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Summary. We prove some useful shemes of existence of real se-
quences, partial functions from a domain into a domain, partial functions
from a set to a set and functions from a domain into a domain. At the
begining we prove some related auxiliary theorems to the article [1].

MML Identifier: SCHEME1.

The notation and terminology used here are introduced in the following articles:
[9], [5], [1], [2], [3], [8], [6], [4], and [7]. We adopt the following convention: x,
y will be arbitrary, n, m will denote natural numbers, and r will denote a real
number. Next we state four propositions:

(1) For every n there exists m such that n = 2 · m or n = 2 · m + 1.

(2) For every n there exists m such that n = 3 · m or n = 3 · m + 1 or
n = 3 · m + 2.

(3) For every n there exists m such that n = 4 · m or n = 4 · m + 1 or
n = 4 · m + 2 or n = 4 · m + 3.

(4) For every n there exists m such that n = 5 · m or n = 5 · m + 1 or
n = 5 · m + 2 or n = 5 · m + 3 or n = 5 · m + 4.

In this article we present several logical schemes. The scheme ExRealSubseq

concerns a sequence of real numbers A, and a unary predicate P, and states
that:

there exists a sequence of real numbers q such that q is a subsequence of A
and for every n holds P[q(n)] and for every n such that for every r such that
r = A(n) holds P[r] there exists m such that A(n) = q(m)
provided the following requirement is met:

• for every n there exists m such that n ≤ m and P[A(m)].
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The scheme ExRealSeq2 deals with a unary functor F yielding a real number
and a unary functor G yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(2·n) =
F(n) and s(2 · n + 1) = G(n)

for all values of the parameters.

The scheme ExRealSeq3 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, and a unary functor H yielding a real
number and states that:

there exists a sequence of real numbers s such that for every n holds s(3·n) =
F(n) and s(3 · n + 1) = G(n) and s(3 · n + 2) = H(n)

for all values of the parameters.

The scheme ExRealSeq4 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, a unary functor H yielding a real
number, and a unary functor I yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(4·n) =
F(n) and s(4 · n + 1) = G(n) and s(4 · n + 2) = H(n) and s(4 · n + 3) = I(n)

for all values of the parameters.

The scheme ExRealSeq5 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, a unary functor H yielding a real
number, a unary functor I yielding a real number, and a unary functor J
yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(5·n) =
F(n) and s(5 · n + 1) = G(n) and s(5 · n + 2) = H(n) and s(5 · n + 3) = I(n)
and s(5 · n + 4) = J (n)

for all values of the parameters.

The scheme PartFuncExD2 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and two unary predicates P and Q, and states that:

there exists a partial function f from A to B such that for every element c of
A holds c ∈ dom f if and only if P[c] or Q[c] and for every element c of A such
that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c)

provided the following condition is met:

• for every element c of A such that P[c] holds not Q[c].

The scheme PartFuncExD2’ concerns a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and two unary predicates P and Q, and states that:

there exists a partial function f from A to B such that for every element c of
A holds c ∈ dom f if and only if P[c] or Q[c] and for every element c of A such
that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c)

provided the following requirement is met:

• for every element c of A such that P[c] and Q[c] holds F(c) = G(c).

The scheme PartFuncExD2” deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and a unary predicate P, and states that:
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there exists a partial function f from A to B such that f is total and for
every element c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if
not P[c], then f(c) = G(c)
for all values of the parameters.

The scheme PartFuncExD3 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, and three unary
predicates P, Q, and R, and states that:

there exists a partial function f from A to B such that for every element c

of A holds c ∈ dom f if and only if P[c] or Q[c] or R[c] and for every element
c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then
f(c) = G(c) but if R[c], then f(c) = H(c)
provided the parameters satisfy the following condition:

• for every element c of A holds if P[c], then not Q[c] but if P[c],
then not R[c] but if Q[c], then not R[c].

The scheme PartFuncExD3’ concerns a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, and three unary
predicates P, Q, and R, and states that:

there exists a partial function f from A to B such that for every element c

of A holds c ∈ dom f if and only if P[c] or Q[c] or R[c] and for every element
c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then
f(c) = G(c) but if R[c], then f(c) = H(c)
provided the following requirement is met:

• for every element c of A holds if P[c] and Q[c], then F(c) = G(c)
but if P[c] and R[c], then F(c) = H(c) but if Q[c] and R[c], then
G(c) = H(c).

The scheme PartFuncExD4 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, a unary functor I
yielding an element of B, and four unary predicates P, Q, R, and S, and states
that:

there exists a partial function f from A to B such that for every element c

of A holds c ∈ dom f if and only if P[c] or Q[c] or R[c] or S[c] and for every
element c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c],
then f(c) = G(c) but if R[c], then f(c) = H(c) but if S[c], then f(c) = I(c)
provided the parameters satisfy the following condition:

• for every element c of A holds if P[c], then not Q[c] but if P[c],
then not R[c] but if P[c], then not S[c] but if Q[c], then not R[c]
but if Q[c], then not S[c] but if R[c], then not S[c].

