One-Side Limits of a Real Function at a Point

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. We introduce the left-side and the right-side limit of a real function at a point. We prove a few properties of the operations on the proper and improper one-side limits and show that Cauchy and Heine characterizations of one-side limit are equivalent.

MML Identifier: LIMFUNC2.

The articles [15], [4], [1], [2], [13], [11], [5], [7], [12], [14], [3], [8], [9], [10], and [6] provide the terminology and notation for this paper. For simplicity we adopt the following convention: r, r_1, r_2, g, g_1, x_0 will be real numbers, n, k will be natural numbers, s_1 will be a sequence of real numbers, and f, f_1, f_2 will be partial functions from \mathbb{R} to \mathbb{R} . We now state several propositions:

- (1) If s_1 is convergent and $r < \lim s_1$, then there exists n such that for every k such that $n \le k$ holds $r < s_1(k)$.
- (2) If s_1 is convergent and $\lim s_1 < r$, then there exists n such that for every k such that $n \le k$ holds $s_1(k) < r$.
- (3) If $0 < r_2$ and $]r_1 r_2, r_1[\subseteq \text{dom } f$, then for every r such that $r < r_1$ there exists g such that r < g and $g < r_1$ and $g \in \text{dom } f$.
- (4) If $0 < r_2$ and $]r_1, r_1 + r_2[\subseteq \text{dom } f$, then for every r such that $r_1 < r$ there exists g such that g < r and $r_1 < g$ and $g \in \text{dom } f$.
- (5) If for every *n* holds $x_0 \frac{1}{n+1} < s_1(n)$ and $s_1(n) < x_0$ and $s_1(n) \in \text{dom } f$, then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap] -\infty, x_0[$.
- (6) If for every n holds $x_0 < s_1(n)$ and $s_1(n) < x_0 + \frac{1}{n+1}$ and $s_1(n) \in \text{dom } f$, then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]x_0, +\infty[$.

¹Supported by RPBP.III-24.C8

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 We now define several new predicates. Let us consider f, x_0 . We say that f is left convergent in x_0 if and only if:

- (Def.1) (i) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
 - (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap] -\infty, x_0[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g.$

We say that f is left divergent to $+\infty$ in x_0 if and only if:

(Def.2) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]-\infty, x_0[$ holds $f \cdot s_1$ is divergent to $+\infty$.

We say that f is left divergent to $-\infty$ in x_0 if and only if:

(Def.3) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]-\infty, x_0[$ holds $f \cdot s_1$ is divergent to $-\infty$.

We say that f is right convergent in x_0 if and only if:

- (Def.4) (i) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,
 - (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.

We say that f is right divergent to $+\infty$ in x_0 if and only if:

(Def.5) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is divergent to $+\infty$.

We say that f is right divergent to $-\infty$ in x_0 if and only if:

(Def.6) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is divergent to $-\infty$.

We now state a number of propositions:

- (7) f is left convergent in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
- (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap] -\infty, x_0[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (8) f is left divergent to $+\infty$ in x_0 if and only if for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]-\infty, x_0[$ holds $f \cdot s_1$ is divergent to $+\infty$.

- (9) f is left divergent to $-\infty$ in x_0 if and only if for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]-\infty, x_0[$ holds $f \cdot s_1$ is divergent to $-\infty$.
- (10) f is right convergent in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,
 - (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (11) f is right divergent to $+\infty$ in x_0 if and only if for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is divergent to $+\infty$.
- (12) f is right divergent to $-\infty$ in x_0 if and only if for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is divergent to $-\infty$.
- (13) f is left convergent in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
 - (ii) there exists g such that for every g_1 such that $0 < g_1$ there exists r such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (14) f is left divergent to $+\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
 - (ii) for every g_1 there exists r such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $g_1 < f(r_1)$.
- (15) f is left divergent to $-\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
 - (ii) for every g_1 there exists r such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $f(r_1) < g_1$.
- (16) f is right convergent in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,
 - (ii) there exists g such that for every g_1 such that $0 < g_1$ there exists r such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$

holds $|f(r_1) - g| < g_1$.

