The Limit of a Composition of Real Functions

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The theorem on the proper and the improper limit of a composition of real functions at a point, at infinity and one-side limits at a point are presented.

MML Identifier: LIMFUNC4.

The terminology and notation used in this paper have been introduced in the following articles: [17], [4], [1], [2], [15], [13], [5], [8], [14], [16], [3], [10], [11], [12], [7], [9], and [6]. We follow a convention: $r, r_{1}, r_{2}, g, g_{1}, g_{2}, x_{0}$ will be real numbers and f_{1}, f_{2} will be partial functions from \mathbb{R} to \mathbb{R}. The following propositions are true:
(1) Let s be a sequence of real numbers. Then for every set X such that $\operatorname{rng} s \subseteq \operatorname{dom}\left(f_{2} \cdot f_{1}\right) \cap X$ holds $\operatorname{rng} s \subseteq \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and rng $s \subseteq X$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_{1}$ and $\mathrm{rng} s \subseteq \operatorname{dom} f_{1} \cap X$ and $\operatorname{rng}\left(f_{1} \cdot s\right) \subseteq \operatorname{dom} f_{2}$.
(2) For every sequence of real numbers s and for every set X such that $\operatorname{rng} s \subseteq \operatorname{dom}\left(f_{2} \cdot f_{1}\right) \backslash X$ holds $\mathrm{rng} s \subseteq \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $\mathrm{rng} s \subseteq \operatorname{dom} f_{1}$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_{1} \backslash X$ and $\operatorname{rng}\left(f_{1} \cdot s\right) \subseteq \operatorname{dom} f_{2}$.
(3) If f_{1} is divergent in $+\infty$ to $+\infty$ and f_{2} is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $+\infty$.
(4) If f_{1} is divergent in $+\infty$ to $+\infty$ and f_{2} is divergent in $+\infty$ to $-\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $-\infty$.
(5) If f_{1} is divergent in $+\infty$ to $-\infty$ and f_{2} is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $+\infty$.

[^0](6) If f_{1} is divergent in $+\infty$ to $-\infty$ and f_{2} is divergent in $-\infty$ to $-\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $-\infty$.
(7) If f_{1} is divergent in $-\infty$ to $+\infty$ and f_{2} is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $+\infty$.
(8) If f_{1} is divergent in $-\infty$ to $+\infty$ and f_{2} is divergent in $+\infty$ to $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $-\infty$.
(9) If f_{1} is divergent in $-\infty$ to $-\infty$ and f_{2} is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $+\infty$.
(10) If f_{1} is divergent in $-\infty$ to $-\infty$ and f_{2} is divergent in $-\infty$ to $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $-\infty$.
(11) If f_{1} is left divergent to $+\infty$ in x_{0} and f_{2} is divergent in $+\infty$ to $+\infty$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is left divergent to $+\infty$ in x_{0}.
(12) If f_{1} is left divergent to $+\infty$ in x_{0} and f_{2} is divergent in $+\infty$ to $-\infty$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is left divergent to $-\infty$ in x_{0}.
(13) If f_{1} is left divergent to $-\infty$ in x_{0} and f_{2} is divergent in $-\infty$ to $+\infty$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is left divergent to $+\infty$ in x_{0}.

If f_{1} is left divergent to $-\infty$ in x_{0} and f_{2} is divergent in $-\infty$ to $-\infty$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is left divergent to $-\infty$ in x_{0}.
(15) If f_{1} is right divergent to $+\infty$ in x_{0} and f_{2} is divergent in $+\infty$ to $+\infty$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is right divergent to $+\infty$ in x_{0}.
(16) If f_{1} is right divergent to $+\infty$ in x_{0} and f_{2} is divergent in $+\infty$ to $-\infty$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is right divergent to $-\infty$ in x_{0}.

If f_{1} is right divergent to $-\infty$ in x_{0} and f_{2} is divergent in $-\infty$ to $+\infty$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is right divergent to $+\infty$ in x_{0}.

