Integer and Rational Exponents

Konrad Raczkowski ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article includes definitions and theorems which are needed to define real exponent. The following notions are defined: natural exponent, integer exponent and rational exponent.

MML Identifier: PREPOWER.

The terminology and notation used in this paper are introduced in the following papers: [12], [15], [4], [10], [1], [2], [3], [9], [7], [8], [14], [11], [13], [6], and [5]. For simplicity we follow the rules: a, b, c will be real numbers, m, n will be natural numbers, k, l, i will be integers, p, q will be rational numbers, and s_{1}, s_{2} will be sequences of real numbers. The following propositions are true:
$(2)^{2}$ If s_{1} is convergent and for every n holds $s_{1}(n) \geq a$, then $\lim s_{1} \geq a$.
(3) If s_{1} is convergent and for every n holds $s_{1}(n) \leq a$, then $\lim s_{1} \leq a$.

Let us consider a. The functor $\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}$ yielding a sequence of real numbers is defined as follows:
(Def.1) $\quad\left(\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}\right)(0)=1$ and for every m holds $\left(\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}\right)(m+1)=\left(\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}\right)(m)$.
a.
Next we state two propositions:
(4) For every sequence of real numbers s and for every a holds $s=\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}$ if and only if $s(0)=1$ and for every m holds $s(m+1)=s(m) \cdot a$.
(5) For every a such that $a \neq 0$ for every m holds $\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}(m) \neq 0$.

Let us consider a, n. The functor a_{N}^{n} yields a real number and is defined by:
(Def.2) $a_{\mathrm{N}}^{n}=\left(a^{\kappa}\right)_{\kappa \in \mathrm{N}}(n)$.
Next we state a number of propositions:
(6) $a_{\mathrm{N}}^{n}=\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}(n)$.

