Schemes of Existence of some Types of Functions

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. We prove some useful shemes of existence of real sequences, partial functions from a domain into a domain, partial functions from a set to a set and functions from a domain into a domain. At the begining we prove some related auxiliary theorems to the article [1].

MML Identifier: SCHEME1.

The notation and terminology used here are introduced in the following articles: [9], [5], [1], [2], [3], [8], [6], [4], and [7]. We adopt the following convention: x, y will be arbitrary, n, m will denote natural numbers, and r will denote a real number. Next we state four propositions:
(1) For every n there exists m such that $n=2 \cdot m$ or $n=2 \cdot m+1$.
(2) For every n there exists m such that $n=3 \cdot m$ or $n=3 \cdot m+1$ or $n=3 \cdot m+2$.
(3) For every n there exists m such that $n=4 \cdot m$ or $n=4 \cdot m+1$ or $n=4 \cdot m+2$ or $n=4 \cdot m+3$.
(4) For every n there exists m such that $n=5 \cdot m$ or $n=5 \cdot m+1$ or $n=5 \cdot m+2$ or $n=5 \cdot m+3$ or $n=5 \cdot m+4$.
In this article we present several logical schemes. The scheme ExRealSubseq concerns a sequence of real numbers \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists a sequence of real numbers q such that q is a subsequence of \mathcal{A} and for every n holds $\mathcal{P}[q(n)]$ and for every n such that for every r such that $r=\mathcal{A}(n)$ holds $\mathcal{P}[r]$ there exists m such that $\mathcal{A}(n)=q(m)$ provided the following requirement is met:

- for every n there exists m such that $n \leq m$ and $\mathcal{P}[\mathcal{A}(m)]$.

[^0]The scheme ExRealSeq2 deals with a unary functor \mathcal{F} yielding a real number and a unary functor \mathcal{G} yielding a real number and states that:
there exists a sequence of real numbers s such that for every n holds $s(2 \cdot n)=$ $\mathcal{F}(n)$ and $s(2 \cdot n+1)=\mathcal{G}(n)$
for all values of the parameters.
The scheme ExRealSeq 3 deals with a unary functor \mathcal{F} yielding a real number, a unary functor \mathcal{G} yielding a real number, and a unary functor \mathcal{H} yielding a real number and states that:
there exists a sequence of real numbers s such that for every n holds $s(3 \cdot n)=$ $\mathcal{F}(n)$ and $s(3 \cdot n+1)=\mathcal{G}(n)$ and $s(3 \cdot n+2)=\mathcal{H}(n)$ for all values of the parameters.

The scheme ExRealSeq4 deals with a unary functor \mathcal{F} yielding a real number, a unary functor \mathcal{G} yielding a real number, a unary functor \mathcal{H} yielding a real number, and a unary functor \mathcal{I} yielding a real number and states that:
there exists a sequence of real numbers s such that for every n holds $s(4 \cdot n)=$ $\mathcal{F}(n)$ and $s(4 \cdot n+1)=\mathcal{G}(n)$ and $s(4 \cdot n+2)=\mathcal{H}(n)$ and $s(4 \cdot n+3)=\mathcal{I}(n)$ for all values of the parameters.

The scheme ExRealSeq 5 deals with a unary functor \mathcal{F} yielding a real number, a unary functor \mathcal{G} yielding a real number, a unary functor \mathcal{H} yielding a real number, a unary functor \mathcal{I} yielding a real number, and a unary functor \mathcal{J} yielding a real number and states that:
there exists a sequence of real numbers s such that for every n holds $s(5 \cdot n)=$ $\mathcal{F}(n)$ and $s(5 \cdot n+1)=\mathcal{G}(n)$ and $s(5 \cdot n+2)=\mathcal{H}(n)$ and $s(5 \cdot n+3)=\mathcal{I}(n)$ and $s(5 \cdot n+4)=\mathcal{J}(n)$
for all values of the parameters.
The scheme PartFuncExD2 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element of \mathcal{B}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ and for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ provided the following condition is met:

- for every element c of \mathcal{A} such that $\mathcal{P}[c]$ holds not $\mathcal{Q}[c]$.

The scheme PartFuncExD2' concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element of \mathcal{B}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ and for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ provided the following requirement is met:

- for every element c of \mathcal{A} such that $\mathcal{P}[c]$ and $\mathcal{Q}[c]$ holds $\mathcal{F}(c)=\mathcal{G}(c)$.

