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The terminology and notation used in this paper have been introduced in the
following articles: [17], [4], [1], [2], [15], [13], [5], [8], [14], [16], [3], [10], [11],
[12], [7], [9], and [6]. We follow a convention: r, r1, r2, g, g1, g2, x0 will be
real numbers and f1, f2 will be partial functions from

�
to

�
. The following

propositions are true:

(1) Let s be a sequence of real numbers. Then for every set X such that
rng s ⊆ dom(f2 · f1) ∩ X holds rng s ⊆ dom(f2 · f1) and rng s ⊆ X and
rng s ⊆ dom f1 and rng s ⊆ dom f1 ∩ X and rng(f1 · s) ⊆ dom f2.

(2) For every sequence of real numbers s and for every set X such that
rng s ⊆ dom(f2 · f1) \ X holds rng s ⊆ dom(f2 · f1) and rng s ⊆ dom f1

and rng s ⊆ dom f1 \ X and rng(f1 · s) ⊆ dom f2.

(3) If f1 is divergent in +∞ to +∞ and f2 is divergent in +∞ to +∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to +∞.

(4) If f1 is divergent in +∞ to +∞ and f2 is divergent in +∞ to −∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to −∞.

(5) If f1 is divergent in +∞ to −∞ and f2 is divergent in −∞ to +∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to +∞.
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(6) If f1 is divergent in +∞ to −∞ and f2 is divergent in −∞ to −∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to −∞.

(7) If f1 is divergent in −∞ to +∞ and f2 is divergent in +∞ to +∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to +∞.

(8) If f1 is divergent in −∞ to +∞ and f2 is divergent in +∞ to −∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to −∞.

(9) If f1 is divergent in −∞ to −∞ and f2 is divergent in −∞ to +∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to +∞.

(10) If f1 is divergent in −∞ to −∞ and f2 is divergent in −∞ to −∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to −∞.

(11) If f1 is left divergent to +∞ in x0 and f2 is divergent in +∞ to +∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to +∞ in x0.

(12) If f1 is left divergent to +∞ in x0 and f2 is divergent in +∞ to −∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to −∞ in x0.

(13) If f1 is left divergent to −∞ in x0 and f2 is divergent in −∞ to +∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to +∞ in x0.

(14) If f1 is left divergent to −∞ in x0 and f2 is divergent in −∞ to −∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to −∞ in x0.

(15) If f1 is right divergent to +∞ in x0 and f2 is divergent in +∞ to +∞
and for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to +∞ in x0.

(16) If f1 is right divergent to +∞ in x0 and f2 is divergent in +∞ to −∞
and for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to −∞ in x0.

(17) If f1 is right divergent to −∞ in x0 and f2 is divergent in −∞ to +∞
and for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to +∞ in x0.

(18) If f1 is right divergent to −∞ in x0 and f2 is divergent in −∞ to −∞
and for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to −∞ in x0.

(19) Suppose that

(i) f1 is left convergent in x0,

(ii) f2 is left divergent to +∞ in limx0
− f1,
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(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) < limx0
− f1.

Then f2 · f1 is left divergent to +∞ in x0.

(20) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is left divergent to −∞ in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) < limx0
− f1.

Then f2 · f1 is left divergent to −∞ in x0.

(21) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is right divergent to +∞ in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds limx0
− f1 < f1(r).

Then f2 · f1 is left divergent to +∞ in x0.

(22) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is right divergent to −∞ in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds limx0
− f1 < f1(r).

Then f2 · f1 is left divergent to −∞ in x0.

(23) Suppose that
(i) f1 is right convergent in x0,
(ii) f2 is right divergent to +∞ in limx0

+ f1,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds limx0
+ f1 < f1(r).

Then f2 · f1 is right divergent to +∞ in x0.

(24) Suppose that
(i) f1 is right convergent in x0,
(ii) f2 is right divergent to −∞ in limx0

+ f1,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds limx0
+ f1 < f1(r).
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Then f2 · f1 is right divergent to −∞ in x0.

(25) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is left divergent to +∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) < limx0

+ f1.

Then f2 · f1 is right divergent to +∞ in x0.

(26) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is left divergent to −∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) < limx0

+ f1.

Then f2 · f1 is right divergent to −∞ in x0.

(27) If f1 is convergent in +∞ and f2 is left divergent to +∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) < lim+∞ f1, then f2 · f1 is divergent in +∞ to +∞.

(28) If f1 is convergent in +∞ and f2 is left divergent to −∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) < lim+∞ f1, then f2 · f1 is divergent in +∞ to −∞.

(29) If f1 is convergent in +∞ and f2 is right divergent to +∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
lim+∞ f1 < f1(g), then f2 · f1 is divergent in +∞ to +∞.

(30) If f1 is convergent in +∞ and f2 is right divergent to −∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
lim+∞ f1 < f1(g), then f2 · f1 is divergent in +∞ to −∞.

