The Limit of a Composition of Real Functions

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. The theorem on the proper and the improper limit of a composition of real functions at a point, at infinity and one-side limits at a point are presented.

MML Identifier: LIMFUNC4.

The terminology and notation used in this paper have been introduced in the following articles: [17], [4], [1], [2], [15], [13], [5], [8], [14], [16], [3], [10], [11], [12], [7], [9], and [6]. We follow a convention: $r, r_1, r_2, g, g_1, g_2, x_0$ will be real numbers and f_1, f_2 will be partial functions from \mathbb{R} to \mathbb{R} . The following propositions are true:

- (1) Let s be a sequence of real numbers. Then for every set X such that $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1) \cap X$ holds $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1)$ and $\operatorname{rng} s \subseteq X$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1 \cap X$ and $\operatorname{rng}(f_1 \cdot s) \subseteq \operatorname{dom} f_2$.
- (2) For every sequence of real numbers s and for every set X such that $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1) \setminus X$ holds $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1)$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1 \setminus X$ and $\operatorname{rng}(f_1 \cdot s) \subseteq \operatorname{dom} f_2$.
- (3) If f_1 is divergent in $+\infty$ to $+\infty$ and f_2 is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.
- (4) If f_1 is divergent in $+\infty$ to $+\infty$ and f_2 is divergent in $+\infty$ to $-\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (5) If f_1 is divergent in $+\infty$ to $-\infty$ and f_2 is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.

¹Supported by RPBP.III-24.C8

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (6) If f_1 is divergent in $+\infty$ to $-\infty$ and f_2 is divergent in $-\infty$ to $-\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (7) If f_1 is divergent in $-\infty$ to $+\infty$ and f_2 is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (8) If f_1 is divergent in $-\infty$ to $+\infty$ and f_2 is divergent in $+\infty$ to $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (9) If f_1 is divergent in $-\infty$ to $-\infty$ and f_2 is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (10) If f_1 is divergent in $-\infty$ to $-\infty$ and f_2 is divergent in $-\infty$ to $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (11) If f_1 is left divergent to $+\infty$ in x_0 and f_2 is divergent in $+\infty$ to $+\infty$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .
- (12) If f_1 is left divergent to $+\infty$ in x_0 and f_2 is divergent in $+\infty$ to $-\infty$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .
- (13) If f_1 is left divergent to $-\infty$ in x_0 and f_2 is divergent in $-\infty$ to $+\infty$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .
- (14) If f_1 is left divergent to $-\infty$ in x_0 and f_2 is divergent in $-\infty$ to $-\infty$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .
- (15) If f_1 is right divergent to $+\infty$ in x_0 and f_2 is divergent in $+\infty$ to $+\infty$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .
- (16) If f_1 is right divergent to $+\infty$ in x_0 and f_2 is divergent in $+\infty$ to $-\infty$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .
- (17) If f_1 is right divergent to $-\infty$ in x_0 and f_2 is divergent in $-\infty$ to $+\infty$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .
- (18) If f_1 is right divergent to $-\infty$ in x_0 and f_2 is divergent in $-\infty$ to $-\infty$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .
- (19) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is left divergent to $+\infty$ in $\lim_{x_0^-} f_1$,

- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) < \lim_{x_0^-} f_1.$
 - Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .
- (20) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is left divergent to $-\infty$ in $\lim_{x_0^-} f_1$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[\text{ holds } f_1(r) < \lim_{x_0^-} f_1.$
 - Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .
- (21) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is right divergent to $+\infty$ in $\lim_{x_0^-} f_1$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $\lim_{x_0^-} f_1 < f_1(r).$

Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .

- (22) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is right divergent to $-\infty$ in $\lim_{x_0^-} f_1$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[\text{ holds } \lim_{x_0^-} f_1 < f_1(r).$

Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .

- (23) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is right divergent to $+\infty$ in $\lim_{x_0^+} f_1$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[\text{ holds } \lim_{x_0^+} f_1 < f_1(r).$
 - Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .
- (24) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is right divergent to $-\infty$ in $\lim_{x_0^+} f_1$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $\lim_{x_0^+} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .

- (25) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is left divergent to $+\infty$ in $\lim_{x_0^+} f_1$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[\text{ holds } f_1(r) < \lim_{x_0^+} f_1.$

Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .

- (26) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is left divergent to $-\infty$ in $\lim_{x_0^+} f_1$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) < \lim_{x_0+} f_1.$

Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .

- (27) If f_1 is convergent in $+\infty$ and f_2 is left divergent to $+\infty$ in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]r, +\infty[$ holds $f_1(g) < \lim_{+\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.
- (28) If f_1 is convergent in $+\infty$ and f_2 is left divergent to $-\infty$ in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]r, +\infty[$ holds $f_1(g) < \lim_{+\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (29) If f_1 is convergent in $+\infty$ and f_2 is right divergent to $+\infty$ in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]r, +\infty[$ holds $\lim_{+\infty} f_1 < f_1(g)$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.
- (30) If f_1 is convergent in $+\infty$ and f_2 is right divergent to $-\infty$ in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]r, +\infty[$ holds $\lim_{+\infty} f_1 < f_1(g)$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (31) If f_1 is convergent in $-\infty$ and f_2 is left divergent to $+\infty$ in $\lim_{-\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]-\infty, r[$ holds $f_1(g) < \lim_{-\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.

