Integer and Rational Exponents

Konrad Raczkowski¹ Warsaw University Białystok

Summary. The article includes definitions and theorems which are needed to define real exponent. The following notions are defined: natural exponent, integer exponent and rational exponent.

MML Identifier: PREPOWER.

The terminology and notation used in this paper are introduced in the following papers: [12], [15], [4], [10], [1], [2], [3], [9], [7], [8], [14], [11], [13], [6], and [5]. For simplicity we follow the rules: a, b, c will be real numbers, m, n will be natural numbers, k, l, i will be integers, p, q will be rational numbers, and s_1, s_2 will be sequences of real numbers. The following propositions are true:

- $(2)^2$ If s_1 is convergent and for every *n* holds $s_1(n) \ge a$, then $\lim s_1 \ge a$.
- (3) If s_1 is convergent and for every n holds $s_1(n) \le a$, then $\lim s_1 \le a$.

Let us consider a. The functor $(a^{\kappa})_{\kappa \in \mathbb{N}}$ yielding a sequence of real numbers is defined as follows:

(Def.1) $((a^{\kappa})_{\kappa \in \mathbb{N}})(0) = 1$ and for every m holds $((a^{\kappa})_{\kappa \in \mathbb{N}})(m+1) = ((a^{\kappa})_{\kappa \in \mathbb{N}})(m) \cdot a$.

Next we state two propositions:

- (4) For every sequence of real numbers s and for every a holds $s = (a^{\kappa})_{\kappa \in \mathbb{N}}$ if and only if s(0) = 1 and for every m holds $s(m+1) = s(m) \cdot a$.
- (5) For every a such that $a \neq 0$ for every m holds $(a^{\kappa})_{\kappa \in \mathbb{N}} (m) \neq 0$.

Let us consider a, n. The functor $a_{\mathbb{N}}^n$ yields a real number and is defined by: (Def.2) $a_{\mathbb{N}}^n = (a^{\kappa})_{\kappa \in \mathbb{N}} (n).$

Next we state a number of propositions:

(6) $a_{\mathbb{N}}^n = (a^{\kappa})_{\kappa \in \mathbb{N}} (n).$

125

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C8

²The proposition (1) was either repeated or obvious.

 $a_{\mathbb{N}}^n \cdot a = a_{\mathbb{N}}^{n+1}.$ (7) $1^n_{\mathbb{N}} = 1.$ (8) $a_{\mathbb{N}}^{n+m} = a_{\mathbb{N}}^n \cdot a_{\mathbb{N}}^m.$ (9) $(a \cdot b)^n_{\mathbb{N}} = a^n_{\mathbb{N}} \cdot b^n_{\mathbb{N}}.$ (10) $a^{n \cdot m}_{\mathbb{N}} = (a^n_{\mathbb{N}})^m_{\mathbb{N}}.$ (11)If $0 \neq a$, then $0 \neq a_{\mathbb{N}}^n$. (12)If 0 < a, then $0 < a_{\mathbb{N}}^n$. (13)If $a \neq 0$, then $\frac{1}{a_N}^n = \frac{1}{a_N^n}$. (14)If $a \neq 0$, then $\frac{b^n}{a_N} = \frac{b_N^n}{a_N^n}$ (15)If $n \geq 1$, then $0^n_{\mathbb{N}} = 0$. (16)(17)If 0 < a and $a \leq b$, then $a_{\mathbb{N}}^n \leq b_{\mathbb{N}}^n$. If $0 \le a$ and a < b and $1 \le n$, then $a_{\mathbb{N}}^n < b_{\mathbb{N}}^n$. (18)(19)If $a \ge 1$, then $a_{\mathbb{N}}^n \ge 1$. (20)If $1 \leq a$ and $1 \leq n$, then $a \leq a_{\mathbb{N}}^n$. If 1 < a and $2 \leq n$, then $a < a_{\mathbb{N}}^n$. (21)(22)If 0 < a and $a \leq 1$ and $1 \leq n$, then $a_{\mathbb{N}}^n \leq a$. (23)If 0 < a and a < 1 and $2 \le n$, then $a_{\mathbb{N}}^n < a$. (24)If -1 < a, then $(1 + a)_{\mathbb{N}}^n \ge 1 + n \cdot a$. (25)If 0 < a and a < 1, then $(1+a)_{\mathbb{N}}^n \leq 1+3_{\mathbb{N}}^n \cdot a$. (26)If s_1 is convergent and for every n holds $s_2(n) = (s_1(n))_{\mathbb{N}}^m$, then s_2 is convergent and $\lim s_2 = (\lim s_1)^m_{\mathbb{N}}$.

