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Summary. The article includes definitions and theorems which
are needed to define real exponent. The following notions are defined:
natural exponent, integer exponent and rational exponent.
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The terminology and notation used in this paper are introduced in the following
papers: [12], [15], [4], [10], [1], [2], [3], [9], [7], [8], [14], [11], [13], [6], and [5]. For
simplicity we follow the rules: a, b, c will be real numbers, m, n will be natural
numbers, k, l, i will be integers, p, q will be rational numbers, and s1, s2 will
be sequences of real numbers. The following propositions are true:

(2)2 If s1 is convergent and for every n holds s1(n) ≥ a, then lim s1 ≥ a.

(3) If s1 is convergent and for every n holds s1(n) ≤ a, then lim s1 ≤ a.

Let us consider a. The functor (aκ)κ∈ � yielding a sequence of real numbers
is defined as follows:

(Def.1) ((aκ)κ∈ � )(0) = 1 and for every m holds ((aκ)κ∈ � )(m+1) = ((aκ)κ∈ � )(m)·
a.

Next we state two propositions:

(4) For every sequence of real numbers s and for every a holds s = (aκ)κ∈ �
if and only if s(0) = 1 and for every m holds s(m + 1) = s(m) · a.

(5) For every a such that a 6= 0 for every m holds (aκ)κ∈ � (m) 6= 0.

Let us consider a, n. The functor an� yields a real number and is defined by:

(Def.2) an� = (aκ)κ∈ � (n).

Next we state a number of propositions:

(6) an� = (aκ)κ∈ � (n).

1Supported by RPBP.III-24.C8
2The proposition (1) was either repeated or obvious.
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(7) an� · a = an+1� .

(8) 1n� = 1.

(9) an+m� = an� · am� .

(10) (a · b)n� = an� · bn� .

(11) an·m� = (an� )m� .

(12) If 0 6= a, then 0 6= an� .

(13) If 0 < a, then 0 < an� .

(14) If a 6= 0, then 1
a

n� = 1
an� .

(15) If a 6= 0, then b
a

n� =
bn�
an� .

(16) If n ≥ 1, then 0n� = 0.

(17) If 0 < a and a ≤ b, then an� ≤ bn� .

(18) If 0 ≤ a and a < b and 1 ≤ n, then an� < bn� .

(19) If a ≥ 1, then an� ≥ 1.

(20) If 1 ≤ a and 1 ≤ n, then a ≤ an� .

(21) If 1 < a and 2 ≤ n, then a < an� .

(22) If 0 < a and a ≤ 1 and 1 ≤ n, then an� ≤ a.

(23) If 0 < a and a < 1 and 2 ≤ n, then an� < a.

(24) If −1 < a, then (1 + a)n� ≥ 1 + n · a.

(25) If 0 < a and a < 1, then (1 + a)n� ≤ 1 + 3n� · a.

(26) If s1 is convergent and for every n holds s2(n) = (s1(n))m� , then s2 is
convergent and lim s2 = (lim s1)

m� .

Let us consider n, a. Let us assume that 1 ≤ n. The functor rootn(a) yields
a real number and is defined as follows:

(Def.3) (rootn(a))n� = a and rootn(a) > 0 if a > 0, rootn(a) = 0 if a = 0.

Next we state a number of propositions:

(27) For all a, b, n such that 1 ≤ n holds if a > 0, then b = rootn(a) if and
only if bn� = a and b > 0 but if a = 0, then rootn(a) = 0.

(28) If a ≥ 0 and n ≥ 1, then (rootn(a))n� = a and rootn(an� ) = a.

(29) If n ≥ 1, then rootn(1) = 1.

(30) If a ≥ 0, then root1(a) = a.

(31) If a ≥ 0 and b ≥ 0 and n ≥ 1, then rootn(a · b) = rootn(a) · rootn(b).

(32) If a > 0 and n ≥ 1, then rootn( 1
a
) = 1

rootn(a) .

(33) If a ≥ 0 and b > 0 and n ≥ 1, then rootn(a
b
) = rootn(a)

rootn(b) .

