Schemes of Existence of some Types of Functions

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. We prove some useful shemes of existence of real sequences, partial functions from a domain into a domain, partial functions from a set to a set and functions from a domain into a domain. At the beginning we prove some related auxiliary theorems to the article [1].

MML Identifier: SCHEME1.

The notation and terminology used here are introduced in the following articles: [9], [5], [1], [2], [3], [8], [6], [4], and [7]. We adopt the following convention: x, y will be arbitrary, n, m will denote natural numbers, and r will denote a real number. Next we state four propositions:

- (1) For every *n* there exists *m* such that $n = 2 \cdot m$ or $n = 2 \cdot m + 1$.
- (2) For every n there exists m such that $n = 3 \cdot m$ or $n = 3 \cdot m + 1$ or $n = 3 \cdot m + 2$.
- (3) For every n there exists m such that $n = 4 \cdot m$ or $n = 4 \cdot m + 1$ or $n = 4 \cdot m + 2$ or $n = 4 \cdot m + 3$.
- (4) For every *n* there exists *m* such that $n = 5 \cdot m$ or $n = 5 \cdot m + 1$ or $n = 5 \cdot m + 2$ or $n = 5 \cdot m + 3$ or $n = 5 \cdot m + 4$.

In this article we present several logical schemes. The scheme ExRealSubseq concerns a sequence of real numbers \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists a sequence of real numbers q such that q is a subsequence of \mathcal{A} and for every n holds $\mathcal{P}[q(n)]$ and for every n such that for every r such that $r = \mathcal{A}(n)$ holds $\mathcal{P}[r]$ there exists m such that $\mathcal{A}(n) = q(m)$

provided the following requirement is met:

• for every n there exists m such that $n \leq m$ and $\mathcal{P}[\mathcal{A}(m)]$.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C8

The scheme ExRealSeq2 deals with a unary functor \mathcal{F} yielding a real number and a unary functor \mathcal{G} yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds $s(2 \cdot n) = \mathcal{F}(n)$ and $s(2 \cdot n + 1) = \mathcal{G}(n)$ for all values of the parameters.

The scheme ExRealSeq3 deals with a unary functor \mathcal{F} yielding a real number, a unary functor \mathcal{G} yielding a real number, and a unary functor \mathcal{H} yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds $s(3 \cdot n) = \mathcal{F}(n)$ and $s(3 \cdot n + 1) = \mathcal{G}(n)$ and $s(3 \cdot n + 2) = \mathcal{H}(n)$ for all values of the parameters.

The scheme ExRealSeq4 deals with a unary functor \mathcal{F} yielding a real number, a unary functor \mathcal{G} yielding a real number, a unary functor \mathcal{H} yielding a real number, and a unary functor \mathcal{I} yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds $s(4 \cdot n) = \mathcal{F}(n)$ and $s(4 \cdot n + 1) = \mathcal{G}(n)$ and $s(4 \cdot n + 2) = \mathcal{H}(n)$ and $s(4 \cdot n + 3) = \mathcal{I}(n)$ for all values of the parameters.

The scheme ExRealSeq5 deals with a unary functor \mathcal{F} yielding a real number, a unary functor \mathcal{G} yielding a real number, a unary functor \mathcal{H} yielding a real number, a unary functor \mathcal{I} yielding a real number, and a unary functor \mathcal{J} yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds $s(5 \cdot n) = \mathcal{F}(n)$ and $s(5 \cdot n + 1) = \mathcal{G}(n)$ and $s(5 \cdot n + 2) = \mathcal{H}(n)$ and $s(5 \cdot n + 3) = \mathcal{I}(n)$ and $s(5 \cdot n + 4) = \mathcal{J}(n)$

for all values of the parameters.

The scheme *PartFuncExD2* deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element of \mathcal{B} , and two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \text{dom } f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ provided the following condition is met:

• for every element c of \mathcal{A} such that $\mathcal{P}[c]$ holds not $\mathcal{Q}[c]$.

The scheme PartFuncExD2' concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element of \mathcal{B} , and two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \text{dom } f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ provided the following requirement is met:

• for every element c of \mathcal{A} such that $\mathcal{P}[c]$ and $\mathcal{Q}[c]$ holds $\mathcal{F}(c) = \mathcal{G}(c)$.

The scheme *PartFuncExD2*" deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that f is total and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if not $\mathcal{P}[c]$, then $f(c) = \mathcal{G}(c)$

for all values of the parameters.

The scheme *PartFuncExD3* deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element of \mathcal{B} , a unary functor \mathcal{H} yielding an element of \mathcal{B} , and three unary predicates \mathcal{P} , \mathcal{Q} , and \mathcal{R} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element cof \mathcal{A} holds $c \in \text{dom } f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the parameters satisfy the following condition:

• for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$.