[^0](7) $a_{\mathrm{N}}^{n} \cdot a=a_{\mathrm{N}}^{n+1}$.
(8) $1_{N}^{n}=1$.
(9) $a_{\mathrm{N}}^{n+m}=a_{\mathrm{N}}^{n} \cdot a_{\mathrm{N}}^{m}$.
(10) $(a \cdot b)_{N}^{n}=a_{N}^{n} \cdot b_{\mathrm{N}}^{n}$.
$a_{N}^{n \cdot m}=\left(a_{\mathbb{N}}^{n}\right)_{N}^{m}$.
(12) If $0 \neq a$, then $0 \neq a_{N}^{n}$.
(13) If $0<a$, then $0<a_{N}^{n}$.
(14) If $a \neq 0$, then $\frac{1^{n}}{a}=\frac{1}{a_{N}^{n}}$.
(15) If $a \neq 0$, then $\frac{b^{n}}{a}=\frac{b_{n}^{n}}{a_{N}^{n}}$.
(16) If $n \geq 1$, then $0_{\mathbb{N}}^{n}=0$.
(17) If $0<a$ and $a \leq b$, then $a_{\mathbb{N}}^{n} \leq b_{N}^{n}$.
(18) If $0 \leq a$ and $a<b$ and $1 \leq n$, then $a_{N}^{n}<b_{N}^{n}$.
(19) If $a \geq 1$, then $a_{\wedge}^{n} \geq 1$.
(20) If $1 \leq a$ and $1 \leq n$, then $a \leq a_{N}^{n}$.
(21) If $1<a$ and $2 \leq n$, then $a<a_{N}^{n}$.
(22) If $0<a$ and $a \leq 1$ and $1 \leq n$, then $a_{N}^{n} \leq a$.
(23) If $0<a$ and $a<1$ and $2 \leq n$, then $a_{\mathrm{N}}^{n}<a$.
(24) If $-1<a$, then $(1+a)_{N}^{n} \geq 1+n \cdot a$.
(25) If $0<a$ and $a<1$, then $(1+a)_{N}^{n} \leq 1+3_{\mathrm{N}}^{n} \cdot a$.
(26) If s_{1} is convergent and for every n holds $s_{2}(n)=\left(s_{1}(n)\right)_{\mathcal{N}}^{m}$, then s_{2} is convergent and $\lim s_{2}=\left(\lim s_{1}\right)_{\mathrm{N}}^{m}$.
Let us consider n, a. Let us assume that $1 \leq n$. The functor $\operatorname{root}_{n}(a)$ yields a real number and is defined as follows:
(Def.3) $\quad\left(\operatorname{root}_{n}(a)\right)_{N}^{n}=a$ and $\operatorname{root}_{n}(a)>0$ if $a>0, \operatorname{root}_{n}(a)=0$ if $a=0$.
Next we state a number of propositions:
(27) For all a, b, n such that $1 \leq n$ holds if $a>0$, then $b=\operatorname{root}_{n}(a)$ if and only if $b_{\mathrm{N}}^{n}=a$ and $b>0$ but if $a=0$, then $\operatorname{root}_{n}(a)=0$.
(28) If $a \geq 0$ and $n \geq 1$, then $\left(\operatorname{root}_{n}(a)\right)_{N}^{n}=a$ and $\operatorname{root}_{n}\left(a_{\mathrm{N}}^{n}\right)=a$.
(29) If $n \geq 1$, then $\operatorname{root}_{n}(1)=1$.
(30) If $a \geq 0$, then $\operatorname{root}_{1}(a)=a$.
(31) If $a \geq 0$ and $b \geq 0$ and $n \geq 1$, then $\operatorname{root}_{n}(a \cdot b)=\operatorname{root}_{n}(a) \cdot \operatorname{root}_{n}(b)$.
(32) If $a>0$ and $n \geq 1$, then $\operatorname{root}_{n}\left(\frac{1}{a}\right)=\frac{1}{\operatorname{root}_{n}(a)}$.
(33) If $a \geq 0$ and $b>0$ and $n \geq 1$, then $\operatorname{root}_{n}\left(\frac{a}{b}\right)=\frac{\operatorname{root}_{n}(a)}{\operatorname{root}_{n}(b)}$.
(34) If $a \geq 0$ and $n \geq 1$ and $m \geq 1$, then $\operatorname{root}_{n}\left(\operatorname{root}_{m}(a)\right)=\operatorname{root}_{n \cdot m}(a)$.
(35) If $a \geq 0$ and $n \geq 1$ and $m \geq 1$, then $\operatorname{root}_{n}(a) \cdot \operatorname{root}_{m}(a)=\operatorname{root}_{n \cdot m}\left(a_{N}^{n+m}\right)$.
(36) If $0 \leq a$ and $a \leq b$ and $n \geq 1$, then $\operatorname{root}_{n}(a) \leq \operatorname{root}_{n}(b)$.
(37) If $a \geq 0$ and $a<b$ and $n \geq 1$, then $\operatorname{root}_{n}(a)<\operatorname{root}_{n}(b)$.
(38) If $a \geq 1$ and $n \geq 1$, then $\operatorname{root}_{n}(a) \geq 1$ and $a \geq \operatorname{root}_{n}(a)$.
(39) If $0 \leq a$ and $a<1$ and $n \geq 1$, then $a \leq \operatorname{root}_{n}(a)$ and $\operatorname{root}_{n}(a)<1$.
(40) If $a>0$ and $n \geq 1$, then $\operatorname{root}_{n}(a)-1 \leq \frac{a-1}{n}$.
(41) If $a \geq 0$, then $\operatorname{root}_{2}(a)=\sqrt{a}$.
(42) For every sequence of real numbers s and for every a such that $a>0$ and for every n such that $n \geq 1$ holds $s(n)=\operatorname{root}_{n}(a)$ holds s is convergent and $\lim s=1$.
Let us consider a, k. Let us assume that $a \neq 0$. The functor $a_{\mathbb{Z}}^{k}$ yields a real number and is defined as follows:
(Def.4)
$$
a_{\mathbb{Z}}^{k}=a_{N}^{|k|} \text { if } k \geq 0, a_{\mathbb{Z}}^{k}=\left(a_{N}^{|k|}\right)^{-1} \text { if } k<0 .
$$

