Infimum and Supremum of the Set of Real Numbers. Measure Theory

Józef Białas
University of Łódź

Abstract

Summary. We introduce some properties of the least upper bound and the greatest lower bound of the subdomain of $\overline{\mathbb{R}}$ numbers, where $\overline{\mathbb{R}}$ denotes the enlarged set of real numbers, $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$. The paper contains definitions of majorant and minorant elements, bounded from above, bounded from below and bounded sets, sup and inf of set, for nonempty subset of $\overline{\mathbb{R}}$. We prove theorems describing the basic relationships among those definitions. The work is the first part of the series of articles concerning the Lebesgue measure theory.

MML Identifier: SUPINF_1.

The terminology and notation used here have been introduced in the following articles: [3], [1], and [2]. The constant $+\infty$ is defined by:
(Def.1) $\quad+\infty=\mathbb{R}$.
The following propositions are true:
(1) $+\infty=\mathbb{R}$.
(2) $\quad+\infty \notin \mathbb{R}$.

A positive infinite number is defined as follows:
(Def.2) it $=+\infty$.
One can prove the following proposition
$(4)^{1}+\infty$ is a positive infinite number.
The constant $-\infty$ is defined as follows:
(Def.3) $\quad-\infty=\{\mathbb{R}\}$.
The following propositions are true:
(5) $-\infty=\{\mathbb{R}\}$.
(6) $\quad-\infty \notin \mathbb{R}$.

[^0]A negative infinite number is defined as follows:
(Def.4) it $=-\infty$.
One can prove the following proposition
$(8)^{2}-\infty$ is a negative infinite number.
A Real number is defined as follows:
(Def.5) it $\in \mathbb{R} \cup\{-\infty,+\infty\}$.
One can prove the following propositions:
$(10)^{3}$ For every real number x holds x is a Real number.
(11) For an arbitrary x such that $x=-\infty$ or $x=+\infty$ holds x is a Real number.
Let us note that it makes sense to consider the following constant. Then $+\infty$ is a Real number.

Let us note that it makes sense to consider the following constant. Then $-\infty$ is a Real number.

Next we state the proposition
$(14)^{4} \quad-\infty \neq+\infty$.
Let x, y be Real numbers. The predicate $x \leq y$ is defined by:
(Def.6) there exist real numbers p, q such that $p=x$ and $q=y$ and $p \leq q$ or there exists a positive infinite number q such that $q=y$ or there exists a negative infinite number p such that $p=x$.

Next we state several propositions:
$(16)^{5}$ For all Real numbers x, y such that x is a real number and y is a real number holds $x \leq y$ if and only if there exist real numbers p, q such that $p=x$ and $q=y$ and $p \leq q$.
(17) For every Real number x such that $x \in \mathbb{R}$ holds $x \not \leq-\infty$.
(18) For every Real number x such that $x \in \mathbb{R}$ holds $+\infty \not \leq x$.
(19) $\quad+\infty \not \leq-\infty$.
(20) For every Real number x holds $x \leq+\infty$.
(21) For every Real number x holds $-\infty \leq x$.
(22) For all Real numbers x, y such that $x \leq y$ and $y \leq x$ holds $x=y$.
(23) For every Real number x such that $x \leq-\infty$ holds $x=-\infty$.
(24) For every Real number x such that $+\infty \leq x$ holds $x=+\infty$.

The scheme $S e p R_{-} e a l$ concerns a unary predicate \mathcal{P}, and states that:
there exists a subset X of $\mathbb{R} \cup\{-\infty,+\infty\}$ such that for every Real number x holds $x \in X$ if and only if $\mathcal{P}[x]$
for all values of the parameter.

[^1]The set $\overline{\mathbb{R}}$ is defined as follows:
(Def.7) $\quad \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$.
We now state several propositions:
(25) $\quad \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$.
(26) $\overline{\mathbb{R}}$ is a non-empty set.
(27) For an arbitrary x holds x is a Real number if and only if $x \in \overline{\mathbb{R}}$.
(28) For every Real number x holds $x \leq x$.
(29) For all Real numbers x, y, z such that $x \leq y$ and $y \leq z$ holds $x \leq z$.

Let us note that it makes sense to consider the following constant. Then $\overline{\mathbb{R}}$ is a non-empty set.

