One-Side Limits of a Real Function at a Point

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. We introduce the left-side and the right-side limit of a real function at a point. We prove a few properties of the operations on the proper and improper one-side limits and show that Cauchy and Heine characterizations of one-side limit are equivalent.

MML Identifier: LIMFUNC2.

The articles [15], [4], [1], [2], [13], [11], [5], [7], [12], [14], [3], [8], [9], [10], and [6] provide the terminology and notation for this paper. For simplicity we adopt the following convention: $r, r_{1}, r_{2}, g, g_{1}, x_{0}$ will be real numbers, n, k will be natural numbers, s_{1} will be a sequence of real numbers, and f, f_{1}, f_{2} will be partial functions from \mathbb{R} to \mathbb{R}. We now state several propositions:
(1) If s_{1} is convergent and $r<\lim s_{1}$, then there exists n such that for every k such that $n \leq k$ holds $r<s_{1}(k)$.
(2) If s_{1} is convergent and $\lim s_{1}<r$, then there exists n such that for every k such that $n \leq k$ holds $s_{1}(k)<r$.
(3) If $0<r_{2}$ and $] r_{1}-r_{2}, r_{1}\left[\subseteq \operatorname{dom} f\right.$, then for every r such that $r<r_{1}$ there exists g such that $r<g$ and $g<r_{1}$ and $g \in \operatorname{dom} f$.
(4) If $0<r_{2}$ and $] r_{1}, r_{1}+r_{2}\left[\subseteq \operatorname{dom} f\right.$, then for every r such that $r_{1}<r$ there exists g such that $g<r$ and $r_{1}<g$ and $g \in \operatorname{dom} f$.
(5) If for every n holds $x_{0}-\frac{1}{n+1}<s_{1}(n)$ and $s_{1}(n)<x_{0}$ and $s_{1}(n) \in \operatorname{dom} f$, then s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \cap]-\infty, x_{0}[$.
(6) If for every n holds $x_{0}<s_{1}(n)$ and $s_{1}(n)<x_{0}+\frac{1}{n+1}$ and $s_{1}(n) \in \operatorname{dom} f$, then s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \cap] x_{0},+\infty[$.

[^0]We now define several new predicates. Let us consider f, x_{0}. We say that f is left convergent in x_{0} if and only if:
(Def.1) (i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}\left[\right.$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
We say that f is left divergent to $+\infty$ in x_{0} if and only if:
(Def.2) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}$ [holds $f \cdot s_{1}$ is divergent to $+\infty$.
We say that f is left divergent to $-\infty$ in x_{0} if and only if:
(Def.3) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and rng $\left.s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}$ [holds $f \cdot s_{1}$ is divergent to $-\infty$.
We say that f is right convergent in x_{0} if and only if:
(Def.4) (i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty\left[\right.$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
We say that f is right divergent to $+\infty$ in x_{0} if and only if:
(Def.5) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and rng $\left.s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty\left[\right.$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
We say that f is right divergent to $-\infty$ in x_{0} if and only if:
(Def.6) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and rng $\left.s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty\left[\right.$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
We now state a number of propositions:
(7) $\quad f$ is left convergent in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}\left[\right.$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
f is left divergent to $+\infty$ in x_{0} if and only if for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}[$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
(9) $\quad f$ is left divergent to $-\infty$ in x_{0} if and only if for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}[$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
(10) f is right convergent in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty\left[\right.$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
(11) f is right divergent to $+\infty$ in x_{0} if and only if for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty[$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
(12) f is right divergent to $-\infty$ in x_{0} if and only if for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and rng $\left.s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty[$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
(13) f is left convergent in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(ii) there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(14) $\quad f$ is left divergent to $+\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(ii) for every g_{1} there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $g_{1}<f\left(r_{1}\right)$.
(15) $\quad f$ is left divergent to $-\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(ii) for every g_{1} there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g_{1}$.
(16) f is right convergent in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(ii) there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$
holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
f is right divergent to $+\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(ii) for every g_{1} there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $g_{1}<f\left(r_{1}\right)$.
(18) $\quad f$ is right divergent to $-\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(ii) for every g_{1} there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g_{1}$.
(19) If f_{1} is left divergent to $+\infty$ in x_{0} and f_{2} is left divergent to $+\infty$ in x_{0} and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$, then $f_{1}+f_{2}$ is left divergent to $+\infty$ in x_{0} and $f_{1} f_{2}$ is left divergent to $+\infty$ in x_{0}.
(20) If f_{1} is left divergent to $-\infty$ in x_{0} and f_{2} is left divergent to $-\infty$ in x_{0} and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$, then $f_{1}+f_{2}$ is left divergent to $-\infty$ in x_{0} and $f_{1} f_{2}$ is left divergent to $+\infty$ in x_{0}.