We now state a number of propositions:
(43) If $a \neq 0$, then if $k \geq 0$, then $a_{\mathbb{Z}}^{k}=a_{\mathbb{N}}^{|k|}$ but if $k<0$, then $a_{\mathbb{Z}}^{k}=\left(a_{\mathbb{N}}^{|k|}\right)^{-1}$.
(44) If $a \neq 0$, then for every i such that $i=0$ holds $a_{\mathbb{Z}}^{i}=1$.
(45) If $a \neq 0$, then for every i such that $i=1$ holds $a_{\mathbb{Z}}^{i}=a$.
(46) If $a \neq 0$ and $i=n$, then $a_{\mathbb{Z}}^{i}=a_{\mathbb{N}}^{n}$.
(47) $1_{\mathbb{Z}}^{k}=1$.
(48) If $a \neq 0$, then $a_{\mathbb{Z}}^{k} \neq 0$.
(49) If $a>0$, then $a_{\mathbb{Z}}^{k}>0$.
(50) If $a \neq 0$ and $b \neq 0$, then $(a \cdot b)_{\mathbb{Z}}^{k}=a_{\mathbb{Z}}^{k} \cdot b_{\mathbb{Z}}^{k}$.
(51) If $a \neq 0$, then $a_{\mathbb{Z}}^{-k}=\frac{1}{a_{Z}^{k}}$.
(52) If $a \neq 0$, then $\frac{1}{a}_{a}^{k}=\frac{1}{a_{Z}^{k}}$.
(53) If $a \neq 0$, then $a_{\mathbb{Z}}^{m-n}=\frac{a_{n}^{m}}{a_{N}^{n}}$.
(54) If $a \neq 0$, then $a_{\mathbb{Z}}^{k+l}=a_{\mathbb{Z}}^{k} \cdot a_{\mathbb{Z}}^{l}$.
(55) If $a \neq 0$, then $\left(a_{\mathbb{Z}}^{k}\right)_{\mathbb{Z}}^{l}=a_{\mathbb{Z}}^{k \cdot l}$.
(56) If $a>0$ and $n \geq 1$, then $\left(\operatorname{root}_{n}(a)\right)_{\mathbb{Z}}^{k}=\operatorname{root}_{n}\left(a_{\mathbb{Z}}^{k}\right)$.

Let us consider a, p. Let us assume that $a>0$. The functor $a_{\mathbb{Q}}^{p}$ yielding a real number is defined by:
(Def.5) $\quad a_{\mathbb{Q}}^{p}=\operatorname{root}_{\operatorname{den} p}\left(a_{\mathbb{Z}}^{\text {num } p}\right)$.
We now state a number of propositions:
(57) If $a>0$, then $a_{\mathbb{Q}}^{p}=\operatorname{root}_{\operatorname{den} p}\left(a_{\mathbb{Z}}^{\operatorname{num} p}\right)$.
(58) If $a>0$ and $p=0$, then $a_{\mathbb{Q}}^{p}=1$.
(59) If $a>0$ and $p=1$, then $a_{\mathbb{Q}}^{p}=a$.
(60) If $a>0$ and $p=n$, then $a_{\mathbb{Q}}^{p}=a_{\mathrm{N}}^{n}$.
(61) If $a>0$ and $n \geq 1$ and $p=n^{-1}$, then $a_{\mathbb{Q}}^{p}=\operatorname{root}_{n}(a)$.
(62) $1_{\mathbb{Q}}^{p}=1$.
(63) If $a>0$, then $a_{\mathbb{Q}}^{p}>0$.
(64) If $a>0$, then $a_{\mathbb{Q}}^{p} \cdot a_{\mathbb{Q}}^{q}=a_{\mathbb{Q}}^{p+q}$.
(65) If $a>0$, then $\frac{1}{a_{\mathbb{Q}}^{p}}=a_{\mathbb{Q}}^{-p}$.