Let x, y be Real numbers. The predicate $x<y$ is defined by:
(Def.8) $\quad x \leq y$ and $x \neq y$.
The following proposition is true
$(31)^{6}$ For every Real number x such that $x \in \mathbb{R}$ holds $-\infty<x$ and $x<+\infty$.
Let X be a non-empty subset of $\overline{\mathbb{R}}$. A Real number is said to be a majorant of X if:
(Def.9) for every Real number x such that $x \in X$ holds $x \leq$ it.
We now state two propositions:
$(33)^{7}$ For every non-empty subset X of $\overline{\mathbb{R}}$ holds $+\infty$ is a majorant of X.
(34) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ for every Real number U_{1} such that U_{1} is a majorant of Y holds U_{1} is a majorant of X.
Let X be a non-empty subset of $\overline{\mathbb{R}}$. A Real number is said to be a minorant of X if:
(Def.10) for every Real number x such that $x \in X$ holds it $\leq x$.
We now state four propositions:
$(36)^{8}$ For every non-empty subset X of $\overline{\mathbb{R}}$ holds $-\infty$ is a minorant of X.
(37) For every non-empty subset X of $\overline{\mathbb{R}}$ such that $X=\overline{\mathbb{R}}$ holds $+\infty$ is a majorant of X.
(38) For every non-empty subset X of $\overline{\mathbb{R}}$ such that $X=\overline{\mathbb{R}}$ holds $-\infty$ is a minorant of X.
(39) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ for every Real number L_{1} such that L_{1} is a minorant of Y holds L_{1} is a minorant of X.
Let us note that it makes sense to consider the following constant. Then \mathbb{R} is a non-empty subset of $\overline{\mathbb{R}}$.

One can prove the following propositions:
$(41)^{9} \quad+\infty$ is a majorant of \mathbb{R}.

[^2](42) $\quad-\infty$ is a minorant of \mathbb{R}.

Let X be a non-empty subset of $\overline{\mathbb{R}}$. We say that X is upper bounded if and only if:
(Def.11) there exists a majorant U_{1} of X such that $U_{1} \in \mathbb{R}$.
The following two propositions are true:
(44) ${ }^{10}$ For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds if Y is upper bounded, then X is upper bounded.
(45) \mathbb{R} is not upper bounded.

Let X be a non-empty subset of $\overline{\mathbb{R}}$. We say that X is lower bounded if and only if:
(Def.12) there exists a minorant L_{1} of X such that $L_{1} \in \mathbb{R}$.
The following two propositions are true:
$(47)^{11}$ For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds if Y is lower bounded, then X is lower bounded.
(48) \mathbb{R} is not lower bounded.

Let X be a non-empty subset of $\overline{\mathbb{R}}$. We say that X is bounded if and only if:
(Def.13) $\quad X$ is upper bounded and X is lower bounded.
The following two propositions are true:
$(50){ }^{12}$ For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds if Y is bounded, then X is bounded.
(51) For every non-empty subset X of $\mathbb{\mathbb { R }}$ there exists a non-empty subset Y of $\overline{\mathbb{R}}$ such that for every Real number x holds $x \in Y$ if and only if x is a majorant of X.
Let X be a non-empty subset of $\overline{\mathbb{R}}$. The functor \bar{X} yields a non-empty subset of $\overline{\mathbb{R}}$ and is defined as follows:
(Def.14) for every Real number x holds $x \in \bar{X}$ if and only if x is a majorant of X.

One can prove the following four propositions:
(52) For every non-empty subset X of $\mathbb{\mathbb { R }}$ and for every non-empty subset Y of $\mathbb{\mathbb { R }}$ holds $Y=\bar{X}$ if and only if for every Real number x holds $x \in Y$ if and only if x is a majorant of X.
(53) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number x holds $x \in \bar{X}$ if and only if x is a majorant of X.
(54) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ for every Real number x such that $x \in \bar{Y}$ holds $x \in \bar{X}$.
(55) For every non-empty subset X of $\mathbb{\mathbb { R }}$ there exists a non-empty subset Y of $\overline{\mathbb{R}}$ such that for every Real number x holds $x \in Y$ if and only if x is a minorant of X.

[^3]Let X be a non-empty subset of $\overline{\mathbb{R}}$. The functor \underline{X} yields a non-empty subset of $\overline{\mathbb{R}}$ and is defined by:
(Def.15) for every Real number x holds $x \in \underline{X}$ if and only if x is a minorant of X.