- (17) f is right divergent to $+\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,
 - (ii) for every g_1 there exists r such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$ holds $g_1 < f(r_1)$.
- (18) f is right divergent to $-\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,
 - (ii) for every g_1 there exists r such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$ holds $f(r_1) < g_1$.
- (19) If f_1 is left divergent to $+\infty$ in x_0 and f_2 is left divergent to $+\infty$ in x_0 and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is left divergent to $+\infty$ in x_0 and f_1f_2 is left divergent to $+\infty$ in x_0 .
- (20) If f_1 is left divergent to $-\infty$ in x_0 and f_2 is left divergent to $-\infty$ in x_0 and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is left divergent to $-\infty$ in x_0 and $f_1 f_2$ is left divergent to $+\infty$ in x_0 .
- (21) If f_1 is right divergent to $+\infty$ in x_0 and f_2 is right divergent to $+\infty$ in x_0 and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is right divergent to $+\infty$ in x_0 and $f_1 f_2$ is right divergent to $+\infty$ in x_0 .
- (22) If f_1 is right divergent to $-\infty$ in x_0 and f_2 is right divergent to $-\infty$ in x_0 and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is right divergent to $-\infty$ in x_0 and $f_1 f_2$ is right divergent to $+\infty$ in x_0 .
- (23) If f_1 is left divergent to $+\infty$ in x_0 and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 + f_2)$ and there exists r such that 0 < r and f_2 is lower bounded on $]x_0 r, x_0[$, then $f_1 + f_2$ is left divergent to $+\infty$ in x_0 .
- (24) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
 - (ii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 f_2)$,
- (iii) there exist r, r_1 such that 0 < r and $0 < r_1$ and for every g such that $g \in \text{dom } f_2 \cap]x_0 r, x_0[$ holds $r_1 \leq f_2(g)$. Then $f_1 f_2$ is left divergent to $+\infty$ in x_0 .
- (25) If f_1 is right divergent to $+\infty$ in x_0 and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 + f_2)$ and there exists r such that 0 < r and f_2 is lower bounded on $]x_0, x_0 + r[$, then

 $f_1 + f_2$ is right divergent to $+\infty$ in x_0 .

- (26) Suppose that
 - (i) f_1 is right divergent to $+\infty$ in x_0 ,
 - (ii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 f_2)$,
 - (iii) there exist r, r_1 such that 0 < r and $0 < r_1$ and for every g such that $g \in \text{dom } f_2 \cap]x_0, x_0 + r[$ holds $r_1 \leq f_2(g)$. Then $f_1 f_2$ is right divergent to $+\infty$ in x_0 .
- (27) (i) If f is left divergent to $+\infty$ in x_0 and r > 0, then rf is left divergent to $+\infty$ in x_0 ,
 - (ii) if f is left divergent to $+\infty$ in x_0 and r < 0, then rf is left divergent to $-\infty$ in x_0 ,
 - (iii) if f is left divergent to $-\infty$ in x_0 and r > 0, then rf is left divergent to $-\infty$ in x_0 ,
 - (iv) if f is left divergent to $-\infty$ in x_0 and r < 0, then rf is left divergent to $+\infty$ in x_0 .
- (28) (i) If f is right divergent to $+\infty$ in x_0 and r > 0, then rf is right divergent to $+\infty$ in x_0 ,
 - (ii) if f is right divergent to $+\infty$ in x_0 and r < 0, then rf is right divergent to $-\infty$ in x_0 ,
 - (iii) if f is right divergent to $-\infty$ in x_0 and r > 0, then rf is right divergent to $-\infty$ in x_0 ,
 - (iv) if f is right divergent to $-\infty$ in x_0 and r < 0, then rf is right divergent to $+\infty$ in x_0 .
- (29) If f is left divergent to $+\infty$ in x_0 or f is left divergent to $-\infty$ in x_0 , then |f| is left divergent to $+\infty$ in x_0 .
- (30) If f is right divergent to $+\infty$ in x_0 or f is right divergent to $-\infty$ in x_0 , then |f| is right divergent to $+\infty$ in x_0 .
- (31) If there exists r such that 0 < r and f is non-decreasing on $]x_0 r, x_0[$ and f is not upper bounded on $]x_0 - r, x_0[$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$, then f is left divergent to $+\infty$ in x_0 .
- (32) If there exists r such that 0 < r and f is increasing on $]x_0 r, x_0[$ and f is not upper bounded on $]x_0 r, x_0[$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$, then f is left divergent to $+\infty$ in x_0 .
- (33) If there exists r such that 0 < r and f is non-increasing on $]x_0 r, x_0[$ and f is not lower bounded on $]x_0 - r, x_0[$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$, then f is left divergent to $-\infty$ in x_0 .
- (34) If there exists r such that 0 < r and f is decreasing on $]x_0 r, x_0[$ and f is not lower bounded on $]x_0 r, x_0[$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$, then f is left