If f_{1} is right divergent to $-\infty$ in x_{0} and f_{2} is divergent in $-\infty$ to $-\infty$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is right divergent to $-\infty$ in x_{0}.
(19) Suppose that
(i) $\quad f_{1}$ is left convergent in x_{0},
(ii) $\quad f_{2}$ is left divergent to $+\infty$ in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}\left[\right.$ holds $f_{1}(r)<\lim _{x_{0}-} f_{1}$.
Then $f_{2} \cdot f_{1}$ is left divergent to $+\infty$ in x_{0}.
(20) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) $\quad f_{2}$ is left divergent to $-\infty$ in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}\left[\right.$ holds $f_{1}(r)<\lim _{x_{0}-} f_{1}$.
Then $f_{2} \cdot f_{1}$ is left divergent to $-\infty$ in x_{0}.
(21) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) $\quad f_{2}$ is right divergent to $+\infty$ in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}$ [holds $\lim _{x_{0}-} f_{1}<f_{1}(r)$.
Then $f_{2} \cdot f_{1}$ is left divergent to $+\infty$ in x_{0}.
(22) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) $\quad f_{2}$ is right divergent to $-\infty$ in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}\left[\right.$ holds $\lim _{x_{0}-} f_{1}<f_{1}(r)$.
Then $f_{2} \cdot f_{1}$ is left divergent to $-\infty$ in x_{0}.
(23) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right divergent to $+\infty$ in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $\lim _{x_{0}+} f_{1}<f_{1}(r)$.
Then $f_{2} \cdot f_{1}$ is right divergent to $+\infty$ in x_{0}.
(24) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right divergent to $-\infty$ in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $\lim _{x_{0}+} f_{1}<f_{1}(r)$.