We now state a number of propositions:
(56) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every non-empty subset Y of $\overline{\mathbb{R}}$ holds $Y=\underline{X}$ if and only if for every Real number x holds $x \in Y$ if and only if x is a minorant of X.
(57) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number x holds $x \in \underline{X}$ if and only if x is a minorant of X.
(58) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ for every Real number x such that $x \in \underline{Y}$ holds $x \in \underline{X}$.
(59) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is upper bounded and $X \neq\{-\infty\}$ there exists a real number x such that $x \in X$ and $x \neq-\infty$.
(60) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is lower bounded and $X \neq\{+\infty\}$ there exists a real number x such that $x \in X$ and $x \neq+\infty$.
$(62)^{13}$ For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is upper bounded and $X \neq\{-\infty\}$ there exists a Real number U_{1} such that U_{1} is a majorant of X and for every Real number y such that y is a majorant of X holds $U_{1} \leq y$.
(63) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is lower bounded and $X \neq\{+\infty\}$ there exists a Real number L_{1} such that L_{1} is a minorant of X and for every Real number y such that y is a minorant of X holds $y \leq L_{1}$.
(64) For every non-empty subset X of $\overline{\mathbb{R}}$ such that $X=\{-\infty\}$ holds X is upper bounded.
(65) For every non-empty subset X of $\overline{\mathbb{R}}$ such that $X=\{+\infty\}$ holds X is lower bounded.
(66) For every non-empty subset X of $\overline{\mathbb{R}}$ such that $X=\{-\infty\}$ there exists a Real number U_{1} such that U_{1} is a majorant of X and for every Real number y such that y is a majorant of X holds $U_{1} \leq y$.
(67) For every non-empty subset X of $\overline{\mathbb{R}}$ such that $X=\{+\infty\}$ there exists a Real number L_{1} such that L_{1} is a minorant of X and for every Real number y such that y is a minorant of X holds $y \leq L_{1}$.
(68) For every non-empty subset X of $\mathbb{\mathbb { R }}$ such that X is upper bounded there exists a Real number U_{1} such that U_{1} is a majorant of X and for every Real number y such that y is a majorant of X holds $U_{1} \leq y$.
(69) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is lower bounded there exists a Real number L_{1} such that L_{1} is a minorant of X and for every Real number y such that y is a minorant of X holds $y \leq L_{1}$.

[^4](70) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is not upper bounded for every Real number y such that y is a majorant of X holds $y=+\infty$.
(71) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is not lower bounded for every Real number y such that y is a minorant of X holds $y=-\infty$.
(72) For every non-empty subset X of $\overline{\mathbb{R}}$ there exists a Real number U_{1} such that U_{1} is a majorant of X and for every Real number y such that y is a majorant of X holds $U_{1} \leq y$.
(73) For every non-empty subset X of $\overline{\mathbb{R}}$ there exists a Real number L_{1} such that L_{1} is a minorant of X and for every Real number y such that y is a minorant of X holds $y \leq L_{1}$.
Let X be a non-empty subset of $\overline{\mathbb{R}}$. The functor $\sup X$ yields a Real number and is defined as follows:
(Def.16) $\sup X$ is a majorant of X and for every Real number y such that y is a majorant of X holds $\sup X \leq y$.
The following propositions are true:
(74) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number S holds $S=\sup X$ if and only if S is a majorant of X and for every Real number y such that y is a majorant of X holds $S \leq y$.
(75) For every non-empty subset X of $\overline{\mathbb{R}}$ holds $\sup X$ is a majorant of X and for every Real number y such that y is a majorant of X holds $\sup X \leq y$.
(76) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number x such that $x \in X$ holds $x \leq \sup X$.
Let X be a non-empty subset of $\overline{\mathbb{R}}$. The functor $\inf X$ yields a Real number and is defined by:
(Def.17) $\quad \inf X$ is a minorant of X and for every Real number y such that y is a minorant of X holds $y \leq \inf X$.