divergent to $-\infty$ in x_0 .

- (35) If there exists r such that 0 < r and f is non-increasing on $]x_0, x_0 + r[$ and f is not upper bounded on $]x_0, x_0 + r[$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$, then f is right divergent to $+\infty$ in x_0 .
- (36) If there exists r such that 0 < r and f is decreasing on $]x_0, x_0 + r[$ and f is not upper bounded on $]x_0, x_0 + r[$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$, then f is right divergent to $+\infty$ in x_0 .
- (37) If there exists r such that 0 < r and f is non-decreasing on $]x_0, x_0 + r[$ and f is not lower bounded on $]x_0, x_0 + r[$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$, then f is right divergent to $-\infty$ in x_0 .

Next we state several propositions:

- (38) If there exists r such that 0 < r and f is increasing on $]x_0, x_0 + r[$ and f is not lower bounded on $]x_0, x_0 + r[$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$, then f is right divergent to $-\infty$ in x_0 .
- (39) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
 - (ii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
 - (iii) there exists r such that 0 < r and dom $f \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $f_1(g) \leq f(g)$. Then f is left divergent to $+\infty$ in x_0 .
- (40) Suppose that
 - (i) f_1 is left divergent to $-\infty$ in x_0 ,
 - (ii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
 - (iii) there exists r such that 0 < r and dom $f \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $f(g) \leq f_1(g)$. Then f is left divergent to $-\infty$ in x_0 .
- (41) Suppose that
 - (i) f_1 is right divergent to $+\infty$ in x_0 ,
 - (ii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,
 - (iii) there exists r such that 0 < r and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$. Then f is right divergent to $+\infty$ in x_0 .
- (42) Suppose that
 - (i) f_1 is right divergent to $-\infty$ in x_0 ,
 - (ii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,

- (iii) there exists r such that 0 < r and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $f(g) \leq f_1(g)$. Then f is right divergent to $-\infty$ in x_0 .
- (43) If f_1 is left divergent to $+\infty$ in x_0 and there exists r such that 0 < rand $]x_0 - r, x_0[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0 - r, x_0[$ holds $f_1(g) \leq f(g)$, then f is left divergent to $+\infty$ in x_0 .
- (44) If f_1 is left divergent to $-\infty$ in x_0 and there exists r such that 0 < rand $]x_0 - r, x_0[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0 - r, x_0[$ holds $f(g) \leq f_1(g)$, then f is left divergent to $-\infty$ in x_0 .
- (45) If f_1 is right divergent to $+\infty$ in x_0 and there exists r such that 0 < rand $]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$, then f is right divergent to $+\infty$ in x_0 .
- (46) If f_1 is right divergent to $-\infty$ in x_0 and there exists r such that 0 < rand $]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0, x_0 + r[$ holds $f(g) \leq f_1(g)$, then f is right divergent to $-\infty$ in x_0 .

