Several Properties of Fields. Field Theory

Józef Białas
University of Łódź

Summary. The article includes a continuation of the paper [2]. Some simple theorems concerning basic properties of a field are proved.

MML Identifier: REALSET3.

The articles [8], [7], [5], [6], [3], [1], [2], and [4] provide the terminology and notation for this paper. The following propositions are true:
(1) For every field F holds ${ }_{F}\left(\mathbf{0}_{F}\right)=\mathbf{0}_{F}$.
(2) For every field F holds ${ }_{F}^{-1}\left(\mathbf{1}_{F}\right)=\mathbf{1}_{F}$.
(3) For every field F and for all elements a, b of the support of F holds $-_{F}\left(+_{F}\left(\left\langle a,{ }_{F}(b)\right\rangle\right)\right)=+_{F}\left(\left\langle b,-_{F}(a)\right\rangle\right)$.
(4) For every field F and for all elements a, b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ${ }_{F}^{-1}\left(\cdot{ }_{F}\left(\left\langle a,{ }_{F}^{-1}(b)\right\rangle\right)\right)=\cdot_{F}\left(\left\langle b,{ }_{F}^{-1}(a)\right\rangle\right)$.
(5) For every field F and for all elements a, b of the support of F holds $-_{F}\left(+{ }_{F}(\langle a, b\rangle)\right)=+_{F}\left(\left\langle{ }_{F}(a),-_{F}(b)\right\rangle\right)$.
(6) For every field F and for all elements a, b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ${ }_{F}^{-1}\left(\cdot{ }_{F}(\langle a, b\rangle)\right)=\cdot{ }_{F}\left(\left\langle{ }_{F}^{-1}(a),{ }_{F}^{-1}(b)\right\rangle\right)$.
(7) For every field F and for all elements a, b, c, d of the support of F holds $+_{F}\left(\left\langle a,-{ }_{F}(b)\right\rangle\right)=+_{F}\left(\left\langle c,-{ }_{F}(d)\right\rangle\right)$ if and only if $+_{F}(\langle a, d\rangle)=+_{F}(\langle b, c\rangle)$.
(8) Let F be a field. Then for all elements a, c of the support of F and for all elements b, d of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}\left(\left\langle a,{ }_{F}^{-1}(b)\right\rangle\right)=$ $\cdot_{F}\left(\left\langle c,{ }_{F}^{-1}(d)\right\rangle\right)$ if and only if $\cdot{ }_{F}(\langle a, d\rangle)={ }_{F}(\langle b, c\rangle)$.
(9) For every field F and for all elements a, b of the support of F holds $\cdot_{F}(\langle a, b\rangle)=\mathbf{0}_{F}$ if and only if $a=\mathbf{0}_{F}$ or $b=\mathbf{0}_{F}$.
(10) Let F be a field. Let a, b be elements of the support of F. Let c, d be elements of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$. Then $\cdot{ }_{F}\left(\left\langle\cdot{ }_{F}\left(\left\langle a,{ }_{F}^{-1}(c)\right\rangle\right), \cdot_{F}\left(\left\langle b,{ }_{F}^{-1}(d)\right\rangle\right)\right\rangle\right)=\cdot_{F}\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle),{ }_{F}^{1}\left(\cdot{ }_{F}(\langle c, d\rangle)\right)\right\rangle\right)$.
(11) Let F be a field. Let a, b be elements of the support of F. Let c, d be elements of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$.