Next we state a number of propositions:

(32) If f_1 is convergent in $-\infty$ and f_2 is left divergent to $-\infty$ in $\lim_{-\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]-\infty, r[$ holds $f_1(g) < \lim_{-\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.

- (33) If f_1 is convergent in $-\infty$ and f_2 is right divergent to $+\infty$ in $\lim_{-\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]-\infty, r[$ holds $\lim_{-\infty} f_1 < f_1(g)$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (34) If f_1 is convergent in $-\infty$ and f_2 is right divergent to $-\infty$ in $\lim_{-\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]-\infty, r[$ holds $\lim_{-\infty} f_1 < f_1(g)$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (35) Suppose f_1 is divergent to $+\infty$ in x_0 and f_2 is divergent in $+\infty$ to $+\infty$ and for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .
- (36) Suppose f_1 is divergent to $+\infty$ in x_0 and f_2 is divergent in $+\infty$ to $-\infty$ and for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .
- (37) Suppose f_1 is divergent to $-\infty$ in x_0 and f_2 is divergent in $-\infty$ to $+\infty$ and for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .
- (38) Suppose f_1 is divergent to $-\infty$ in x_0 and f_2 is divergent in $-\infty$ to $-\infty$ and for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .
- (39) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is divergent to $+\infty$ in $\lim_{x_0} f_1$,
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) \neq \lim_{x_0} f_1$.
 - Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .
- (40) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is divergent to $-\infty$ in $\lim_{x_0} f_1$,
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) \neq \lim_{x_0} f_1$. There for a first dimension to a single set of the set of the
 - Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .
- (41) Suppose that

- (i) f_1 is convergent in x_0 ,
- (ii) f_2 is right divergent to $+\infty$ in $\lim_{x_0} f_1$,
- (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) > \lim_{x_0} f_1$. Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .
- (42) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is right divergent to $-\infty$ in $\lim_{x_0} f_1$,
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) > \lim_{x_0} f_1$. Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .
- (43) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is divergent to $+\infty$ in $\lim_{x_0^+} f_1$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[\text{ holds } f_1(r) \neq \lim_{x_0^+} f_1.$
 - Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .
- (44) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is divergent to $-\infty$ in $\lim_{x_0^+} f_1$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[\text{ holds } f_1(r) \neq \lim_{x_0^+} f_1.$ Then f is right divergent to see in re-
 - Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .
- (45) If f_1 is convergent in $+\infty$ and f_2 is divergent to $+\infty$ in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]r, +\infty[$ holds $f_1(g) \neq \lim_{+\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.
- (46) If f_1 is convergent in $+\infty$ and f_2 is divergent to $-\infty$ in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]r, +\infty[$ holds $f_1(g) \neq \lim_{+\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (47) If f_1 is convergent in $-\infty$ and f_2 is divergent to $+\infty$ in $\lim_{n\to\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and

there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[$ holds $f_1(g) \neq \lim_{-\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.

- (48) If f_1 is convergent in $-\infty$ and f_2 is divergent to $-\infty$ in $\lim_{-\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom}(f_1 \cap]-\infty, r[$ holds $f_1(g) \neq \lim_{-\infty} f_1$, then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (49) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is left divergent to $+\infty$ in $\lim_{x_0} f_1$,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) < \lim_{x_0} f_1$.
 - Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .
- (50) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is left divergent to $-\infty$ in $\lim_{x_0} f_1$,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) < \lim_{x_0} f_1$.
 - Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .
- (51) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is divergent to $+\infty$ in $\lim_{x_0^-} f_1$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) \neq \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .

- (52) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is divergent to $-\infty$ in $\lim_{x_0^-} f_1$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) \neq \lim_{x_0^-} f_1.$ Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .
- (53) If f_1 is divergent in $+\infty$ to $+\infty$ and f_2 is convergent in $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{t \to \infty} (f_2 \cdot f_1) = \lim_{t \to \infty} f_2$.