The scheme PartFuncExS2 deals with a set A, a set B, a unary functor F , a
unary functor G, and two unary predicates P and Q, and states that:

there exists a partial function f from A to B such that for every x holds
x ∈ dom f if and only if x ∈ A but P[x] or Q[x] and for every x such that
x ∈ dom f holds if P[x], then f(x) = F(x) but if Q[x], then f(x) = G(x)
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provided the parameters satisfy the following conditions:

• for every x such that x ∈ A holds if P[x], then not Q[x],

• for every x such that x ∈ A and P[x] holds F(x) ∈ B,

• for every x such that x ∈ A and Q[x] holds G(x) ∈ B.

The scheme PartFuncExS3 deals with a set A, a set B, a unary functor F , a
unary functor G, a unary functor H, and three unary predicates P, Q, and R,
and states that:

there exists a partial function f from A to B such that for every x holds
x ∈ dom f if and only if x ∈ A but P[x] or Q[x] or R[x] and for every x such
that x ∈ dom f holds if P[x], then f(x) = F(x) but if Q[x], then f(x) = G(x)
but if R[x], then f(x) = H(x)

provided the parameters meet the following conditions:

• for every x such that x ∈ A holds if P[x], then not Q[x] but if P[x],
then not R[x] but if Q[x], then not R[x],

• for every x such that x ∈ A and P[x] holds F(x) ∈ B,

• for every x such that x ∈ A and Q[x] holds G(x) ∈ B,

• for every x such that x ∈ A and R[x] holds H(x) ∈ B.

The scheme PartFuncExS4 deals with a set A, a set B, a unary functor
F , a unary functor G, a unary functor H, a unary functor I, and four unary
predicates P, Q, R, and S, and states that:

there exists a partial function f from A to B such that for every x holds
x ∈ dom f if and only if x ∈ A but P[x] or Q[x] or R[x] or S[x] and for
every x such that x ∈ dom f holds if P[x], then f(x) = F(x) but if Q[x], then
f(x) = G(x) but if R[x], then f(x) = H(x) but if S[x], then f(x) = I(x)

provided the parameters meet the following requirements:

• for every x such that x ∈ A holds if P[x], then not Q[x] but if P[x],
then not R[x] but if P[x], then not S[x] but if Q[x], then not R[x]
but if Q[x], then not S[x] but if R[x], then not S[x],

• for every x such that x ∈ A and P[x] holds F(x) ∈ B,
• for every x such that x ∈ A and Q[x] holds G(x) ∈ B,

• for every x such that x ∈ A and R[x] holds H(x) ∈ B,

• for every x such that x ∈ A and S[x] holds I(x) ∈ B.

The scheme PartFuncExC D2 concerns a non-empty set A, a non-empty set
B, a non-empty set C, a binary functor F yielding an element of C, a binary
functor G yielding an element of C, and two binary predicates P and Q, and
states that:

there exists a partial function f from [:A, B :] to C such that for every element
c of A and for every element d of B holds 〈〈c, d〉〉 ∈ dom f if and only if P[c, d]
or Q[c, d] and for every element c of A and for every element d of B such that
〈〈c, d〉〉 ∈ dom f holds if P[c, d], then f(〈〈c, d〉〉) = F(c, d) but if Q[c, d], then
f(〈〈c, d〉〉) = G(c, d)

provided the parameters meet the following requirement:

• for every element c of A and for every element d of B such that
P[c, d] holds not Q[c, d].
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The scheme PartFuncExC D3 concerns a non-empty set A, a non-empty set
B, a non-empty set C, a binary functor F yielding an element of C, a binary
functor G yielding an element of C, a binary functor H yielding an element of
C, and three binary predicates P, Q, and R, and states that:

there exists a partial function f from [:A, B :] to C such that for every element
c of A and for every element d of B holds 〈〈c, d〉〉 ∈ dom f if and only if P[c, d] or
Q[c, d] or R[c, d] and for every element c of A and for every element r of B such
that 〈〈c, r〉〉 ∈ dom f holds if P[c, r], then f(〈〈c, r〉〉) = F(c, r) but if Q[c, r], then
f(〈〈c, r〉〉) = G(c, r) but if R[c, r], then f(〈〈c, r〉〉) = H(c, r)

provided the following requirement is met:

• for every element c of A and for every element s of B holds if P[c, s],
then not Q[c, s] but if P[c, s], then not R[c, s] but if Q[c, s], then
not R[c, s].