The scheme PartFuncExD2" deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that f is total and for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if not $\mathcal{P}[c]$, then $f(c)=\mathcal{G}(c)$
for all values of the parameters.
The scheme PartFuncExD3 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element of \mathcal{B}, a unary functor \mathcal{H} yielding an element of \mathcal{B}, and three unary predicates \mathcal{P}, \mathcal{Q}, and \mathcal{R}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ and for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$
provided the parameters satisfy the following condition:

- for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$,
then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$.
The scheme PartFuncExD3' concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element of \mathcal{B}, a unary functor \mathcal{H} yielding an element of \mathcal{B}, and three unary predicates \mathcal{P}, \mathcal{Q}, and \mathcal{R}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ and for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$
provided the following requirement is met:
- for every element c of \mathcal{A} holds if $\mathcal{P}[c]$ and $\mathcal{Q}[c]$, then $\mathcal{F}(c)=\mathcal{G}(c)$ but if $\mathcal{P}[c]$ and $\mathcal{R}[c]$, then $\mathcal{F}(c)=\mathcal{H}(c)$ but if $\mathcal{Q}[c]$ and $\mathcal{R}[c]$, then $\mathcal{G}(c)=\mathcal{H}(c)$.
The scheme PartFuncExD4 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element of \mathcal{B}, a unary functor \mathcal{H} yielding an element of \mathcal{B}, a unary functor \mathcal{I} yielding an element of \mathcal{B}, and four unary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and \mathcal{S}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ if and only if $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$ and for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$ but if $\mathcal{S}[c]$, then $f(c)=\mathcal{I}(c)$ provided the parameters satisfy the following condition:
- for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$.
The scheme PartFuncExS2 deals with a set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F}, a unary functor \mathcal{G}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ and for every x such that $x \in \operatorname{dom} f$ holds if $\mathcal{P}[x]$, then $f(x)=\mathcal{F}(x)$ but if $\mathcal{Q}[x]$, then $f(x)=\mathcal{G}(x)$
provided the parameters satisfy the following conditions:
- for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $\mathcal{Q}[x]$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{Q}[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$.

The scheme PartFuncExS3 deals with a set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F}, a unary functor \mathcal{G}, a unary functor \mathcal{H}, and three unary predicates \mathcal{P}, \mathcal{Q}, and \mathcal{R}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ or $\mathcal{R}[x]$ and for every x such that $x \in \operatorname{dom} f$ holds if $\mathcal{P}[x]$, then $f(x)=\mathcal{F}(x)$ but if $\mathcal{Q}[x]$, then $f(x)=\mathcal{G}(x)$ but if $\mathcal{R}[x]$, then $f(x)=\mathcal{H}(x)$
provided the parameters meet the following conditions:

- for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $\mathcal{Q}[x]$ but if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$ but if $\mathcal{Q}[x]$, then not $\mathcal{R}[x]$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{Q}[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$.

The scheme PartFuncExS4 deals with a set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F}, a unary functor \mathcal{G}, a unary functor \mathcal{H}, a unary functor \mathcal{I}, and four unary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and \mathcal{S}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ or $\mathcal{R}[x]$ or $\mathcal{S}[x]$ and for every x such that $x \in \operatorname{dom} f$ holds if $\mathcal{P}[x]$, then $f(x)=\mathcal{F}(x)$ but if $\mathcal{Q}[x]$, then $f(x)=\mathcal{G}(x)$ but if $\mathcal{R}[x]$, then $f(x)=\mathcal{H}(x)$ but if $\mathcal{S}[x]$, then $f(x)=\mathcal{I}(x)$ provided the parameters meet the following requirements:

- for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $\mathcal{Q}[x]$ but if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$ but if $\mathcal{P}[x]$, then not $\mathcal{S}[x]$ but if $\mathcal{Q}[x]$, then not $\mathcal{R}[x]$ but if $\mathcal{Q}[x]$, then not $\mathcal{S}[x]$ but if $\mathcal{R}[x]$, then not $\mathcal{S}[x]$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{Q}[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$,
- for every x such that $x \in \mathcal{A}$ and $\mathcal{S}[x]$ holds $\mathcal{I}(x) \in \mathcal{B}$.

The scheme PartFuncExC_D2 concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, a binary functor \mathcal{G} yielding an element of \mathcal{C}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
there exists a partial function f from $[: \mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d\rangle \in \operatorname{dom} f$ if and only if $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ and for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{F}(c, d)$ but if $\mathcal{Q}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{G}(c, d)$
provided the parameters meet the following requirement:

- for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\mathcal{P}[c, d]$ holds not $\mathcal{Q}[c, d]$.