(31) If f1 is convergent in −∞ and f2 is left divergent to +∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) < lim−∞ f1, then f2 · f1 is divergent in −∞ to +∞.

Next we state a number of propositions:

(32) If f1 is convergent in −∞ and f2 is left divergent to −∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) < lim−∞ f1, then f2 · f1 is divergent in −∞ to −∞.
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(33) If f1 is convergent in −∞ and f2 is right divergent to +∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
lim−∞ f1 < f1(g), then f2 · f1 is divergent in −∞ to +∞.

(34) If f1 is convergent in −∞ and f2 is right divergent to −∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
lim−∞ f1 < f1(g), then f2 · f1 is divergent in −∞ to −∞.

(35) Suppose f1 is divergent to +∞ in x0 and f2 is divergent in +∞ to +∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to +∞ in x0.

(36) Suppose f1 is divergent to +∞ in x0 and f2 is divergent in +∞ to −∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to −∞ in x0.

(37) Suppose f1 is divergent to −∞ in x0 and f2 is divergent in −∞ to +∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to +∞ in x0.

(38) Suppose f1 is divergent to −∞ in x0 and f2 is divergent in −∞ to −∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to −∞ in x0.

(39) Suppose that
(i) f1 is convergent in x0,

(ii) f2 is divergent to +∞ in limx0
f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) 6= limx0

f1.
Then f2 · f1 is divergent to +∞ in x0.

(40) Suppose that

(i) f1 is convergent in x0,
(ii) f2 is divergent to −∞ in limx0

f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) 6= limx0

f1.

Then f2 · f1 is divergent to −∞ in x0.

(41) Suppose that
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(i) f1 is convergent in x0,

(ii) f2 is right divergent to +∞ in limx0
f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) > limx0

f1.
Then f2 · f1 is divergent to +∞ in x0.

(42) Suppose that

(i) f1 is convergent in x0,
(ii) f2 is right divergent to −∞ in limx0

f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) > limx0

f1.
Then f2 · f1 is divergent to −∞ in x0.

(43) Suppose that
(i) f1 is right convergent in x0,

(ii) f2 is divergent to +∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds f1(r) 6= limx0
+ f1.

Then f2 · f1 is right divergent to +∞ in x0.

(44) Suppose that
(i) f1 is right convergent in x0,

(ii) f2 is divergent to −∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) 6= limx0

+ f1.
Then f2 · f1 is right divergent to −∞ in x0.

(45) If f1 is convergent in +∞ and f2 is divergent to +∞ in lim+∞ f1 and
for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) 6= lim+∞ f1, then f2 · f1 is divergent in +∞ to +∞.

(46) If f1 is convergent in +∞ and f2 is divergent to −∞ in lim+∞ f1 and
for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) 6= lim+∞ f1, then f2 · f1 is divergent in +∞ to −∞.

(47) If f1 is convergent in −∞ and f2 is divergent to +∞ in lim−∞ f1 and
for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
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there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) 6= lim−∞ f1, then f2 · f1 is divergent in −∞ to +∞.

(48) If f1 is convergent in −∞ and f2 is divergent to −∞ in lim−∞ f1 and
for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) 6= lim−∞ f1, then f2 · f1 is divergent in −∞ to −∞.

(49) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is left divergent to +∞ in limx0

f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) < limx0

f1.
Then f2 · f1 is divergent to +∞ in x0.

(50) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is left divergent to −∞ in limx0

f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) < limx0

f1.
Then f2 · f1 is divergent to −∞ in x0.

(51) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is divergent to +∞ in limx0

− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) 6= limx0
− f1.

Then f2 · f1 is left divergent to +∞ in x0.

(52) Suppose that
(i) f1 is left convergent in x0,

(ii) f2 is divergent to −∞ in limx0
− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) 6= limx0
− f1.

Then f2 · f1 is left divergent to −∞ in x0.

(53) If f1 is divergent in +∞ to +∞ and f2 is convergent in +∞ and for
every r there exists g such that r < g and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in +∞ and lim+∞(f2 · f1) = lim+∞ f2.
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(54) If f1 is divergent in +∞ to −∞ and f2 is convergent in −∞ and for
every r there exists g such that r < g and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in +∞ and lim+∞(f2 · f1) = lim−∞ f2.

(55) If f1 is divergent in −∞ to +∞ and f2 is convergent in +∞ and for
every r there exists g such that g < r and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in −∞ and lim−∞(f2 · f1) = lim+∞ f2.

(56) If f1 is divergent in −∞ to −∞ and f2 is convergent in −∞ and for
every r there exists g such that g < r and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in −∞ and lim−∞(f2 · f1) = lim−∞ f2.

(57) If f1 is left divergent to +∞ in x0 and f2 is convergent in +∞ and for
every r such that r < x0 there exists g such that r < g and g < x0 and
g ∈ dom(f2 · f1), then f2 · f1 is left convergent in x0 and limx0

−(f2 · f1) =
lim+∞ f2.