Then $\quad{ }_{F}\left(\left\langle\cdot F\left(\left\langle a,{ }_{F}^{-1}(c)\right\rangle\right), \cdot{ }_{F}\left(\left\langle b,{ }_{F}^{-1}(d)\right\rangle\right)\right\rangle\right)=$
$\cdot{ }_{F}\left(\left\langle+_{F}\left(\left\langle\cdot F(\langle a, d\rangle), \cdot_{F}(\langle b, c\rangle)\right\rangle\right),{ }_{F}^{-1}\left(\cdot{ }_{F}(\langle c, d\rangle)\right)\right\rangle\right)$.
Let F be a field. The functor osf F yielding a binary operation of the support of F is defined as follows:
(Def.1) for all elements x, y of the support of F holds $(\operatorname{osf} F)(\langle x, y\rangle)=+_{F}\left(\left\langle x,-{ }_{F}(y)\right\rangle\right)$.
The following propositions are true:
(12) For every field F and for every binary operation S of the support of F holds $S=\operatorname{osf} F$ if and only if for all elements x, y of the support of F holds $S(\langle x, y\rangle)=+_{F}\left(\left\langle x,-_{F}(y)\right\rangle\right)$.
(13) For every field F and for all elements x, y of the support of F holds $\operatorname{osf} F(\langle x, y\rangle)=+{ }_{F}\left(\left\langle x,-{ }_{F}(y)\right\rangle\right)$.
(14) For every field F and for every element x of the support of F holds osf $F(\langle x, x\rangle)=\mathbf{0}_{F}$.
(15) For every field F and for all elements a, b, c of the support of F holds $\cdot{ }_{F}(\langle a, \operatorname{osf} F(\langle b, c\rangle)\rangle)=\operatorname{osf} F\left(\left\langle\cdot F(\langle a, b\rangle), \cdot{ }_{F}(\langle a, c\rangle)\right\rangle\right)$.
(16) For every field F and for all elements a, b of the support of F holds osf $F(\langle a, b\rangle)$ is an element of the support of F.
(17) For every field F and for all elements a, b, c of the support of F holds $\cdot{ }_{F}(\langle\operatorname{osf} F(\langle a, b\rangle), c\rangle)=\operatorname{osf} F\left(\left\langle\cdot{ }_{F}(\langle a, c\rangle),{ }_{F}(\langle b, c\rangle)\right\rangle\right)$. $\operatorname{osf} F(\langle a, b\rangle)=-{ }_{F}(\operatorname{osf} F(\langle b, a\rangle))$.
(19) For every field F and for all elements a, b of the support of F holds $\operatorname{osf} F\left(\left\langle-_{F}(a), b\right\rangle\right)=-_{F}\left(+_{F}(\langle a, b\rangle)\right)$.
(20) For every field F and for all elements a, b, c, d of the support of F holds $\operatorname{osf} F(\langle a, b\rangle)=\operatorname{osf} F(\langle c, d\rangle)$ if and only if $+_{F}(\langle a, d\rangle)=+_{F}(\langle b, c\rangle)$.
(21) For every field F and for every element a of the support of F holds $\operatorname{osf} F\left(\left\langle\mathbf{0}_{F}, a\right\rangle\right)={ }_{-}(a)$.
(22) For every field F and for every element a of the support of F holds $\operatorname{osf} F\left(\left\langle a, \mathbf{0}_{F}\right\rangle\right)=a$.
(23) For every field F and for all elements a, b, c of the support of F holds $+_{F}(\langle a, b\rangle)=c$ if and only if osf $F(\langle c, a\rangle)=b$.
(24) For every field F and for all elements a, b, c of the support of F holds $+_{F}(\langle a, b\rangle)=c$ if and only if osf $F(\langle c, b\rangle)=a$.
(25) For every field F and for all elements a, b, c of the support of F holds osf $F(\langle a, \operatorname{osf} F(\langle b, c\rangle)\rangle)=+_{F}(\langle\operatorname{osf} F(\langle a, b\rangle), c\rangle)$.
(26) For every field F and for all elements a, b, c of the support of F holds $\operatorname{osf} F(\langle a,+F(\langle b, c\rangle)\rangle)=\operatorname{osf} F(\langle\operatorname{osf} F(\langle a, b\rangle), c\rangle)$.
Let F be a field. The functor ovf F yields a function from
the support of $F \#$ (the support of $F \backslash$ single $\left(\mathbf{0}_{F}\right)$)
into the support of F and is defined as follows:
(Def.2) for every element x of the support of F and for every element y of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $(\operatorname{ovf} F)(\langle x, y\rangle)={ }_{F}\left(\left\langle x,{ }_{F}{ }^{-1}(y)\right\rangle\right)$.
Next we state a number of propositions:
(27) Let F be a field. Then for every function D from