The scheme PartFuncExC_D3 concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, a binary functor \mathcal{G} yielding an element of \mathcal{C}, a binary functor \mathcal{H} yielding an element of \mathcal{C}, and three binary predicates \mathcal{P}, \mathcal{Q}, and \mathcal{R}, and states that:
there exists a partial function f from : $\mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d\rangle \in \operatorname{dom} f$ if and only if $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ or $\mathcal{R}[c, d]$ and for every element c of \mathcal{A} and for every element r of \mathcal{B} such that $\langle c, r\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[c, r]$, then $f(\langle c, r\rangle)=\mathcal{F}(c, r)$ but if $\mathcal{Q}[c, r]$, then $f(\langle c, r\rangle)=\mathcal{G}(c, r)$ but if $\mathcal{R}[c, r]$, then $f(\langle c, r\rangle)=\mathcal{H}(c, r)$
provided the following requirement is met:

- for every element c of \mathcal{A} and for every element s of \mathcal{B} holds if $\mathcal{P}[c, s]$, then not $\mathcal{Q}[c, s]$ but if $\mathcal{P}[c, s]$, then not $\mathcal{R}[c, s]$ but if $\mathcal{Q}[c, s]$, then not $\mathcal{R}[c, s]$.
The scheme PartFuncExC_S2 concerns a set \mathcal{A}, a set \mathcal{B}, a set \mathcal{C}, a binary functor \mathcal{F}, a binary functor \mathcal{G}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
there exists a partial function f from $: \mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that for all x, y holds $\langle x, y\rangle \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or $\mathcal{Q}[x, y]$ and for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{F}(x, y)$ but if $\mathcal{Q}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{G}(x, y)$
provided the following conditions are met:
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not $\mathcal{Q}[x, y]$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{Q}[x, y]$ holds $\mathcal{G}(x, y) \in \mathcal{C}$.

The scheme PartFuncExC_S3 concerns a set \mathcal{A}, a set \mathcal{B}, a set \mathcal{C}, a binary functor \mathcal{F}, a binary functor \mathcal{G}, a binary functor \mathcal{H}, and three binary predicates \mathcal{P}, \mathcal{Q}, and \mathcal{R}, and states that:
there exists a partial function f from $: \mathcal{A}, \mathcal{B}$: to \mathcal{C} such that for all x, y holds $\langle x, y\rangle \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or $\mathcal{Q}[x, y]$ or $\mathcal{R}[x, y]$ and for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{F}(x, y)$ but if $\mathcal{Q}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{G}(x, y)$ but if $\mathcal{R}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{H}(x, y)$ provided the following conditions are met:

- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not $\mathcal{Q}[x, y]$ but if $\mathcal{P}[x, y]$, then not $\mathcal{R}[x, y]$ but if $\mathcal{Q}[x, y]$, then not $\mathcal{R}[x, y]$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then $\mathcal{F}(x, y) \in \mathcal{C}$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{Q}[x, y]$, then $\mathcal{G}(x, y) \in \mathcal{C}$,
- for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{R}[x, y]$, then $\mathcal{H}(x, y) \in \mathcal{C}$.
The scheme $\operatorname{ExFuncD3}$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element
of \mathcal{B}, a unary functor \mathcal{H} yielding an element of \mathcal{B}, and three unary predicates \mathcal{P}, \mathcal{Q}, and \mathcal{R}, and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$
provided the parameters satisfy the following conditions:
- for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$,
- for every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$.

The scheme $E x F u n c D 4$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a unary functor \mathcal{G} yielding an element of \mathcal{B}, a unary functor \mathcal{H} yielding an element of \mathcal{B}, a unary functor \mathcal{I} yielding an element of \mathcal{B}, and four unary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and \mathcal{S}, and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ but if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ but if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$ but if $\mathcal{S}[c]$, then $f(c)=\mathcal{I}(c)$
provided the following conditions are met:

- for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$ but if $\mathcal{Q}[c]$, then not $\mathcal{S}[c]$ but if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$,
- for every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$.

The scheme FuncExC_D2 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, a binary functor \mathcal{G} yielding an element of \mathcal{C}, and a binary predicate \mathcal{P}, and states that:
there exists a function f from $: \mathcal{A}, \mathcal{B}:$ into \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{F}(c, d)$ but if not $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{G}(c, d)$ for all values of the parameters.

The scheme $F u n c E x C_{-} D 3$ deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, a binary functor \mathcal{G} yielding an element of \mathcal{C}, a binary functor \mathcal{H} yielding an element of \mathcal{C}, and three binary predicates \mathcal{P}, \mathcal{Q}, and \mathcal{R}, and states that:
there exists a function f from $: \mathcal{A}, \mathcal{B}:$ into \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d\rangle \in \operatorname{dom} f$ if and only if $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ or $\mathcal{R}[c, d]$ and for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{F}(c, d)$ but if $\mathcal{Q}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{G}(c, d)$ but if $\mathcal{R}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{H}(c, d)$
provided the parameters have the following properties:

- for every element c of \mathcal{A} and for every element d of \mathcal{B} holds if $\mathcal{P}[c, d]$, then not $\mathcal{Q}[c, d]$ but if $\mathcal{P}[c, d]$, then not $\mathcal{R}[c, d]$ but if $\mathcal{Q}[c, d]$, then $\operatorname{not} \mathcal{R}[c, d]$,
- for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\mathcal{P}[c, d]$ or $\mathcal{Q}[c, d]$ or $\mathcal{R}[c, d]$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received September 21, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