The scheme *PartFuncExD3*' concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element of \mathcal{B} , a unary functor \mathcal{H} yielding an element of \mathcal{B} , and three unary predicates \mathcal{P} , \mathcal{Q} , and \mathcal{R} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \text{dom } f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the following requirement is met:

• for every element c of \mathcal{A} holds if $\mathcal{P}[c]$ and $\mathcal{Q}[c]$, then $\mathcal{F}(c) = \mathcal{G}(c)$ but if $\mathcal{P}[c]$ and $\mathcal{R}[c]$, then $\mathcal{F}(c) = \mathcal{H}(c)$ but if $\mathcal{Q}[c]$ and $\mathcal{R}[c]$, then $\mathcal{G}(c) = \mathcal{H}(c)$.

The scheme *PartFuncExD4* deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element of \mathcal{B} , a unary functor \mathcal{I} yielding an element of \mathcal{B} , a unary functor \mathcal{I} yielding an element of \mathcal{B} , and four unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and \mathcal{S} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element cof \mathcal{A} holds $c \in \text{dom } f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$ and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$ but if $\mathcal{S}[c]$, then $f(c) = \mathcal{I}(c)$ provided the parameters satisfy the following condition:

• for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$.

The scheme *PartFuncExS2* deals with a set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} , a unary functor \mathcal{G} , and two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \text{dom } f$ if and only if $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ and for every x such that $x \in \text{dom } f$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ but if $\mathcal{Q}[x]$, then $f(x) = \mathcal{G}(x)$

provided the parameters satisfy the following conditions:

- for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $\mathcal{Q}[x]$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{Q}[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$.

The scheme *PartFuncExS3* deals with a set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} , a unary functor \mathcal{G} , a unary functor \mathcal{H} , and three unary predicates \mathcal{P} , \mathcal{Q} , and \mathcal{R} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \text{dom } f$ if and only if $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ or $\mathcal{R}[x]$ and for every x such that $x \in \text{dom } f$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ but if $\mathcal{Q}[x]$, then $f(x) = \mathcal{G}(x)$ but if $\mathcal{R}[x]$, then $f(x) = \mathcal{H}(x)$

provided the parameters meet the following conditions:

- for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $\mathcal{Q}[x]$ but if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$ but if $\mathcal{Q}[x]$, then not $\mathcal{R}[x]$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{Q}[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$.

The scheme *PartFuncExS4* deals with a set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} , a unary functor \mathcal{G} , a unary functor \mathcal{H} , a unary functor \mathcal{I} , and four unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and \mathcal{S} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \text{dom } f$ if and only if $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ or $\mathcal{R}[x]$ or $\mathcal{S}[x]$ and for every x such that $x \in \text{dom } f$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ but if $\mathcal{Q}[x]$, then $f(x) = \mathcal{G}(x)$ but if $\mathcal{R}[x]$, then $f(x) = \mathcal{H}(x)$ but if $\mathcal{S}[x]$, then $f(x) = \mathcal{I}(x)$ provided the parameters meet the following requirements:

- for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $\mathcal{Q}[x]$ but if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$ but if $\mathcal{P}[x]$, then not $\mathcal{S}[x]$ but if $\mathcal{Q}[x]$, then not $\mathcal{R}[x]$ but if $\mathcal{Q}[x]$, then not $\mathcal{R}[x]$ but if $\mathcal{Q}[x]$, then not $\mathcal{S}[x]$ but if $\mathcal{R}[x]$, then not $\mathcal{S}[x]$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{Q}[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{S}[x]$ holds $\mathcal{I}(x) \in \mathcal{B}$.

The scheme $PartFuncExC_D2$ concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , a binary functor \mathcal{G} yielding an element of \mathcal{C} , and two binary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a partial function f from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d \rangle \in \text{dom } f$ if and only if $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ and for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d \rangle \in \text{dom } f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d \rangle) = \mathcal{F}(c, d)$ but if $\mathcal{Q}[c, d]$, then $f(\langle c, d \rangle) = \mathcal{G}(c, d)$

provided the parameters meet the following requirement:

• for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\mathcal{P}[c, d]$ holds not $\mathcal{Q}[c, d]$.

The scheme $PartFuncExC_D3$ concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , a binary functor \mathcal{G} yielding an element of \mathcal{C} , a binary functor \mathcal{H} yielding an element of \mathcal{C} , and three binary predicates \mathcal{P} , \mathcal{Q} , and \mathcal{R} , and states that:

there exists a partial function f from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d \rangle \in \text{dom } f$ if and only if $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ or $\mathcal{R}[c, d]$ and for every element c of \mathcal{A} and for every element r of \mathcal{B} such that $\langle c, r \rangle \in \text{dom } f$ holds if $\mathcal{P}[c, r]$, then $f(\langle c, r \rangle) = \mathcal{F}(c, r)$ but if $\mathcal{Q}[c, r]$, then $f(\langle c, r \rangle) = \mathcal{G}(c, r)$ but if $\mathcal{R}[c, r]$, then $f(\langle c, r \rangle) = \mathcal{H}(c, r)$

provided the following requirement is met:

• for every element c of \mathcal{A} and for every element s of \mathcal{B} holds if $\mathcal{P}[c, s]$, then not $\mathcal{Q}[c, s]$ but if $\mathcal{P}[c, s]$, then not $\mathcal{R}[c, s]$ but if $\mathcal{Q}[c, s]$, then not $\mathcal{R}[c, s]$.