- (54) If f_1 is divergent in $+\infty$ to $-\infty$ and f_2 is convergent in $-\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{+\infty} (f_2 \cdot f_1) = \lim_{-\infty} f_2$.
- (55) If f_1 is divergent in $-\infty$ to $+\infty$ and f_2 is convergent in $+\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{-\infty} (f_2 \cdot f_1) = \lim_{+\infty} f_2$.
- (56) If f_1 is divergent in $-\infty$ to $-\infty$ and f_2 is convergent in $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{m \to \infty} (f_2 \cdot f_1) = \lim_{m \to \infty} f_2$.
- (57) If f_1 is left divergent to $+\infty$ in x_0 and f_2 is convergent in $+\infty$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \operatorname{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{+\infty} f_2$.
- (58) If f_1 is left divergent to $-\infty$ in x_0 and f_2 is convergent in $-\infty$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \operatorname{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{x_0^-} f_2$.
- (59) If f_1 is right divergent to $+\infty$ in x_0 and f_2 is convergent in $+\infty$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \operatorname{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{x_0^+} f_2$.
- (60) If f_1 is right divergent to $-\infty$ in x_0 and f_2 is convergent in $-\infty$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \operatorname{dom}(f_2 \cdot f_1)$, then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{\infty \to \infty} f_2$.
- (61) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is left convergent in $\lim_{x_0^-} f_1$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[\text{ holds } f_1(r) < \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{x_0^-} f_1^- f_2$.

- (62) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is right convergent in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[\text{ holds } \lim_{x_0^+} f_1 < f_1(r).$

Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{x_0^+} f_1^+ f_2$.

One can prove the following propositions:

- (63) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is right convergent in $\lim_{x_0^-} f_1$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $\lim_{x_0^-} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{\lim_{x_0^-} f_1^+} f_2$.

- (64) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is left convergent in $\lim_{x_0^+} f_1$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap [x_0, x_0 + g[\text{ holds } f_1(r) < \lim_{x_0+} f_1.$

Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{x_0^+} f_2$.

- (65) Suppose f_1 is convergent in $+\infty$ and f_2 is left convergent in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \operatorname{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \operatorname{dom} f_1 \cap]r, +\infty[$ holds $f_1(g) < \lim_{+\infty} f_1$. Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{+\infty} (f_2 \cdot f_1) = \lim_{\lim_{+\infty} f_1^-} f_2$.
- (66) Suppose f_1 is convergent in $+\infty$ and f_2 is right convergent in $\lim_{+\infty} f_1$ and for every r there exists g such that r < g and $g \in \operatorname{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \operatorname{dom} f_1 \cap]r, +\infty[$ holds $\lim_{+\infty} f_1 < f_1(g)$. Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{+\infty} (f_2 \cdot f_1) = \lim_{\lim_{+\infty} f_1^+} f_2$.
- (67) Suppose f_1 is convergent in $-\infty$ and f_2 is left convergent in $\lim_{\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]-\infty, r[$ holds $f_1(g) < \lim_{\infty} f_1$. Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{\infty} (f_2 \cdot f_1) = \lim_{\lim_{\infty} f_1 \to f_2} f_2$.
- (68) Suppose f_1 is convergent in $-\infty$ and f_2 is right convergent in $\lim_{-\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]-\infty, r[$ holds $\lim_{-\infty} f_1 < f_1(g)$. Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{-\infty} (f_2 \cdot f_1) = \lim_{\lim_{-\infty} f_1^+} f_2$.
- (69) Suppose f_1 is divergent to $+\infty$ in x_0 and f_2 is convergent in $+\infty$ and for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{t \to \infty} f_2$.
- (70) Suppose f_1 is divergent to $-\infty$ in x_0 and f_2 is convergent in $-\infty$ and for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that

 $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{-\infty} f_2$.

- (71) Suppose f_1 is convergent in $+\infty$ and f_2 is convergent in $\lim_{t\to\infty} f_1$ and for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]r, +\infty[$ holds $f_1(g) \neq \lim_{t\to\infty} f_1$. Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{t\to\infty} (f_2 \cdot f_1) =$ $\lim_{t\to\infty} f_1 f_2$.
- (72) Suppose f_1 is convergent in $-\infty$ and f_2 is convergent in $\lim_{\infty} f_1$ and for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$ and there exists r such that for every g such that $g \in \text{dom} f_1 \cap]-\infty, r[$ holds $f_1(g) \neq \lim_{\infty} f_1$. Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{\infty} (f_2 \cdot f_1) = \lim_{\infty} f_1 f_2$.
- (73) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is left convergent in $\lim_{x_0} f_1$,
- (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) < \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{\lim_{x_0} f_1^-} f_2$.

- (74) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is convergent in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[\text{ holds } f_1(r) \neq \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{\lim_{x_0^-} f_1} f_2$.

- (75) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is right convergent in $\lim_{x_0} f_1$,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,
 - (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $\lim_{x_0} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{\lim_{x_0} f_1^+} f_2$.

- (76) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is convergent in $\lim_{x_0^+} f_1$,

- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) \neq \lim_{x_0^+} f_1.$

Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{x_0^+} f_1 f_2$.

- (77) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in $\lim_{x_0} f_1$,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$,

(iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 - g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) \neq \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{\lim_{x_0} f_1} f_2$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [6] Jarosław Kotowicz. The limit of a real function at a point. Formalized Mathematics, 2(1):71–80, 1991.
- [7] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- Jarosław Kotowicz. One-side limits of a real function at a point. Formalized Mathematics, 2(1):29–40, 1991.
- [10] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [12] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [14] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.

JAROSŁAW KOTOWICZ

- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received September 5, 1990