The following propositions are true:
(77) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number S holds $S=\inf X$ if and only if S is a minorant of X and for every Real number y such that y is a minorant of X holds $y \leq S$.
(78) For every non-empty subset X of $\overline{\mathbb{R}}$ holds $\inf X$ is a minorant of X and for every Real number y such that y is a minorant of X holds $y \leq \inf X$.
(79) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number x such that $x \in X$ holds $\inf X \leq x$
(80) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every majorant x of X such that $x \in X$ holds $x=\sup X$.
(81) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every minorant x of X such that $x \in X$ holds $x=\inf X$.
(82) For every non-empty subset X of $\overline{\mathbb{R}}$ holds $\sup X=\inf \bar{X}$ and $\inf X=$ $\sup \underline{X}$.
(83) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is upper bounded and $X \neq\{-\infty\}$ holds $\sup X \in \mathbb{R}$.
(84) For every non-empty subset X of $\overline{\mathbb{R}}$ such that X is lower bounded and $X \neq\{+\infty\}$ holds $\inf X \in \mathbb{R}$.
Let x be a Real number. Then $\{x\}$ is a non-empty subset of $\overline{\mathbb{R}}$.
Let x, y be Real numbers. Then $\{x, y\}$ is a non-empty subset of $\overline{\mathbb{R}}$.
We now state a number of propositions:
(85) For every Real number x holds $\sup \{x\}=x$.
(86) For every Real number x holds $\inf \{x\}=x$.
(90) $\inf \{+\infty\}=+\infty$.
(91) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds $\sup X \leq$ $\sup Y$.
(92) For all Real numbers x, y and for every Real number a such that $x \leq a$ and $y \leq a$ holds $\sup \{x, y\} \leq a$.
(93) For all Real numbers x, y holds if $x \leq y$, then $\sup \{x, y\}=y$ but if $y \leq x$, then $\sup \{x, y\}=x$.
(94) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds $\inf Y \leq$ $\inf X$.
(95) For all Real numbers x, y and for every Real number a such that $a \leq x$ and $a \leq y$ holds $a \leq \inf \{x, y\}$.
(96) For all Real numbers x, y holds if $x \leq y$, then $\inf \{x, y\}=x$ but if $y \leq x$, then $\inf \{x, y\}=y$.
(97) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number x such that there exists a Real number y such that $y \in X$ and $x \leq y$ holds $x \leq \sup X$.
(98) For every non-empty subset X of $\overline{\mathbb{R}}$ and for every Real number x such that there exists a Real number y such that $y \in X$ and $y \leq x$ holds $\inf X \leq x$.
(99) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that for every Real number x such that $x \in X$ there exists a Real number y such that $y \in Y$ and $x \leq y$ holds $\sup X \leq \sup Y$.
(100) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ such that for every Real number y such that $y \in Y$ there exists a Real number x such that $x \in X$ and $x \leq y$ holds $\inf X \leq \inf Y$.
Let X, Y be non-empty subsets of $\overline{\mathbb{R}}$. Then $X \cup Y$ is a non-empty subset of $\overline{\mathbb{R}}$.

One can prove the following propositions:
(101) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ and for every majorant U_{2} of X and for every majorant U_{3} of Y holds $\sup \left\{U_{2}, U_{3}\right\}$ is a majorant of $X \cup Y$.
(102) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ and for every minorant L_{2} of X and for every minorant L_{3} of Y holds $\inf \left\{L_{2}, L_{3}\right\}$ is a minorant of $X \cup Y$.
(103) For all non-empty subsets X, Y, S of $\overline{\mathbb{R}}$ and for every majorant U_{2} of X and for every majorant U_{3} of Y such that $S=X \cap Y$ holds $\inf \left\{U_{2}, U_{3}\right\}$ is a majorant of S.
(104) For all non-empty subsets X, Y, S of $\overline{\mathbb{R}}$ and for every minorant L_{2} of X and for every minorant L_{3} of Y such that $S=X \cap Y$ holds $\sup \left\{L_{2}, L_{3}\right\}$ is a minorant of S.
(105) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ holds $\sup (X \cup Y)=\sup \{\sup X, \sup Y\}$.
(106) For all non-empty subsets X, Y of $\overline{\mathbb{R}}$ holds $\inf (X \cup Y)=\inf \{\inf X, \inf Y\}$.
(107) For all non-empty subsets X, Y, S of $\overline{\mathbb{R}}$ such that $S=X \cap Y$ holds $\sup S \leq \inf \{\sup X, \sup Y\}$.
(108) For all non-empty subsets X, Y, S of $\overline{\mathbb{R}}$ such that $S=X \cap Y$ holds $\sup \{\inf X, \inf Y\} \leq \inf S$.
Let X be a non-empty set. A set is called a non-empty set of non-empty subsets of X if:
(Def.18) it is a non-empty subset of 2^{X} and for every set A such that $A \in$ it holds A is a non-empty set.