(34) If a ≥ 0 and n ≥ 1 and m ≥ 1, then rootn(rootm(a)) = rootn·m(a).

(35) If a ≥ 0 and n ≥ 1 and m ≥ 1, then rootn(a)·rootm(a) = rootn·m(an+m� ).

(36) If 0 ≤ a and a ≤ b and n ≥ 1, then rootn(a) ≤ rootn(b).

(37) If a ≥ 0 and a < b and n ≥ 1, then rootn(a) < rootn(b).

(38) If a ≥ 1 and n ≥ 1, then rootn(a) ≥ 1 and a ≥ rootn(a).
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(39) If 0 ≤ a and a < 1 and n ≥ 1, then a ≤ rootn(a) and rootn(a) < 1.

(40) If a > 0 and n ≥ 1, then rootn(a) − 1 ≤ a−1
n

.

(41) If a ≥ 0, then root2(a) =
√

a.

(42) For every sequence of real numbers s and for every a such that a > 0 and
for every n such that n ≥ 1 holds s(n) = rootn(a) holds s is convergent
and lim s = 1.

Let us consider a, k. Let us assume that a 6= 0. The functor ak
 yields a real
number and is defined as follows:

(Def.4) ak
 = a
|k|� if k ≥ 0, ak
 = (a

|k|� )−1 if k < 0.

We now state a number of propositions:

(43) If a 6= 0, then if k ≥ 0, then ak
 = a
|k|� but if k < 0, then ak
 = (a

|k|� )−1.

(44) If a 6= 0, then for every i such that i = 0 holds ai
 = 1.

(45) If a 6= 0, then for every i such that i = 1 holds ai
 = a.

(46) If a 6= 0 and i = n, then ai
 = an� .

(47) 1k
 = 1.

(48) If a 6= 0, then ak
 6= 0.

(49) If a > 0, then ak
 > 0.

(50) If a 6= 0 and b 6= 0, then (a · b)k
 = ak
 · bk
 .

(51) If a 6= 0, then a−k
 = 1
ak� .

(52) If a 6= 0, then 1
a

k
 = 1
ak� .

(53) If a 6= 0, then am−n
 =
am�
an� .

(54) If a 6= 0, then ak+l
 = ak
 · al
 .

(55) If a 6= 0, then (ak
 )l
 = ak·l
 .

(56) If a > 0 and n ≥ 1, then (rootn(a))k
 = rootn(ak
 ).

Let us consider a, p. Let us assume that a > 0. The functor a
p� yielding a

real number is defined by:

(Def.5) a
p� = rootden p(a

num p
 ).

We now state a number of propositions:

(57) If a > 0, then a
p� = rootden p(a

num p
 ).

(58) If a > 0 and p = 0, then a
p� = 1.

(59) If a > 0 and p = 1, then a
p� = a.

(60) If a > 0 and p = n, then a
p� = an� .

(61) If a > 0 and n ≥ 1 and p = n−1, then a
p� = rootn(a).

(62) 1p� = 1.

(63) If a > 0, then a
p�

> 0.

(64) If a > 0, then a
p� · aq� = a

p+q� .

(65) If a > 0, then 1
a

p� = a
−p� .
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(66) If a > 0, then
a

p�
a

q� = a
p−q� .

(67) If a > 0 and b > 0, then (a · b)p� = a
p� · bp� .

(68) If a > 0, then 1
a

p� = 1
a

p� .

(69) If a > 0 and b > 0, then a
b
p� =

a
p�

b
p� .

(70) If a > 0, then (ap� )q� = a
p·q� .

(71) If a ≥ 1 and p ≥ 0, then a
p� ≥ 1.

(72) If a ≥ 1 and p ≤ 0, then a
p� ≤ 1.

(73) If a > 1 and p > 0, then a
p�

> 1.

(74) If a ≥ 1 and p ≥ q, then a
p� ≥ a

q� .

(75) If a > 1 and p > q, then a
p�

> a
q� .