The scheme PartFuncExC S2 concerns a set A, a set B, a set C, a binary
functor F , a binary functor G, and two binary predicates P and Q, and states
that:

there exists a partial function f from [:A, B :] to C such that for all x, y holds
〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B but P[x, y] or Q[x, y] and for all
x, y such that 〈〈x, y〉〉 ∈ dom f holds if P[x, y], then f(〈〈x, y〉〉) = F(x, y) but if
Q[x, y], then f(〈〈x, y〉〉) = G(x, y)

provided the following conditions are met:

• for all x, y such that x ∈ A and y ∈ B holds if P[x, y], then not
Q[x, y],

• for all x, y such that x ∈ A and y ∈ B and P[x, y] holds F(x, y) ∈ C,

• for all x, y such that x ∈ A and y ∈ B and Q[x, y] holds G(x, y) ∈ C.

The scheme PartFuncExC S3 concerns a set A, a set B, a set C, a binary
functor F , a binary functor G, a binary functor H, and three binary predicates
P, Q, and R, and states that:

there exists a partial function f from [:A, B :] to C such that for all x, y holds
〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B but P[x, y] or Q[x, y] or R[x, y]
and for all x, y such that 〈〈x, y〉〉 ∈ dom f holds if P[x, y], then f(〈〈x, y〉〉) = F(x, y)
but if Q[x, y], then f(〈〈x, y〉〉) = G(x, y) but if R[x, y], then f(〈〈x, y〉〉) = H(x, y)

provided the following conditions are met:

• for all x, y such that x ∈ A and y ∈ B holds if P[x, y], then
not Q[x, y] but if P[x, y], then not R[x, y] but if Q[x, y], then not
R[x, y],

• for all x, y such that x ∈ A and y ∈ B holds if P[x, y], then
F(x, y) ∈ C,

• for all x, y such that x ∈ A and y ∈ B holds if Q[x, y], then
G(x, y) ∈ C,

• for all x, y such that x ∈ A and y ∈ B holds if R[x, y], then
H(x, y) ∈ C.

The scheme ExFuncD3 concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, a unary functor G yielding an element
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of B, a unary functor H yielding an element of B, and three unary predicates
P, Q, and R, and states that:

there exists a function f from A into B such that for every element c of A
holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c) but if R[c], then
f(c) = H(c)

provided the parameters satisfy the following conditions:

• for every element c of A holds if P[c], then not Q[c] but if P[c],
then not R[c] but if Q[c], then not R[c],

• for every element c of A holds P[c] or Q[c] or R[c].

The scheme ExFuncD4 concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, a unary functor G yielding an element
of B, a unary functor H yielding an element of B, a unary functor I yielding an
element of B, and four unary predicates P, Q, R, and S, and states that:

there exists a function f from A into B such that for every element c of A
holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c) but if R[c], then
f(c) = H(c) but if S[c], then f(c) = I(c)

provided the following conditions are met:

• for every element c of A holds if P[c], then not Q[c] but if P[c],
then not R[c] but if P[c], then not S[c] but if Q[c], then not R[c]
but if Q[c], then not S[c] but if R[c], then not S[c],

• for every element c of A holds P[c] or Q[c] or R[c] or S[c].

The scheme FuncExC D2 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, a binary functor
G yielding an element of C, and a binary predicate P, and states that:

there exists a function f from [:A, B :] into C such that for every element c

of A and for every element d of B such that 〈〈c, d〉〉 ∈ dom f holds if P[c, d], then
f(〈〈c, d〉〉) = F(c, d) but if not P[c, d], then f(〈〈c, d〉〉) = G(c, d)

for all values of the parameters.

The scheme FuncExC D3 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, a binary functor
G yielding an element of C, a binary functor H yielding an element of C, and
three binary predicates P, Q, and R, and states that:

there exists a function f from [:A, B :] into C such that for every element c

of A and for every element d of B holds 〈〈c, d〉〉 ∈ dom f if and only if P[c, d] or
Q[c, d] or R[c, d] and for every element c of A and for every element d of B such
that 〈〈c, d〉〉 ∈ dom f holds if P[c, d], then f(〈〈c, d〉〉) = F(c, d) but if Q[c, d], then
f(〈〈c, d〉〉) = G(c, d) but if R[c, d], then f(〈〈c, d〉〉) = H(c, d)

provided the parameters have the following properties:

• for every element c of A and for every element d of B holds if P[c, d],
then not Q[c, d] but if P[c, d], then not R[c, d] but if Q[c, d], then
not R[c, d],

• for every element c of A and for every element d of B holds P[c, d]
or Q[c, d] or R[c, d].



Schemes of Existence of some Types of . . . 123

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
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