Let us consider f, x_0 . Let us assume that f is left convergent in x_0 . The functor $\lim_{x_0^-} f$ yields a real number and is defined by:

(Def.7) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap \left] -\infty, x_0\right[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = \lim_{x_0^-} f$.

Let us consider f, x_0 . Let us assume that f is right convergent in x_0 . The functor $\lim_{x_0^+} f$ yields a real number and is defined by:

(Def.8) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = \lim_{x_0^+} f$.

One can prove the following propositions:

- (47) If f is left convergent in x_0 , then $\lim_{x_0^-} f = g$ if and only if for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap] -\infty, x_0[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (48) If f is right convergent in x_0 , then $\lim_{x_0+} f = g$ if and only if for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (49) If f is left convergent in x_0 , then $\lim_{x_0^-} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists r such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (50) If f is right convergent in x_0 , then $\lim_{x_0^+} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists r such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (51) If f is left convergent in x_0 , then rf is left convergent in x_0 and $\lim_{x_0^-} (rf) = r \cdot (\lim_{x_0^-} f).$
- (52) If f is left convergent in x_0 , then -f is left convergent in x_0 and $\lim_{x_0^-} (-f) = -\lim_{x_0^-} f$.
- (53) Suppose f_1 is left convergent in x_0 and f_2 is left convergent in x_0 and for every r such that $r < x_0$ there exists g such that r < g and g < r

 x_0 and $g \in \text{dom}(f_1 + f_2)$. Then $f_1 + f_2$ is left convergent in x_0 and $\lim_{x_0^-} (f_1 + f_2) = \lim_{x_0^-} f_1 + \lim_{x_0^-} f_2$.

- (54) Suppose f_1 is left convergent in x_0 and f_2 is left convergent in x_0 and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 - f_2)$. Then $f_1 - f_2$ is left convergent in x_0 and $\lim_{x_0^-} (f_1 - f_2) = \lim_{x_0^-} f_1 - \lim_{x_0^-} f_2$.
- (55) If f is left convergent in x_0 and $f^{-1}\{0\} = \emptyset$ and $\lim_{x_0^-} f \neq 0$, then $\frac{1}{f}$ is left convergent in x_0 and $\lim_{x_0^-} \frac{1}{f} = (\lim_{x_0^-} f)^{-1}$.
- (56) If f is left convergent in x_0 , then |f| is left convergent in x_0 and $\lim_{x_0^-} |f| = |\lim_{x_0^-} f|$.
- (57) Suppose f is left convergent in x_0 and $\lim_{x_0^-} f \neq 0$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is left convergent in x_0 and $\lim_{x_0^-} \frac{1}{f} = (\lim_{x_0^-} f)^{-1}$.
- (58) Suppose f_1 is left convergent in x_0 and f_2 is left convergent in x_0 and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_1f_2)$. Then f_1f_2 is left convergent in x_0 and $\lim_{x_0^-} (f_1f_2) = (\lim_{x_0^-} f_1) \cdot (\lim_{x_0^-} f_2)$.
- (59) Suppose f_1 is left convergent in x_0 and f_2 is left convergent in x_0 and $\lim_{x_0^-} f_2 \neq 0$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \operatorname{dom} \frac{f_1}{f_2}$. Then $\frac{f_1}{f_2}$ is left convergent in x_0 and $\lim_{x_0^-} \frac{f_1}{f_2} = \frac{\lim_{x_0^-} f_1}{\lim_{x_0^-} f_2}$.
- (60) If f is right convergent in x_0 , then rf is right convergent in x_0 and $\lim_{x_0^+} (rf) = r \cdot (\lim_{x_0^+} f).$
- (61) If f is right convergent in x_0 , then -f is right convergent in x_0 and $\lim_{x_0^+} (-f) = -\lim_{x_0^+} f$.
- (62) Suppose f_1 is right convergent in x_0 and f_2 is right convergent in x_0 and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 + f_2)$. Then $f_1 + f_2$ is right convergent in x_0 and $\lim_{x_0^+} (f_1 + f_2) = \lim_{x_0^+} f_1 + \lim_{x_0^+} f_2$.
- (63) Suppose f_1 is right convergent in x_0 and f_2 is right convergent in x_0 and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 - f_2)$. Then $f_1 - f_2$ is right convergent in x_0 and $\lim_{x_0^+} (f_1 - f_2) = \lim_{x_0^+} f_1 - \lim_{x_0^+} f_2$.
- (64) If f is right convergent in x_0 and $f^{-1}\{0\} = \emptyset$ and $\lim_{x_0^+} f \neq 0$, then $\frac{1}{f}$ is right convergent in x_0 and $\lim_{x_0^+} \frac{1}{f} = (\lim_{x_0^+} f)^{-1}$.
- (65) If f is right convergent in x_0 , then |f| is right convergent in x_0 and $\lim_{x_0^+} |f| = |\lim_{x_0^+} f|$.
- (66) Suppose f is right convergent in x_0 and $\lim_{x_0^+} f \neq 0$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is right convergent in x_0 and $\lim_{x_0^+} \frac{1}{f} = (\lim_{x_0^+} f)^{-1}$.
- (67) Suppose f_1 is right convergent in x_0 and f_2 is right convergent in x_0