Let us consider n, a. Let us assume that $1 \le n$. The functor $\operatorname{root}_n(a)$ yields a real number and is defined as follows:

(Def.3) $(\operatorname{root}_n(a))_{\mathbb{N}}^n = a \text{ and } \operatorname{root}_n(a) > 0 \text{ if } a > 0, \operatorname{root}_n(a) = 0 \text{ if } a = 0.$

Next we state a number of propositions:

- (27) For all a, b, n such that $1 \le n$ holds if a > 0, then $b = \operatorname{root}_n(a)$ if and only if $b_{\mathbb{N}}^n = a$ and b > 0 but if a = 0, then $\operatorname{root}_n(a) = 0$.
- (28) If $a \ge 0$ and $n \ge 1$, then $(\operatorname{root}_n(a))^n_{\mathbb{N}} = a$ and $\operatorname{root}_n(a^n_{\mathbb{N}}) = a$.
- (29) If $n \ge 1$, then $root_n(1) = 1$.
- (30) If $a \ge 0$, then $\operatorname{root}_1(a) = a$.
- (31) If $a \ge 0$ and $b \ge 0$ and $n \ge 1$, then $\operatorname{root}_n(a \cdot b) = \operatorname{root}_n(a) \cdot \operatorname{root}_n(b)$.
- (32) If a > 0 and $n \ge 1$, then $\operatorname{root}_n(\frac{1}{a}) = \frac{1}{\operatorname{root}_n(a)}$.
- (33) If $a \ge 0$ and b > 0 and $n \ge 1$, then $\operatorname{root}_n(\frac{a}{b}) = \frac{\operatorname{root}_n(a)}{\operatorname{root}_n(b)}$.
- (34) If $a \ge 0$ and $n \ge 1$ and $m \ge 1$, then $\operatorname{root}_{n}(\operatorname{root}_{m}(a)) = \operatorname{root}_{n:m}(a)$.
- (35) If $a \ge 0$ and $n \ge 1$ and $m \ge 1$, then $\operatorname{root}_n(a) \cdot \operatorname{root}_m(a) = \operatorname{root}_{n \cdot m}(a_{\mathbb{N}}^{n+m})$.
- (36) If $0 \le a$ and $a \le b$ and $n \ge 1$, then $\operatorname{root}_n(a) \le \operatorname{root}_n(b)$.
- (37) If $a \ge 0$ and a < b and $n \ge 1$, then $\operatorname{root}_n(a) < \operatorname{root}_n(b)$.
- (38) If $a \ge 1$ and $n \ge 1$, then $\operatorname{root}_n(a) \ge 1$ and $a \ge \operatorname{root}_n(a)$.

126

- (39) If $0 \le a$ and a < 1 and $n \ge 1$, then $a \le \operatorname{root}_n(a)$ and $\operatorname{root}_n(a) < 1$.
- (40) If a > 0 and $n \ge 1$, then $\operatorname{root}_n(a) 1 \le \frac{a-1}{n}$.
- (41) If $a \ge 0$, then $\operatorname{root}_2(a) = \sqrt{a}$.
- (42) For every sequence of real numbers s and for every a such that a > 0 and for every n such that $n \ge 1$ holds $s(n) = \operatorname{root}_n(a)$ holds s is convergent and $\lim s = 1$.

Let us consider a, k. Let us assume that $a \neq 0$. The functor $a_{\mathbb{Z}}^k$ yields a real number and is defined as follows:

(Def.4)
$$a_{\mathbb{Z}}^{k} = a_{\mathbb{N}}^{|k|}$$
 if $k \ge 0, a_{\mathbb{Z}}^{k} = (a_{\mathbb{N}}^{|k|})^{-1}$ if $k < 0$.

We now state a number of propositions:

- (43) If $a \neq 0$, then if $k \ge 0$, then $a_{\mathbb{Z}}^k = a_{\mathbb{N}}^{|k|}$ but if k < 0, then $a_{\mathbb{Z}}^k = (a_{\mathbb{N}}^{|k|})^{-1}$.
- (44) If $a \neq 0$, then for every *i* such that i = 0 holds $a_{\mathbb{Z}}^i = 1$.
- (45) If $a \neq 0$, then for every *i* such that i = 1 holds $a_{\mathbb{Z}}^i = a$.
- (46) If $a \neq 0$ and i = n, then $a_{\mathbb{Z}}^i = a_{\mathbb{N}}^n$.
- (47) $1_{\mathbb{Z}}^k = 1.$
- (48) If $a \neq 0$, then $a_{\mathbb{Z}}^k \neq 0$.
- (49) If a > 0, then $a_{\mathbb{Z}}^k > 0$.
- (50) If $a \neq 0$ and $b \neq 0$, then $(a \cdot b)^k_{\mathbb{Z}} = a^k_{\mathbb{Z}} \cdot b^k_{\mathbb{Z}}$.
- (51) If $a \neq 0$, then $a_{\mathbb{Z}}^{-k} = \frac{1}{a_{\mathbb{Z}}^{k}}$.
- (52) If $a \neq 0$, then $\frac{1}{a} \frac{k}{z} = \frac{1}{a_{z}^{k}}$.
- (53) If $a \neq 0$, then $a_{\mathbb{Z}}^{m-n} = \frac{a_{\mathbb{N}}^m}{a_{\mathbb{N}}^n}$.
- (54) If $a \neq 0$, then $a_{\mathbb{Z}}^{k+l} = a_{\mathbb{Z}}^k \cdot a_{\mathbb{Z}}^l$.
- (55) If $a \neq 0$, then $(a_{\mathbb{Z}}^k)_{\mathbb{Z}}^l = a_{\mathbb{Z}}^{k \cdot l}$.