(76) If a > 0 and a < 1 and p > 0, then a
p�

< 1.

(77) If a > 0 and a ≤ 1 and p ≤ 0, then a
p� ≥ 1.

A sequence of real numbers is called a rational sequence if:

(Def.6) for every n holds it(n) is a rational number.

Let s be a rational sequence, and let us consider n. Then s(n) is a rational
number.

Next we state two propositions:

(79)3 For every a there exists a rational sequence s such that s is convergent
and lim s = a and for every n holds s(n) ≤ a.

(80) For every a there exists a rational sequence s such that s is convergent
and lim s = a and for every n holds s(n) ≥ a.

Let us consider a, and let s be a rational sequence. Let us assume that a > 0.
The functor as� yields a sequence of real numbers and is defined as follows:

(Def.7) for every n holds (as� )(n) = a
s(n)� .

The following propositions are true:

(81) For every a and for every rational sequence s and for every s1 such that

a > 0 holds s1 = as� if and only if for every n holds s1(n) = a
s(n)� .

(82) For every rational sequence s and for every a such that s is convergent
and a > 0 holds as� is convergent.

(83) For all rational sequences s1, s2 and for every a such that s1 is con-
vergent and s2 is convergent and lim s1 = lim s2 and a > 0 holds a

s1� is
convergent and a

s2� is convergent and lim a
s1� = lim a

s2� .

Let us consider a, b. Let us assume that a > 0. The functor ab� yielding a
real number is defined by:

(Def.8) there exists a rational sequence s such that s is convergent and lim s = b

and as� is convergent and lim as� = ab� .

We now state a number of propositions:

3The proposition (78) was either repeated or obvious.
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(84) For all a, b, c such that a > 0 holds c = ab� if and only if there exists
a rational sequence s such that s is convergent and lim s = b and as� is
convergent and lim as� = c.

(85) If a > 0, then a0� = 1.

(86) If a > 0, then a1� = a.

(87) 1a� = 1.

(88) If a > 0, then a
p� = a

p� .

(89) If a > 0, then ab+c� = ab� · ac� .

(90) If a > 0, then a−c� = 1
ac� .

(91) If a > 0, then ab−c� =
ab�
ac� .

(92) If a > 0 and b > 0, then (a · b)c� = ac� · bc� .

(93) If a > 0, then 1
a

c� = 1
ac� .

(94) If a > 0 and b > 0, then a
b
c� =

ac�
bc� .

(95) If a > 0, then ab� > 0.

(96) If a ≥ 1 and c ≥ b, then ac� ≥ ab� .

(97) If a > 1 and c > b, then ac� > ab� .

(98) If a > 0 and a ≤ 1 and c ≥ b, then ac� ≤ ab� .

(99) If a ≥ 1 and b ≥ 0, then ab� ≥ 1.

(100) If a > 1 and b > 0, then ab� > 1.

(101) If a ≥ 1 and b ≤ 0, then ab� ≤ 1.

(102) If a > 1 and b < 0, then ab� < 1.

(103) If s1 is convergent and s2 is convergent and lim s1 > 0 and for every n

holds s1(n) > 0 and s2(n) = (s1(n))p� , then lim s2 = (lim s1)
p� .

(104) If a > 0 and s1 is convergent and s2 is convergent and for every n holds

s2(n) = a
s1(n)� , then lim s2 = a

lim s1� .

(105) If a > 0, then (ab� )c� = ab·c� .

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.

[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.

[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.

[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.

[5] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics,

1(5):841–845, 1990.

[6] Jaros law Kotowicz. Convergent real sequences. Upper and lower bound of sets of real

numbers. Formalized Mathematics, 1(3):477–481, 1990.



130 Konrad Raczkowski

[7] Jaros law Kotowicz. Convergent sequences and the limit of sequences. Formalized Math-

ematics, 1(2):273–275, 1990.

[8] Jaros law Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,

1(3):471–475, 1990.

[9] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathe-

matics, 1(2):269–272, 1990.

[10] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.

[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.

[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
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