n).

(98) For all functions F1, F2 from � into
�

such that F1 is non-negative holds
if for every natural number n holds F1(n) ≤ F2(n), then

∑
F1 ≤

∑
F2.

(99) For every function F from � into
�

holds SerF (0) = F (0) and for every
natural number n and for every Real number y such that y = Ser F (n)
holds Ser F (n + 1) = y + F (n + 1).

(100) For every function F from � into
�

such that F is non-negative holds if
there exists a natural number n such that F (n) = +∞, then

∑
F = +∞.

Let F be a function from � into
�
. Let us assume that F is non-negative.

We say that F is sumable if and only if:

(Def.24)
∑

F ∈
�
.

One can prove the following propositions:

(102)7 For every function F from � into
�

such that F is non-negative holds
if there exists a natural number n such that F (n) = +∞, then F is not
sumable.

(103) For all functions F1, F2 from � into
�

such that F1 is non-negative holds
if for every natural number n holds F1(n) ≤ F2(n), then if F2 is sumable,
then F1 is sumable.

(104) For all functions F1, F2 from � into
�

such that F1 is non-negative
holds if for every natural number n holds F1(n) ≤ F2(n), then if F1 is not
sumable, then F2 is not sumable.

(105) For every function F from � into
�

such that F is non-negative for
every natural number n such that for every natural number r such that
n ≤ r holds F (r) = 0 � holds

∑
F = SerF (n).

6The proposition (92) was either repeated or obvious.
7The proposition (101) was either repeated or obvious.
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(106) For every function F from � into
�

such that for every natural number
n holds F (n) ∈

�
for every natural number n holds Ser F (n) ∈

�
.

(107) For every function F from � into
�

such that F is non-negative holds
if there exists a natural number n such that for every natural number k

such that n ≤ k holds F (k) = 0 � and for every natural number k such
that k ≤ n holds F (k) 6= +∞, then F is sumable.
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