and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 f_2)$. Then $f_1 f_2$ is right convergent in x_0 and $\lim_{x_0^+} (f_1 f_2) = (\lim_{x_0^+} f_1) \cdot (\lim_{x_0^+} f_2)$.

- (68) Suppose f_1 is right convergent in x_0 and f_2 is right convergent in x_0 and $\lim_{x_0^+} f_2 \neq 0$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } \frac{f_1}{f_2}$. Then $\frac{f_1}{f_2}$ is right convergent in x_0 and $\lim_{x_0^+} \frac{f_1}{f_2} = \frac{\lim_{x_0^+} f_1}{\lim_{x_0^+} f_2}$.
- (69) Suppose f_1 is left convergent in x_0 and $\lim_{x_0^-} f_1 = 0$ and for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_1f_2)$ and there exists r such that 0 < r and f_2 is bounded on $]x_0 r, x_0[$. Then f_1f_2 is left convergent in x_0 and $\lim_{x_0^-}(f_1f_2) = 0$.
- (70) Suppose f_1 is right convergent in x_0 and $\lim_{x_0^+} f_1 = 0$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1f_2)$ and there exists r such that 0 < r and f_2 is bounded on $]x_0, x_0 + r[$. Then f_1f_2 is right convergent in x_0 and $\lim_{x_0^+}(f_1f_2) = 0$.
- (71) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is left convergent in x_0 ,
 - (iii) $\lim_{x_0^-} f_1 = \lim_{x_0^-} f_2$,
 - (iv) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$,
 - (v) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$ but dom $f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[$ and dom $f \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ or dom $f_2 \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[$

Then f is left convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^-} f_1$.

- (72) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is left convergent in x_0 ,
 - (iii) $\lim_{x_0^-} f_1 = \lim_{x_0^-} f_2$,
 - (iv) there exists r such that 0 < r and $]x_0 r, x_0[\subseteq (\text{dom } f_1 \cap \text{dom } f_2) \cap \text{dom } f$ and for every g such that $g \in]x_0 r, x_0[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$.

Then f is left convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^-} f_1$.

- (73) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is right convergent in x_0 ,
 - (iii) $\lim_{x_0^+} f_1 = \lim_{x_0^+} f_2$,
 - (iv) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$,
 - (v) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$ but dom $f_1 \cap]x_0, x_0 + r[\subseteq$

dom $f_2 \cap]x_0, x_0 + r[$ and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ or dom $f_2 \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_2 \cap]x_0, x_0 + r[$.

Then f is right convergent in x_0 and $\lim_{x_0^+} f = \lim_{x_0^+} f_1$.

- (74) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is right convergent in x_0 ,
 - (iii) $\lim_{x_0^+} f_1 = \lim_{x_0^+} f_2,$
 - (iv) there exists r such that 0 < r and $]x_0, x_0 + r[\subseteq (\text{dom } f_1 \cap \text{dom } f_2) \cap \text{dom } f$ and for every g such that $g \in]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$.