(21) If f_{1} is right divergent to $+\infty$ in x_{0} and f_{2} is right divergent to $+\infty$ in x_{0} and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$, then $f_{1}+f_{2}$ is right divergent to $+\infty$ in x_{0} and $f_{1} f_{2}$ is right divergent to $+\infty$ in x_{0}.
(22) If f_{1} is right divergent to $-\infty$ in x_{0} and f_{2} is right divergent to $-\infty$ in x_{0} and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$, then $f_{1}+f_{2}$ is right divergent to $-\infty$ in x_{0} and $f_{1} f_{2}$ is right divergent to $+\infty$ in x_{0}.
(23) If f_{1} is left divergent to $+\infty$ in x_{0} and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ and there exists r such that $0<r$ and f_{2} is lower bounded on $] x_{0}-r, x_{0}\left[\right.$, then $f_{1}+f_{2}$ is left divergent to $+\infty$ in x_{0}.
(24) Suppose that
(i) $\quad f_{1}$ is left divergent to $+\infty$ in x_{0},
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$,
(iii) there exist r, r_{1} such that $0<r$ and $0<r_{1}$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}\left[\right.$ holds $r_{1} \leq f_{2}(g)$.
Then $f_{1} f_{2}$ is left divergent to $+\infty$ in x_{0}.
(25) If f_{1} is right divergent to $+\infty$ in x_{0} and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ and there exists r such that $0<r$ and f_{2} is lower bounded on $] x_{0}, x_{0}+r[$, then
$f_{1}+f_{2}$ is right divergent to $+\infty$ in x_{0}.
Suppose that
(i) f_{1} is right divergent to $+\infty$ in x_{0},
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$,
(iii) there exist r, r_{1} such that $0<r$ and $0<r_{1}$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r\left[\right.$ holds $r_{1} \leq f_{2}(g)$.
Then $f_{1} f_{2}$ is right divergent to $+\infty$ in x_{0}.
(27) (i) If f is left divergent to $+\infty$ in x_{0} and $r>0$, then $r f$ is left divergent to $+\infty$ in x_{0},
(ii) if f is left divergent to $+\infty$ in x_{0} and $r<0$, then $r f$ is left divergent to $-\infty$ in x_{0},
(iii) if f is left divergent to $-\infty$ in x_{0} and $r>0$, then $r f$ is left divergent to $-\infty$ in x_{0},
(iv) if f is left divergent to $-\infty$ in x_{0} and $r<0$, then $r f$ is left divergent to $+\infty$ in x_{0}.
(28) (i) If f is right divergent to $+\infty$ in x_{0} and $r>0$, then $r f$ is right divergent to $+\infty$ in x_{0},
(ii) if f is right divergent to $+\infty$ in x_{0} and $r<0$, then $r f$ is right divergent to $-\infty$ in x_{0},
(iii) if f is right divergent to $-\infty$ in x_{0} and $r>0$, then $r f$ is right divergent to $-\infty$ in x_{0},
(iv) if f is right divergent to $-\infty$ in x_{0} and $r<0$, then $r f$ is right divergent to $+\infty$ in x_{0}.
(29) If f is left divergent to $+\infty$ in x_{0} or f is left divergent to $-\infty$ in x_{0}, then $|f|$ is left divergent to $+\infty$ in x_{0}.
(30) If f is right divergent to $+\infty$ in x_{0} or f is right divergent to $-\infty$ in x_{0}, then $|f|$ is right divergent to $+\infty$ in x_{0}.
(31) If there exists r such that $0<r$ and f is non-decreasing on $] x_{0}-r, x_{0}[$ and f is not upper bounded on $] x_{0}-r, x_{0}\left[\right.$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, then f is left divergent to $+\infty$ in x_{0}.
(32) If there exists r such that $0<r$ and f is increasing on $] x_{0}-r, x_{0}[$ and f is not upper bounded on $] x_{0}-r, x_{0}\left[\right.$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, then f is left divergent to $+\infty$ in x_{0}.
(33) If there exists r such that $0<r$ and f is non-increasing on $] x_{0}-r, x_{0}[$ and f is not lower bounded on $] x_{0}-r, x_{0}\left[\right.$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, then f is left divergent to $-\infty$ in x_{0}.
(34) If there exists r such that $0<r$ and f is decreasing on $] x_{0}-r, x_{0}[$ and f is not lower bounded on $] x_{0}-r, x_{0}\left[\right.$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, then f is left
divergent to $-\infty$ in x_{0}.