The scheme *PartFuncExC_S2* concerns a set \mathcal{A} , a set \mathcal{B} , a set \mathcal{C} , a binary functor \mathcal{F} , a binary functor \mathcal{G} , and two binary predicates \mathcal{P} and \mathcal{Q} , and states that:

there exists a partial function f from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for all x, y holds $\langle x, y \rangle \in \text{dom } f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or $\mathcal{Q}[x, y]$ and for all x, y such that $\langle x, y \rangle \in \text{dom } f$ holds if $\mathcal{P}[x, y]$, then $f(\langle x, y \rangle) = \mathcal{F}(x, y)$ but if $\mathcal{Q}[x, y]$, then $f(\langle x, y \rangle) = \mathcal{G}(x, y)$

provided the following conditions are met:

- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not $\mathcal{Q}[x, y]$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{Q}[x, y]$ holds $\mathcal{G}(x, y) \in \mathcal{C}$.

The scheme *PartFuncExC_S3* concerns a set \mathcal{A} , a set \mathcal{B} , a set \mathcal{C} , a binary functor \mathcal{F} , a binary functor \mathcal{G} , a binary functor \mathcal{H} , and three binary predicates \mathcal{P} , \mathcal{Q} , and \mathcal{R} , and states that:

there exists a partial function f from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for all x, y holds $\langle x, y \rangle \in \text{dom } f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or $\mathcal{Q}[x, y]$ or $\mathcal{R}[x, y]$ and for all x, y such that $\langle x, y \rangle \in \text{dom } f$ holds if $\mathcal{P}[x, y]$, then $f(\langle x, y \rangle) = \mathcal{F}(x, y)$ but if $\mathcal{Q}[x, y]$, then $f(\langle x, y \rangle) = \mathcal{G}(x, y)$ but if $\mathcal{R}[x, y]$, then $f(\langle x, y \rangle) = \mathcal{H}(x, y)$ provided the following conditions are met:

- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not $\mathcal{Q}[x, y]$ but if $\mathcal{P}[x, y]$, then not $\mathcal{R}[x, y]$ but if $\mathcal{Q}[x, y]$, then not $\mathcal{R}[x, y]$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then $\mathcal{F}(x, y) \in \mathcal{C}$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{Q}[x, y]$, then $\mathcal{G}(x, y) \in \mathcal{C}$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{R}[x, y]$, then $\mathcal{H}(x, y) \in \mathcal{C}$.

The scheme ExFuncD3 concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element

of \mathcal{B} , a unary functor \mathcal{H} yielding an element of \mathcal{B} , and three unary predicates \mathcal{P} , \mathcal{Q} , and \mathcal{R} , and states that:

there exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the parameters satisfy the following conditions:

- for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$,
 - then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$,
- for every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$.

The scheme ExFuncD4 concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a unary functor \mathcal{G} yielding an element of \mathcal{B} , a unary functor \mathcal{H} yielding an element of \mathcal{B} , a unary functor \mathcal{I} yielding an element of \mathcal{B} , and four unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and \mathcal{S} , and states that:

there exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$ but if $\mathcal{S}[c]$, then $f(c) = \mathcal{I}(c)$

provided the following conditions are met:

- for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$,
- for every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$.

The scheme *FuncExC_D2* deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , a binary functor \mathcal{G} yielding an element of \mathcal{C} , and a binary predicate \mathcal{P} , and states that:

there exists a function f from $[\mathcal{A}, \mathcal{B}]$ into \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d \rangle \in \text{dom } f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d \rangle) = \mathcal{F}(c, d)$ but if not $\mathcal{P}[c, d]$, then $f(\langle c, d \rangle) = \mathcal{G}(c, d)$ for all values of the parameters.

The scheme $FuncExC_D3$ deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , a binary functor \mathcal{G} yielding an element of \mathcal{C} , a binary functor \mathcal{H} yielding an element of \mathcal{C} , and three binary predicates \mathcal{P} , \mathcal{Q} , and \mathcal{R} , and states that:

there exists a function f from $[\mathcal{A}, \mathcal{B}]$ into \mathcal{C} such that for every element cof \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d \rangle \in \text{dom } f$ if and only if $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ or $\mathcal{R}[c, d]$ and for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d \rangle \in \text{dom } f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d \rangle) = \mathcal{F}(c, d)$ but if $\mathcal{Q}[c, d]$, then $f(\langle c, d \rangle) = \mathcal{G}(c, d)$ but if $\mathcal{R}[c, d]$, then $f(\langle c, d \rangle) = \mathcal{H}(c, d)$

provided the parameters have the following properties:

- for every element c of \mathcal{A} and for every element d of \mathcal{B} holds if $\mathcal{P}[c, d]$, then not $\mathcal{Q}[c, d]$ but if $\mathcal{P}[c, d]$, then not $\mathcal{R}[c, d]$ but if $\mathcal{Q}[c, d]$, then not $\mathcal{R}[c, d]$,
- for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ or $\mathcal{R}[c, d]$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269–272, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received September 21, 1990