Then $f_{2} \cdot f_{1}$ is right divergent to $-\infty$ in x_{0}.
(25) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is left divergent to $+\infty$ in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $f_{1}(r)<\lim _{x_{0}+} f_{1}$.
Then $f_{2} \cdot f_{1}$ is right divergent to $+\infty$ in x_{0}.
(26) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is left divergent to $-\infty$ in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $f_{1}(r)<\lim _{x_{0}+} f_{1}$.
Then $f_{2} \cdot f_{1}$ is right divergent to $-\infty$ in x_{0}.
(27) If f_{1} is convergent in $+\infty$ and f_{2} is left divergent to $+\infty$ in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $f_{1}(g)<\lim _{+\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $+\infty$.
(28) If f_{1} is convergent in $+\infty$ and f_{2} is left divergent to $-\infty$ in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $f_{1}(g)<\lim _{+\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $-\infty$.
(29) If f_{1} is convergent in $+\infty$ and f_{2} is right divergent to $+\infty$ in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $\lim _{+\infty} f_{1}<f_{1}(g)$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $+\infty$.
(30) If f_{1} is convergent in $+\infty$ and f_{2} is right divergent to $-\infty$ in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $\lim _{+\infty} f_{1}<f_{1}(g)$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $-\infty$.
(31) If f_{1} is convergent in $-\infty$ and f_{2} is left divergent to $+\infty$ in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r$ [holds $f_{1}(g)<\lim _{-\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $+\infty$.
Next we state a number of propositions:
(32) If f_{1} is convergent in $-\infty$ and f_{2} is left divergent to $-\infty$ in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r$ [holds $f_{1}(g)<\lim _{-\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $-\infty$.
(33) If f_{1} is convergent in $-\infty$ and f_{2} is right divergent to $+\infty$ in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r[$ holds $\lim _{-\infty} f_{1}<f_{1}(g)$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $+\infty$.
(34) If f_{1} is convergent in $-\infty$ and f_{2} is right divergent to $-\infty$ in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r[$ holds $\lim _{-\infty} f_{1}<f_{1}(g)$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $-\infty$.
(35) Suppose f_{1} is divergent to $+\infty$ in x_{0} and f_{2} is divergent in $+\infty$ to $+\infty$ and for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$. Then $f_{2} \cdot f_{1}$ is divergent to $+\infty$ in x_{0}.
(36) Suppose f_{1} is divergent to $+\infty$ in x_{0} and f_{2} is divergent in $+\infty$ to $-\infty$ and for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$. Then $f_{2} \cdot f_{1}$ is divergent to $-\infty$ in x_{0}.
(37) Suppose f_{1} is divergent to $-\infty$ in x_{0} and f_{2} is divergent in $-\infty$ to $+\infty$ and for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$. Then $f_{2} \cdot f_{1}$ is divergent to $+\infty$ in x_{0}.
(38) Suppose f_{1} is divergent to $-\infty$ in x_{0} and f_{2} is divergent in $-\infty$ to $-\infty$ and for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$. Then $f_{2} \cdot f_{1}$ is divergent to $-\infty$ in x_{0}.
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is divergent to $+\infty$ in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r) \neq \lim _{x_{0}} f_{1}$.
Then $f_{2} \cdot f_{1}$ is divergent to $+\infty$ in x_{0}.
(40) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is divergent to $-\infty$ in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r) \neq \lim _{x_{0}} f_{1}$. Then $f_{2} \cdot f_{1}$ is divergent to $-\infty$ in x_{0}.
(41) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is right divergent to $+\infty$ in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r)>\lim _{x_{0}} f_{1}$.
Then $f_{2} \cdot f_{1}$ is divergent to $+\infty$ in x_{0}.
(42) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is right divergent to $-\infty$ in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r)>\lim _{x_{0}} f_{1}$.
Then $f_{2} \cdot f_{1}$ is divergent to $-\infty$ in x_{0}.
(43) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) $\quad f_{2}$ is divergent to $+\infty$ in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $f_{1}(r) \neq \lim _{x_{0}+} f_{1}$.
Then $f_{2} \cdot f_{1}$ is right divergent to $+\infty$ in x_{0}.
(44) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) $\quad f_{2}$ is divergent to $-\infty$ in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $f_{1}(r) \neq \lim _{x_{0}+} f_{1}$.
Then $f_{2} \cdot f_{1}$ is right divergent to $-\infty$ in x_{0}.
(45) If f_{1} is convergent in $+\infty$ and f_{2} is divergent to $+\infty$ in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $f_{1}(g) \neq \lim _{+\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $+\infty$.
(46) If f_{1} is convergent in $+\infty$ and f_{2} is divergent to $-\infty$ in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $f_{1}(g) \neq \lim _{+\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $+\infty$ to $-\infty$.
(47) If f_{1} is convergent in $-\infty$ and f_{2} is divergent to $+\infty$ in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and
there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r[$ holds $f_{1}(g) \neq \lim _{-\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $+\infty$.
(48) If f_{1} is convergent in $-\infty$ and f_{2} is divergent to $-\infty$ in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r$ [holds $f_{1}(g) \neq \lim _{-\infty} f_{1}$, then $f_{2} \cdot f_{1}$ is divergent in $-\infty$ to $-\infty$.
(49) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is left divergent to $+\infty$ in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r)<\lim _{x_{0}} f_{1}$.
Then $f_{2} \cdot f_{1}$ is divergent to $+\infty$ in x_{0}.
(50) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is left divergent to $-\infty$ in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r)<\lim _{x_{0}} f_{1}$. Then $f_{2} \cdot f_{1}$ is divergent to $-\infty$ in x_{0}.
(51) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) $\quad f_{2}$ is divergent to $+\infty$ in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}\left[\right.$ holds $f_{1}(r) \neq \lim _{x_{0}-} f_{1}$.
Then $f_{2} \cdot f_{1}$ is left divergent to $+\infty$ in x_{0}.
(52) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) $\quad f_{2}$ is divergent to $-\infty$ in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}\left[\right.$ holds $f_{1}(r) \neq \lim _{x_{0}-} f_{1}$. Then $f_{2} \cdot f_{1}$ is left divergent to $-\infty$ in x_{0}.
(53) If f_{1} is divergent in $+\infty$ to $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{2} \cdot f_{1}\right)=\lim _{+\infty} f_{2}$.
(54) If f_{1} is divergent in $+\infty$ to $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{2} \cdot f_{1}\right)=\lim _{-\infty} f_{2}$.
(55) If f_{1} is divergent in $-\infty$ to $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{2} \cdot f_{1}\right)=\lim _{+\infty} f_{2}$.
(56) If f_{1} is divergent in $-\infty$ to $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{2} \cdot f_{1}\right)=\lim _{-\infty} f_{2}$.
(57) If f_{1} is left divergent to $+\infty$ in x_{0} and f_{2} is convergent in $+\infty$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{+\infty} f_{2}$.
(58) If f_{1} is left divergent to $-\infty$ in x_{0} and f_{2} is convergent in $-\infty$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{-\infty} f_{2}$.
(59) If f_{1} is right divergent to $+\infty$ in x_{0} and f_{2} is convergent in $+\infty$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{+\infty} f_{2}$.
If f_{1} is right divergent to $-\infty$ in x_{0} and f_{2} is convergent in $-\infty$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$, then $f_{2} \cdot f_{1}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{-\infty} f_{2}$.
(61) Suppose that
(i) $\quad f_{1}$ is left convergent in x_{0},
(ii) $\quad f_{2}$ is left convergent in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}$ [holds $f_{1}(r)<\lim _{x_{0}-} f_{1}$.
Then $f_{2} \cdot f_{1}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}-} f_{1}-} f_{2}$.
(62) Suppose that
(i) $\quad f_{1}$ is right convergent in x_{0},
(ii) $\quad f_{2}$ is right convergent in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $\lim _{x_{0}+} f_{1}<f_{1}(r)$.
Then $f_{2} \cdot f_{1}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}+}} f_{1}+f_{2}$.
One can prove the following propositions:

Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is right convergent in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}\left[\right.$ holds $\lim _{x_{0}-} f_{1}<f_{1}(r)$.
Then $f_{2} \cdot f_{1}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}-} f_{1}+} f_{2}$.
(64) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is left convergent in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $f_{1}(r)<\lim _{x_{0}+} f_{1}$.
Then $f_{2} \cdot f_{1}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}+} f_{1}-} f_{2}$.
(65) Suppose f_{1} is convergent in $+\infty$ and f_{2} is left convergent in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $f_{1}(g)<\lim _{+\infty} f_{1}$. Then $f_{2} \cdot f_{1}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{\lim _{+\infty} f_{1}-} f_{2}$.
(66) Suppose f_{1} is convergent in $+\infty$ and f_{2} is right convergent in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $\lim _{+\infty} f_{1}<f_{1}(g)$. Then $f_{2} \cdot f_{1}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{\lim _{+\infty} f_{1}+} f_{2}$.
(67) Suppose f_{1} is convergent in $-\infty$ and f_{2} is left convergent in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r[$ holds $f_{1}(g)<\lim _{-\infty} f_{1}$. Then $f_{2} \cdot f_{1}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{\lim _{-\infty} f_{1}-} f_{2}$.
(68) Suppose f_{1} is convergent in $-\infty$ and f_{2} is right convergent in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r[$ holds $\lim _{-\infty} f_{1}<f_{1}(g)$. Then $f_{2} \cdot f_{1}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{\lim _{-\infty} f_{1}+} f_{2}$.
(69) Suppose f_{1} is divergent to $+\infty$ in x_{0} and f_{2} is convergent in $+\infty$ and for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$. Then $f_{2} \cdot f_{1}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{+\infty} f_{2}$.
(70) Suppose f_{1} is divergent to $-\infty$ in x_{0} and f_{2} is convergent in $-\infty$ and for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that
$r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$. Then $f_{2} \cdot f_{1}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{-\infty} f_{2}$.
(71) Suppose f_{1} is convergent in $+\infty$ and f_{2} is convergent in $\lim _{+\infty} f_{1}$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty[$ holds $f_{1}(g) \neq \lim _{+\infty} f_{1}$. Then $f_{2} \cdot f_{1}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{\lim _{+\infty} f_{1}} f_{2}$.
(72) Suppose f_{1} is convergent in $-\infty$ and f_{2} is convergent in $\lim _{-\infty} f_{1}$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and there exists r such that for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r$ [holds $f_{1}(g) \neq \lim _{-\infty} f_{1}$. Then $f_{2} \cdot f_{1}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{2} \cdot f_{1}\right)=$ $\lim _{\lim _{-\infty} f_{1}} f_{2}$.
(73) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is left convergent in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r)<\lim _{x_{0}} f_{1}$.
Then $f_{2} \cdot f_{1}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}} f_{1}-} f_{2}$.
(74) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) $\quad f_{2}$ is convergent in $\lim _{x_{0}-} f_{1}$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}-g, x_{0}\left[\right.$ holds $f_{1}(r) \neq \lim _{x_{0}-} f_{1}$.
Then $f_{2} \cdot f_{1}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}-}-f_{1}} f_{2}$.
(75) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is right convergent in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $\lim _{x_{0}} f_{1}<f_{1}(r)$.
Then $f_{2} \cdot f_{1}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}} f_{1}+} f_{2}$.
(76) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is convergent in $\lim _{x_{0}+} f_{1}$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ $] x_{0}, x_{0}+g\left[\right.$ holds $f_{1}(r) \neq \lim _{x_{0}+} f_{1}$.
Then $f_{2} \cdot f_{1}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}+}} f_{1} f_{2}$.
(77) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is convergent in $\lim _{x_{0}} f_{1}$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$,
(iv) there exists g such that $0<g$ and for every r such that $r \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-g, x_{0}[\cup] x_{0}, x_{0}+g[)$ holds $f_{1}(r) \neq \lim _{x_{0}} f_{1}$.
Then $f_{2} \cdot f_{1}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{2} \cdot f_{1}\right)=\lim _{\lim _{x_{0}} f_{1}} f_{2}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. The limit of a real function at a point. Formalized Mathematics, 2(1):71-80, 1991.
[7] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[9] Jarosław Kotowicz. One-side limits of a real function at a point. Formalized Mathematics, 2(1):29-40, 1991.
[10] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[11] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[12] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[14] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received September 5, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