(35) If there exists r such that $0<r$ and f is non-increasing on $] x_{0}, x_{0}+r$ [and f is not upper bounded on $] x_{0}, x_{0}+r$ [and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, then f is right divergent to $+\infty$ in x_{0}.
(36) If there exists r such that $0<r$ and f is decreasing on $] x_{0}, x_{0}+r$ [and f is not upper bounded on $] x_{0}, x_{0}+r\left[\right.$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, then f is right divergent to $+\infty$ in x_{0}.
(37) If there exists r such that $0<r$ and f is non-decreasing on $] x_{0}, x_{0}+r$ [and f is not lower bounded on $] x_{0}, x_{0}+r\left[\right.$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, then f is right divergent to $-\infty$ in x_{0}.
Next we state several propositions:
(38) If there exists r such that $0<r$ and f is increasing on $] x_{0}, x_{0}+r$ [and f is not lower bounded on $] x_{0}, x_{0}+r\left[\right.$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, then f is right divergent to $-\infty$ in x_{0}.
(39) Suppose that
(i) $\quad f_{1}$ is left divergent to $+\infty$ in x_{0},
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-$ $r, x_{0}[$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f(g)$. Then f is left divergent to $+\infty$ in x_{0}.
(40) Suppose that
(i) $\quad f_{1}$ is left divergent to $-\infty$ in x_{0},
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-$ $r, x_{0}[$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\right.$ holds $f(g) \leq f_{1}(g)$. Then f is left divergent to $-\infty$ in x_{0}.
(41) Suppose that
(i) f_{1} is right divergent to $+\infty$ in x_{0},
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+$ $r[$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f(g)$. Then f is right divergent to $+\infty$ in x_{0}.
(42) Suppose that
(i) f_{1} is right divergent to $-\infty$ in x_{0},
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+$ $r[$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\right.$ holds $f(g) \leq f_{1}(g)$. Then f is right divergent to $-\infty$ in x_{0}.
(43) If f_{1} is left divergent to $+\infty$ in x_{0} and there exists r such that $0<r$ and $] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $\left.g \in\right] x_{0}-r, x_{0}[$ holds $f_{1}(g) \leq f(g)$, then f is left divergent to $+\infty$ in x_{0}.
(44) If f_{1} is left divergent to $-\infty$ in x_{0} and there exists r such that $0<r$ and $] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $\left.g \in\right] x_{0}-r, x_{0}[$ holds $f(g) \leq f_{1}(g)$, then f is left divergent to $-\infty$ in x_{0}.
(45) If f_{1} is right divergent to $+\infty$ in x_{0} and there exists r such that $0<r$ and $] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $\left.g \in\right] x_{0}, x_{0}+r[$ holds $f_{1}(g) \leq f(g)$, then f is right divergent to $+\infty$ in x_{0}.
(46) If f_{1} is right divergent to $-\infty$ in x_{0} and there exists r such that $0<r$ and $] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $\left.g \in\right] x_{0}, x_{0}+r[$ holds $f(g) \leq f_{1}(g)$, then f is right divergent to $-\infty$ in x_{0}.
Let us consider f, x_{0}. Let us assume that f is left convergent in x_{0}. The functor $\lim _{x_{0}-} f$ yields a real number and is defined by:
(Def.7) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \cap]-\infty, x_{0}$ [holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{x_{0}-} f$.
Let us consider f, x_{0}. Let us assume that f is right convergent in x_{0}. The functor $\lim _{x_{0}+} f$ yields a real number and is defined by:
(Def.8) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq$ dom $f \cap] x_{0},+\infty\left[\right.$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{x_{0}+} f$.
One can prove the following propositions:
(47) If f is left convergent in x_{0}, then $\lim _{x_{0}-} f=g$ if and only if for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}[$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
(48) If f is right convergent in x_{0}, then $\lim _{x_{0}+} f=g$ if and only if for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and rng $\left.s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty[$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
(49) If f is left convergent in x_{0}, then $\lim _{x_{0}-} f=g$ if and only if for every g_{1} such that $0<g_{1}$ there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(50) If f is right convergent in x_{0}, then $\lim _{x_{0}+} f=g$ if and only if for every g_{1} such that $0<g_{1}$ there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(51) If f is left convergent in x_{0}, then $r f$ is left convergent in x_{0} and $\lim _{x_{0}-}(r f)=r \cdot\left(\lim _{x_{0}-} f\right)$.
(52) If f is left convergent in x_{0}, then $-f$ is left convergent in x_{0} and $\lim _{x_{0}-}(-f)=-\lim _{x_{0}-} f$.