(58) If f1 is left divergent to −∞ in x0 and f2 is convergent in −∞ and for
every r such that r < x0 there exists g such that r < g and g < x0 and
g ∈ dom(f2 · f1), then f2 · f1 is left convergent in x0 and limx0

−(f2 · f1) =
lim−∞ f2.

(59) If f1 is right divergent to +∞ in x0 and f2 is convergent in +∞ and for
every r such that x0 < r there exists g such that g < r and x0 < g and
g ∈ dom(f2 ·f1), then f2 ·f1 is right convergent in x0 and limx0

+(f2 ·f1) =
lim+∞ f2.

(60) If f1 is right divergent to −∞ in x0 and f2 is convergent in −∞ and for
every r such that x0 < r there exists g such that g < r and x0 < g and
g ∈ dom(f2 ·f1), then f2 ·f1 is right convergent in x0 and limx0

+(f2 ·f1) =
lim−∞ f2.

(61) Suppose that

(i) f1 is left convergent in x0,

(ii) f2 is left convergent in limx0
− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0 − g, x0[ holds f1(r) < limx0

− f1.

Then f2 · f1 is left convergent in x0 and limx0
−(f2 · f1) = limlim

x0
− f1

− f2.

(62) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is right convergent in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds limx0

+ f1 < f1(r).

Then f2 ·f1 is right convergent in x0 and limx0
+(f2 ·f1) = limlim

x0
+ f1

+ f2.

One can prove the following propositions:
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(63) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is right convergent in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds limx0
− f1 < f1(r).

Then f2 · f1 is left convergent in x0 and limx0
−(f2 · f1) = limlim

x0
− f1

+ f2.

(64) Suppose that
(i) f1 is right convergent in x0,
(ii) f2 is left convergent in limx0

+ f1,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds f1(r) < limx0
+ f1.

Then f2 ·f1 is right convergent in x0 and limx0
+(f2 ·f1) = limlim

x0
+ f1

− f2.

(65) Suppose f1 is convergent in +∞ and f2 is left convergent in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) < lim+∞ f1. Then f2 · f1 is convergent in +∞ and lim+∞(f2 · f1) =
limlim+∞ f1

− f2.

(66) Suppose f1 is convergent in +∞ and f2 is right convergent in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
lim+∞ f1 < f1(g). Then f2 · f1 is convergent in +∞ and lim+∞(f2 · f1) =
limlim+∞ f1

+ f2.

(67) Suppose f1 is convergent in −∞ and f2 is left convergent in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) < lim−∞ f1. Then f2 · f1 is convergent in −∞ and lim−∞(f2 · f1) =
lim

lim−∞ f1
− f2.

(68) Suppose f1 is convergent in −∞ and f2 is right convergent in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
lim−∞ f1 < f1(g). Then f2 · f1 is convergent in −∞ and lim−∞(f2 · f1) =
limlim−∞ f1

+ f2.

(69) Suppose f1 is divergent to +∞ in x0 and f2 is convergent in +∞ and
for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1). Then f2 · f1 is convergent in x0 and limx0

(f2 · f1) =
lim+∞ f2.

(70) Suppose f1 is divergent to −∞ in x0 and f2 is convergent in −∞ and
for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
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r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1). Then f2 · f1 is convergent in x0 and limx0

(f2 · f1) =
lim−∞ f2.

(71) Suppose f1 is convergent in +∞ and f2 is convergent in lim+∞ f1 and
for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) 6= lim+∞ f1. Then f2 · f1 is convergent in +∞ and lim+∞(f2 · f1) =
limlim+∞ f1

f2.

(72) Suppose f1 is convergent in −∞ and f2 is convergent in lim−∞ f1 and
for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) 6= lim−∞ f1. Then f2 · f1 is convergent in −∞ and lim−∞(f2 · f1) =
limlim−∞ f1

f2.

(73) Suppose that

(i) f1 is convergent in x0,

(ii) f2 is left convergent in limx0
f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) < limx0

f1.

Then f2 · f1 is convergent in x0 and limx0
(f2 · f1) = limlimx0

f1
− f2.

(74) Suppose that

(i) f1 is left convergent in x0,

(ii) f2 is convergent in limx0
− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0 − g, x0[ holds f1(r) 6= limx0

− f1.

Then f2 · f1 is left convergent in x0 and limx0
−(f2 · f1) = limlim

x0
− f1

f2.

(75) Suppose that

(i) f1 is convergent in x0,

(ii) f2 is right convergent in limx0
f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds limx0

f1 < f1(r).

Then f2 · f1 is convergent in x0 and limx0
(f2 · f1) = limlimx0

f1
+ f2.

(76) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is convergent in limx0
+ f1,
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(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds f1(r) 6= limx0
+ f1.

Then f2 · f1 is right convergent in x0 and limx0
+(f2 · f1) = limlim

x0
+ f1

f2.

(77) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is convergent in limx0

f1,
(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that

r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) 6= limx0

f1.
Then f2 · f1 is convergent in x0 and limx0

(f2 · f1) = limlimx0
f1

f2.
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