(56) If
$$a > 0$$
 and $n \ge 1$, then $(\operatorname{root}_n(a))^k_{\mathbb{Z}} = \operatorname{root}_n(a^k_{\mathbb{Z}})$.

Let us consider a, p. Let us assume that a > 0. The functor $a_{\mathbb{Q}}^p$ yielding a real number is defined by:

(Def.5) $a_{\mathbb{Q}}^p = \operatorname{root}_{\operatorname{den} p}(a_{\mathbb{Z}}^{\operatorname{num} p}).$

We now state a number of propositions:

- (57) If a > 0, then $a_{\mathbb{Q}}^p = \operatorname{root}_{\operatorname{den} p}(a_{\mathbb{Z}}^{\operatorname{num} p})$.
- (58) If a > 0 and p = 0, then $a_{\mathbb{Q}}^{p} = 1$.
- (59) If a > 0 and p = 1, then $a_{\mathbb{Q}}^p = a$.
- (60) If a > 0 and p = n, then $a_{\mathbb{Q}}^p = a_{\mathbb{N}}^n$.
- (61) If a > 0 and $n \ge 1$ and $p = n^{-1}$, then $a_{\mathbb{Q}}^p = \operatorname{root}_n(a)$.
- (62) $1^p_{\mathbb{O}} = 1.$
- (63) If a > 0, then $a_{\mathbb{Q}}^p > 0$.

(64) If
$$a > 0$$
, then $a^p_{\mathbb{Q}} \cdot a^q_{\mathbb{Q}} = a^{p+q}_{\mathbb{Q}}$.

(65) If a > 0, then $\frac{1}{a_0^p} = a_0^{-p}$.

(66) If
$$a > 0$$
, then $\frac{a_{\mathbb{Q}}^{r}}{a_{\mathbb{Q}}^{q}} = a_{\mathbb{Q}}^{p-q}$.

(67) If
$$a > 0$$
 and $b > 0$, then $(a \cdot b)^p_{\mathbb{Q}} = a^p_{\mathbb{Q}} \cdot b^p_{\mathbb{Q}}$.

(68) If
$$a > 0$$
, then $\frac{1}{a} \frac{p}{Q} = \frac{1}{a_0^p}$

- (69) If a > 0 and b > 0, then $\frac{a^p}{b_{\mathbb{Q}}} = \frac{a^p_{\mathbb{Q}}}{b^p_{\mathbb{Q}}}$.
- (70) If a > 0, then $(a_{\mathbb{Q}}^p)_{\mathbb{Q}}^q = a_{\mathbb{Q}}^{p \cdot q}$.
- (71) If $a \ge 1$ and $p \ge 0$, then $a_{\mathbb{Q}}^p \ge 1$.
- (72) If $a \ge 1$ and $p \le 0$, then $a_{\mathbb{Q}}^p \le 1$.
- (73) If a > 1 and p > 0, then $a_{\mathbb{Q}}^p > 1$.
- (74) If $a \ge 1$ and $p \ge q$, then $a_{\mathbb{Q}}^p \ge a_{\mathbb{Q}}^q$
- (75) If a > 1 and p > q, then $a_{\mathbb{Q}}^p > a_{\mathbb{Q}}^q$.
- (76) If a > 0 and a < 1 and p > 0, then $a_{\mathbb{Q}}^p < 1$.
- (77) If a > 0 and $a \le 1$ and $p \le 0$, then $a_{\mathbb{Q}}^p \ge 1$.

A sequence of real numbers is called a rational sequence if:

(Def.6) for every n holds it(n) is a rational number.

Let s be a rational sequence, and let us consider n. Then s(n) is a rational number.

Next we state two propositions:

- $(79)^3$ For every *a* there exists a rational sequence *s* such that *s* is convergent and $\lim s = a$ and for every *n* holds $s(n) \leq a$.
- (80) For every a there exists a rational sequence s such that s is convergent and $\lim s = a$ and for every n holds $s(n) \ge a$.