Then f is right convergent in x_0 and $\lim_{x_0^+} f = \lim_{x_0^+} f_1$.

- (75) Suppose that
 - (i) f_1 is left convergent in x_0 ,
 - (ii) f_2 is left convergent in x_0 ,
 - (iii) there exists r such that 0 < r but dom $f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[$ and for every g such that $g \in \text{dom } f_1 \cap]x_0 r, x_0[$ holds $f_1(g) \leq f_2(g)$ or dom $f_2 \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ and for every g such that $g \in \text{dom } f_2 \cap]x_0 r, x_0[$ holds $f_1(g) \leq f_2(g)$.

Then $\lim_{x_0^-} f_1 \le \lim_{x_0^-} f_2$.

- (76) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is right convergent in x_0 ,
- (iii) there exists r such that 0 < r but dom $f_1 \cap]x_0, x_0 + r[\subseteq \text{dom } f_2 \cap]x_0, x_0 + r[$ and for every g such that $g \in \text{dom } f_1 \cap]x_0, x_0 + r[$ holds $f_1(g) \leq f_2(g)$ or dom $f_2 \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and for every g such that $g \in \text{dom } f_2 \cap]x_0, x_0 + r[$ holds $f_1(g) \leq f_2(g)$. Then $\lim_{x_0^+} f_1 \leq \lim_{x_0^+} f_2$.
- (77) If f is left divergent to $+\infty$ in x_0 or f is left divergent to $-\infty$ in x_0 but for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is left convergent in x_0 and $\lim_{x_0^-} \frac{1}{f} = 0$.

One can prove the following propositions:

- (78) If f is right divergent to $+\infty$ in x_0 or f is right divergent to $-\infty$ in x_0 but for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is right convergent in x_0 and $\lim_{x_0^+} \frac{1}{f} = 0$.
- (79) If f is left convergent in x_0 and $\lim_{x_0^-} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds 0 < f(g), then $\frac{1}{f}$ is left divergent to $+\infty$ in x_0 .
- (80) If f is left convergent in x_0 and $\lim_{x_0^-} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds f(g) < 0, then $\frac{1}{f}$ is left divergent to $-\infty$ in x_0 .

- (81) If f is right convergent in x_0 and $\lim_{x_0^+} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds 0 < f(g), then $\frac{1}{f}$ is right divergent to $+\infty$ in x_0 .
- (82) If f is right convergent in x_0 and $\lim_{x_0^+} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds f(g) < 0, then $\frac{1}{f}$ is right divergent to $-\infty$ in x_0 .
- (83) Suppose that
 - (i) f is left convergent in x_0 ,
 - (ii) $\lim_{x_0^-} f = 0$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$,
 - (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[\text{ holds } 0 \le f(g).$

Then $\frac{1}{f}$ is left divergent to $+\infty$ in x_0 .

- (84) Suppose that
 - (i) f is left convergent in x_0 ,
 - (ii) $\lim_{x_0^-} f = 0$,
 - (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$,
 - (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[\text{ holds } f(g) \leq 0.$

Then $\frac{1}{f}$ is left divergent to $-\infty$ in x_0 .

- (85) Suppose that
 - (i) f is right convergent in x_0 ,
 - (ii) $\lim_{x_0^+} f = 0,$
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$,
 - (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap [x_0, x_0 + r[\text{ holds } 0 \le f(g).$

Then $\frac{1}{f}$ is right divergent to $+\infty$ in x_0 .

- (86) Suppose that
 - (i) f is right convergent in x_0 ,
 - (ii) $\lim_{x_0^+} f = 0$,
 - (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$,
 - (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[\text{ holds } f(g) \leq 0.$

Then $\frac{1}{f}$ is right divergent to $-\infty$ in x_0 .

References

 Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.

- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [6] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17–28, 1991.
- Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [8] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [12] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [13] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received August 20, 1990