the support of $F \#$ (the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$)
into the support of F holds $D=$ ovf F if and only if for every element x of the support of F and for every element y of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $D(\langle x, y\rangle)={ }_{F}\left(\left\langle x,{ }_{F}{ }^{-1}(y)\right\rangle\right)$.
(28) For every field F and for every element x of the support of F and for every element y of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F(\langle x, y\rangle)=$ $\cdot{ }_{F}\left(\left\langle x,{ }_{F}^{-1}(y)\right\rangle\right)$.
(29) For every field F and for every element x of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F(\langle x, x\rangle)=\mathbf{1}_{F}$.
(30) For every field F and for every element a of the support of F and for every element b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F(\langle a, b\rangle)$ is an element of the support of F.
(31) For every field F and for all elements a, b of the support of F and for every element c of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot F(\langle a$, ovf $F(\langle b, c\rangle)\rangle)=$ $\operatorname{ovf} F\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle), c\right\rangle\right)$.
(32) For every field F and for every element a of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}\left(\left\langle a\right.\right.$, ovf $\left.\left.F\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right)\right\rangle\right)=\mathbf{1}_{F}$ and $\cdot{ }_{F}\left(\left\langle\operatorname{ovf} F\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right), a\right\rangle\right)=\mathbf{1}_{F}$.
$(34)^{1} \quad$ For every field F and for all elements a, b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}\left(\left\langle a,{ }_{F}^{-1}(b)\right\rangle\right)={ }_{F}^{-1}\left(\cdot{ }_{F}\left(\left\langle b,{ }_{F}^{-1}(a)\right\rangle\right)\right)$.
(35) For every field F and for all elements a, b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F(\langle a, b\rangle)={ }_{F}^{-1}(\operatorname{ovf} F(\langle b, a\rangle))$.
(36) For every field F and for all elements a, b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F\left(\left\langle{ }_{F}^{-1}(a), b\right\rangle\right)={ }_{F}^{-1}(\cdot F(\langle a, b\rangle))$.
(37) For every field F and for all elements a, c of the support of F and for all elements b, d of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F(\langle a, b\rangle)=$ ovf $F(\langle c, d\rangle)$ if and only if ${ }_{F}(\langle a, d\rangle)=\cdot{ }_{F}(\langle b, c\rangle)$.
(38) For every field F and for every element a of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right)={ }_{F}^{-1}(a)$.
(39) For every field F and for every element a of the support of F holds ovf $F\left(\left\langle a, \mathbf{1}_{F}\right\rangle\right)=a$.
(40) For every field F and for every element a of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ and for all elements b, c of the support of F holds $\cdot{ }_{F}(\langle a, b\rangle)=c$ if and only if ovf $F(\langle c, a\rangle)=b$.
(41) For every field F and for all elements a, c of the support of F and for every element b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}(\langle a, b\rangle)=c$ if and only if ovf $F(\langle c, b\rangle)=a$.

[^0](42) For every field F and for every element a of the support of F and for all elements b, c of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F(\langle a, \operatorname{ovf} F(\langle b, c\rangle)\rangle)={ }_{F}(\langle\operatorname{ovf} F(\langle a, b\rangle), c\rangle)$.
(43) For every field F and for every element a of the support of F and for all elements b, c of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ovf $F\left(\left\langle a, \cdot{ }_{F}(\langle b, c\rangle)\right\rangle\right)=$ ovf $F(\langle$ ovf $F(\langle a, b\rangle), c\rangle)$.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Józef Białas. Properties of fields. Formalized Mathematics, 1(5):807-812, 1990.
[3] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[^0]: ${ }^{1}$ The proposition (33) was either repeated or obvious.