If $a>0$, then $\frac{a_{\frac{q}{p}}^{a_{\mathbb{Q}}^{q}}=a_{\mathbb{Q}}^{p-q} .}{}$.
(68) If $a>0$, then $\frac{1^{p}}{a}=\frac{1}{a_{Q}^{p}}$.
(69) If $a>0$ and $b>0$, then $\frac{a p}{b \mathbb{Q}}=\frac{a_{o}^{p}}{b_{\odot}^{\phi}}$.
(70) If $a>0$, then $\left(a_{\mathbb{Q}}^{p}\right)_{\mathbb{Q}}^{q}=a_{\mathbb{Q}}^{p \cdot q}$.
(71) If $a \geq 1$ and $p \geq 0$, then $a_{\mathbb{Q}}^{p} \geq 1$.

If $a \geq 1$ and $p \leq 0$, then $a_{\mathbb{Q}}^{p} \leq 1$.
If $a>1$ and $p>0$, then $a_{\mathbb{Q}}^{p}>1$.
If $a \geq 1$ and $p \geq q$, then $a_{\mathbb{Q}}^{p} \geq a_{\mathbb{Q}}^{q}$.
If $a>1$ and $p>q$, then $a_{\mathbb{Q}}^{p}>a_{\mathbb{Q}}^{q}$.
If $a>0$ and $a<1$ and $p>0$, then $a_{Q}^{p}<1$.
If $a>0$ and $a \leq 1$ and $p \leq 0$, then $a_{\mathbb{Q}}^{p} \geq 1$.
A sequence of real numbers is called a rational sequence if:
(Def.6) for every n holds it (n) is a rational number.
Let s be a rational sequence, and let us consider n. Then $s(n)$ is a rational number.

Next we state two propositions:
$(79)^{3}$ For every a there exists a rational sequence s such that s is convergent and $\lim s=a$ and for every n holds $s(n) \leq a$.
(80) For every a there exists a rational sequence s such that s is convergent and $\lim s=a$ and for every n holds $s(n) \geq a$.
Let us consider a, and let s be a rational sequence. Let us assume that $a>0$. The functor $a_{\mathbb{Q}}^{s}$ yields a sequence of real numbers and is defined as follows:
(Def.7) for every n holds $\left(a_{\mathbb{Q}}^{s}\right)(n)=a_{\mathbb{Q}}^{s(n)}$.
The following propositions are true:
(81) For every a and for every rational sequence s and for every s_{1} such that $a>0$ holds $s_{1}=a_{\mathbb{Q}}^{s}$ if and only if for every n holds $s_{1}(n)=a_{\mathbb{Q}}^{s(n)}$.
(82) For every rational sequence s and for every a such that s is convergent and $a>0$ holds $a_{\mathbb{Q}}^{s}$ is convergent.
(83) For all rational sequences s_{1}, s_{2} and for every a such that s_{1} is convergent and s_{2} is convergent and $\lim s_{1}=\lim s_{2}$ and $a>0$ holds $a_{\mathbb{Q}}^{s_{1}}$ is convergent and $a_{\mathbb{Q}}^{s_{2}}$ is convergent and $\lim a_{\mathbb{Q}}^{s_{1}}=\lim a_{\mathbb{Q}}^{s_{2}}$.
Let us consider a, b. Let us assume that $a>0$. The functor $a_{\mathbb{R}}^{b}$ yielding a real number is defined by:
(Def.8) there exists a rational sequence s such that s is convergent and $\lim s=b$ and $a_{\mathbb{Q}}^{s}$ is convergent and $\lim a_{\mathbb{Q}}^{s}=a_{\mathbb{R}}^{b}$.
We now state a number of propositions:

[^1](84) For all a, b, c such that $a>0$ holds $c=a_{\mathrm{R}}^{b}$ if and only if there exists a rational sequence s such that s is convergent and $\lim s=b$ and $a_{\mathbb{Q}}^{s}$ is convergent and $\lim a_{\mathbb{Q}}^{s}=c$.
(85) If $a>0$, then $a_{\mathbb{R}}^{0}=1$.
(86) If $a>0$, then $a_{\mathbb{R}}^{1}=a$.
(87) $1_{\mathbb{R}}^{a}=1$.
(88) If $a>0$, then $a_{\mathbb{R}}^{p}=a_{\mathbb{Q}}^{p}$.
(89) If $a>0$, then $a_{\mathbb{R}}^{b+c}=a_{\mathbb{R}}^{b} \cdot a_{\mathbb{R}}^{c}$.
(90) If $a>0$, then $a_{\mathbb{R}}^{-c}=\frac{1}{a_{\mathbb{R}}^{c}}$.
(91) If $a>0$, then $a_{\mathbb{R}}^{b-c}=\frac{a_{B}^{b}}{a_{R}^{c}}$.
(92) If $a>0$ and $b>0$, then $(a \cdot b)_{\mathbb{R}}^{c}=a_{\mathbb{R}}^{c} \cdot b_{\mathbb{R}}^{c}$.
(93) If $a>0$, then $\frac{1^{c}}{a_{\mathbb{R}}}=\frac{1}{a_{\mathbb{R}}^{c}}$.
(94) If $a>0$ and $b>0$, then $\frac{a c}{b_{\mathbb{R}}}=\frac{a_{\mathrm{C}}^{c}}{b_{\mathbb{R}}^{c}}$.
(95) If $a>0$, then $a_{\mathbb{R}}^{b}>0$.
(96) If $a \geq 1$ and $c \geq b$, then $a_{\mathrm{R}}^{c} \geq a_{\mathrm{R}}^{b}$.
(97) If $a>1$ and $c>b$, then $a_{\mathrm{R}}^{c}>a_{\mathrm{R}}^{b}$.
(98) If $a>0$ and $a \leq 1$ and $c \geq b$, then $a_{\mathrm{R}}^{c} \leq a_{\mathrm{R}}^{b}$.
(99) If $a \geq 1$ and $b \geq 0$, then $a_{\mathrm{R}}^{b} \geq 1$.
(100) If $a>1$ and $b>0$, then $a_{\mathrm{R}}^{b}>1$.
(101) If $a \geq 1$ and $b \leq 0$, then $a_{\mathbb{R}}^{b} \leq 1$.
(102) If $a>1$ and $b<0$, then $a_{\mathbb{R}}^{b}<1$.
(103) If s_{1} is convergent and s_{2} is convergent and $\lim s_{1}>0$ and for every n holds $s_{1}(n)>0$ and $s_{2}(n)=\left(s_{1}(n)\right)_{\mathbb{Q}}^{p}$, then $\lim s_{2}=\left(\lim s_{1}\right)_{\mathbb{Q}}^{p}$.
(104) If $a>0$ and s_{1} is convergent and s_{2} is convergent and for every n holds $s_{2}(n)=a_{\mathbb{R}}^{s_{1}(n)}$, then $\lim s_{2}=a_{\mathbb{R}}^{\lim s_{1}}$.
(105) If $a>0$, then $\left(a_{\mathbb{R}}^{b}\right)_{\mathbb{R}}^{c}=a_{\mathbb{R}}^{b \cdot c}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[6] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8
 ${ }^{2}$ The proposition (1) was either repeated or obvious.

[^1]: ${ }^{3}$ The proposition (78) was either repeated or obvious.