Let F be a non-empty set of non-empty subsets of $\overline{\mathbb{R}}$. The functor $\sup _{\overline{\mathbb{R}}} F$ yielding a non-empty subset of $\overline{\mathbb{R}}$ is defined as follows:
(Def.19) for every Real number a holds $a \in \sup _{\bar{R}} F$ if and only if there exists a non-empty subset A of $\overline{\mathbb{R}}$ such that $A \in F$ and $a=\sup A$.

We now state several propositions:
(110) ${ }^{14}$ For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every non-empty subset S of $\overline{\mathbb{R}}$ holds $S=\sup _{\overline{\mathbb{R}}} F$ if and only if for every Real number a holds $a \in S$ if and only if there exists a non-empty subset A of $\overline{\mathbb{R}}$ such that $A \in F$ and $a=\sup A$.
(111) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every Real number a holds $a \in \sup _{\bar{R}} F$ if and only if there exists a non-empty subset A of $\overline{\mathbb{R}}$ such that $A \in F$ and $a=\sup A$.
(112) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every non-empty subset S of $\mathbb{\mathbb { R }}$ such that $S=\bigcup F$ holds $\sup S$ is a majorant of $\sup _{\overline{\mathbb{R}}} F$.
(113) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every nonempty subset S of $\overline{\mathbb{R}}$ such that $S=\bigcup F$ holds $\sup \left(\sup _{\overline{\mathbb{R}}} F\right)$ is a majorant of S.

[^5](114) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every non-empty subset S of $\overline{\mathbb{R}}$ such that $S=\bigcup F$ holds $\sup S=\sup \left(\sup _{\overline{\mathbb{R}}} F\right)$.
Let F be a non-empty set of non-empty subsets of $\overline{\mathbb{R}}$. The functor $\inf _{\overline{\mathbb{R}}} F$ yields a non-empty subset of $\overline{\mathbb{R}}$ and is defined as follows:
(Def.20) for every Real number a holds $a \in \inf _{\overline{\mathrm{R}}} F$ if and only if there exists a non-empty subset A of $\overline{\mathbb{R}}$ such that $A \in F$ and $a=\inf A$.
We now state several propositions:
(115) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every non-empty subset S of $\overline{\mathbb{R}}$ holds $S=\inf _{\overline{\mathbb{R}}} F$ if and only if for every Real number a holds $a \in S$ if and only if there exists a non-empty subset A of $\overline{\mathbb{R}}$ such that $A \in F$ and $a=\inf A$.
(116) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every Real number a holds $a \in \inf _{\overline{\mathbb{R}}} F$ if and only if there exists a non-empty subset A of $\overline{\mathbb{R}}$ such that $A \in F$ and $a=\inf A$.
(117) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every non-empty subset S of $\overline{\mathbb{R}}$ such that $S=\bigcup F$ holds $\inf S$ is a minorant of $\inf _{\overline{\mathrm{R}}} F$.
(118) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every nonempty subset S of $\overline{\mathbb{R}}$ such that $S=\bigcup F$ holds $\inf \left(\inf _{\overline{\mathbb{R}}} F\right)$ is a minorant of S.
(119) For every non-empty set F of non-empty subsets of $\overline{\mathbb{R}}$ and for every non-empty subset S of $\overline{\mathbb{R}}$ such that $S=\bigcup F$ holds $\inf S=\inf \left(\inf _{\overline{\mathbb{R}}} F\right)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received September 27, 1990

[^0]: ${ }^{1}$ The proposition (3) was either repeated or obvious.

[^1]: ${ }^{2}$ The proposition (7) was either repeated or obvious.
 ${ }^{3}$ The proposition (9) was either repeated or obvious.
 ${ }^{4}$ The propositions (12)-(13) were either repeated or obvious.
 ${ }^{5}$ The proposition (15) was either repeated or obvious.

[^2]: ${ }^{6}$ The proposition (30) was either repeated or obvious.
 ${ }^{7}$ The proposition (32) was either repeated or obvious.
 ${ }^{8}$ The proposition (35) was either repeated or obvious.
 ${ }^{9}$ The proposition (40) was either repeated or obvious.

[^3]: ${ }^{10}$ The proposition (43) was either repeated or obvious.
 ${ }^{11}$ The proposition (46) was either repeated or obvious.
 ${ }^{12}$ The proposition (49) was either repeated or obvious.

[^4]: ${ }^{13}$ The proposition (61) was either repeated or obvious.

[^5]: ${ }^{14}$ The proposition (109) was either repeated or obvious.