Let us consider a, and let s be a rational sequence. Let us assume that a > 0. The functor $a^s_{\mathbb{Q}}$ yields a sequence of real numbers and is defined as follows:

(Def.7) for every *n* holds
$$(a_{\mathbb{Q}}^s)(n) = a_{\mathbb{Q}}^{s(n)}$$
.

The following propositions are true:

- (81) For every a and for every rational sequence s and for every s_1 such that a > 0 holds $s_1 = a_{\mathbb{Q}}^s$ if and only if for every n holds $s_1(n) = a_{\mathbb{Q}}^{s(n)}$.
- (82) For every rational sequence s and for every a such that s is convergent and a > 0 holds $a^s_{\mathbb{Q}}$ is convergent.
- (83) For all rational sequences s_1 , s_2 and for every a such that s_1 is convergent and s_2 is convergent and $\lim s_1 = \lim s_2$ and a > 0 holds $a_{\mathbb{Q}}^{s_1}$ is convergent and $a_{\mathbb{Q}}^{s_2}$ is convergent and $\lim a_{\mathbb{Q}}^{s_1} = \lim a_{\mathbb{Q}}^{s_2}$.

Let us consider a, b. Let us assume that a > 0. The functor $a_{\mathbb{R}}^{b}$ yielding a real number is defined by:

(Def.8) there exists a rational sequence s such that s is convergent and $\lim s = b$ and $a_{\mathbb{Q}}^s$ is convergent and $\lim a_{\mathbb{Q}}^s = a_{\mathbb{R}}^b$.

We now state a number of propositions:

128

³The proposition (78) was either repeated or obvious.

- (84) For all a, b, c such that a > 0 holds $c = a_{\mathbb{R}}^{b}$ if and only if there exists a rational sequence s such that s is convergent and $\lim s = b$ and $a_{\mathbb{Q}}^{s}$ is convergent and $\lim a_{\mathbb{Q}}^{s} = c$.
- (85) If a > 0, then $a_{\mathbb{R}}^0 = 1$.
- (86) If a > 0, then $a_{\mathbb{R}}^1 = a$.
- (87) $1^a_{\mathbb{R}} = 1.$
- (88) If a > 0, then $a^p_{\mathbb{R}} = a^p_{\mathbb{Q}}$.
- (89) If a > 0, then $a_{\mathbb{R}}^{\tilde{b}+c} = a_{\mathbb{R}}^{b} \cdot a_{\mathbb{R}}^{c}$.
- (90) If a > 0, then $a_{\mathbb{R}}^{-c} = \frac{1}{a_{\mathbb{R}}^{c}}$.
- (91) If a > 0, then $a_{\mathbb{R}}^{b-c} = \frac{a_{\mathbb{R}}^b}{a_{\mathbb{R}}^c}$.
- (92) If a > 0 and b > 0, then $(a \cdot b)^c_{\mathbb{R}} = a^c_{\mathbb{R}} \cdot b^c_{\mathbb{R}}$.
- (93) If a > 0, then $\frac{1}{a} R^c = \frac{1}{a_R^c}$.
- (94) If a > 0 and b > 0, then $\frac{a^c}{b_{\mathbb{R}}} = \frac{a^c_{\mathbb{D}}}{b^c_{\mathbb{D}}}$.
- (95) If a > 0, then $a_{\mathbb{R}}^b > 0$.
- (96) If $a \ge 1$ and $c \ge b$, then $a_{\mathbb{R}}^c \ge a_{\mathbb{R}}^b$.
- (97) If a > 1 and c > b, then $a_{\mathbb{R}}^c > a_{\mathbb{R}}^b$.
- (98) If a > 0 and $a \le 1$ and $c \ge b$, then $a_{\mathbb{R}}^c \le a_{\mathbb{R}}^b$.
- (99) If $a \ge 1$ and $b \ge 0$, then $a_{\mathbb{R}}^b \ge 1$.
- (100) If a > 1 and b > 0, then $a_{\mathbb{R}}^b > 1$.
- (101) If $a \ge 1$ and $b \le 0$, then $a_{\mathbb{R}}^b \le 1$.
- (102) If a > 1 and b < 0, then $a_{\mathbb{R}}^b < 1$.
- (103) If s_1 is convergent and s_2 is convergent and $\lim s_1 > 0$ and for every n holds $s_1(n) > 0$ and $s_2(n) = (s_1(n))_{\mathbb{Q}}^p$, then $\lim s_2 = (\lim s_1)_{\mathbb{Q}}^p$.
- (104) If a > 0 and s_1 is convergent and s_2 is convergent and for every n holds $s_2(n) = a_{\mathbb{R}}^{s_1(n)}$, then $\lim s_2 = a_{\mathbb{R}}^{\lim s_1}$.
- (105) If a > 0, then $(a_{\mathbb{R}}^b)_{\mathbb{R}}^c = a_{\mathbb{R}}^{b \cdot c}$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841–845, 1990.
- Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.

- [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [10] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received September 21, 1990