(53) Suppose f_{1} is left convergent in x_{0} and f_{2} is left convergent in x_{0} and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<$
x_{0} and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$. Then $f_{1}+f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{1}+f_{2}\right)=\lim _{x_{0}-} f_{1}+\lim _{x_{0}-} f_{2}$.

Suppose f_{1} is left convergent in x_{0} and f_{2} is left convergent in x_{0} and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<$ x_{0} and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$. Then $f_{1}-f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{1}-f_{2}\right)=\lim _{x_{0}-} f_{1}-\lim _{x_{0}-} f_{2}$.
If f is left convergent in x_{0} and $f^{-1}\{0\}=\emptyset$ and $\lim _{x_{0}-} f \neq 0$, then $\frac{1}{f}$ is left convergent in x_{0} and $\lim _{x_{0}-\frac{1}{f}}=\left(\lim _{x_{0}-} f\right)^{-1}$.
(56) If f is left convergent in x_{0}, then $|f|$ is left convergent in x_{0} and $\lim _{x_{0}-}|f|=\left|\lim _{x_{0}-} f\right|$.
(57) Suppose f is left convergent in x_{0} and $\lim _{x_{0}-} f \neq 0$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is left convergent in x_{0} and $\lim _{x_{0}-\frac{1}{f}}=\left(\lim _{x_{0}-} f\right)^{-1}$.
(58) Suppose f_{1} is left convergent in x_{0} and f_{2} is left convergent in x_{0} and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$. Then $f_{1} f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{1} f_{2}\right)=$ $\left(\lim _{x_{0}-} f_{1}\right) \cdot\left(\lim _{x_{0}-} f_{2}\right)$.
Suppose f_{1} is left convergent in x_{0} and f_{2} is left convergent in x_{0} and $\lim _{x_{0}-} f_{2} \neq 0$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} \frac{f_{1}}{f_{2}}$. Then $\frac{f_{1}}{f_{2}}$ is left convergent in x_{0} and $\lim _{x_{0}-} \frac{f_{1}}{f_{2}}=\frac{\lim _{x_{0}-f_{1}}}{\lim _{x_{0}-}-f_{2}}$.
If f is right convergent in x_{0}, then $r f$ is right convergent in x_{0} and $\lim _{x_{0}+}(r f)=r \cdot\left(\lim _{x_{0}+} f\right)$.
(61) If f is right convergent in x_{0}, then $-f$ is right convergent in x_{0} and $\lim _{x_{0}+}(-f)=-\lim _{x_{0}+} f$.
(62) Suppose f_{1} is right convergent in x_{0} and f_{2} is right convergent in x_{0} and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$. Then $f_{1}+f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1}+f_{2}\right)=\lim _{x_{0}+} f_{1}+\lim _{x_{0}+} f_{2}$.
Suppose f_{1} is right convergent in x_{0} and f_{2} is right convergent in x_{0} and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$. Then $f_{1}-f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1}-f_{2}\right)=\lim _{x_{0}+} f_{1}-\lim _{x_{0}+} f_{2}$.
If f is right convergent in x_{0} and $f^{-1}\{0\}=\emptyset$ and $\lim _{x_{0}+} f \neq 0$, then $\frac{1}{f}$ is right convergent in x_{0} and $\lim _{x_{0}+\frac{1}{f}}=\left(\lim _{x_{0}+} f\right)^{-1}$.
If f is right convergent in x_{0}, then $|f|$ is right convergent in x_{0} and $\lim _{x_{0}+}|f|=\left|\lim _{x_{0}+} f\right|$.
Suppose f is right convergent in x_{0} and $\lim _{x_{0}+} f \neq 0$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is right convergent in x_{0} and $\lim _{x_{0}+\frac{1}{f}}=\left(\lim _{x_{0}+} f\right)^{-1}$.
Suppose f_{1} is right convergent in x_{0} and f_{2} is right convergent in x_{0}
and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$. Then $f_{1} f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1} f_{2}\right)=\left(\lim _{x_{0}+} f_{1}\right) \cdot\left(\lim _{x_{0}+} f_{2}\right)$.
(68) Suppose f_{1} is right convergent in x_{0} and f_{2} is right convergent in x_{0} and $\lim _{x_{0}+} f_{2} \neq 0$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} \frac{f_{1}}{f_{2}}$. Then $\frac{f_{1}}{f_{2}}$ is right convergent in x_{0} and $\lim _{x_{0}+\frac{f_{1}}{f_{2}}}=\frac{\lim _{x_{0}+f_{1}}}{\lim _{x_{0}+f_{2}}}$.
(69) Suppose f_{1} is left convergent in x_{0} and $\lim _{x_{0}-} f_{1}=0$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and there exists r such that $0<r$ and f_{2} is bounded on $] x_{0}-r, x_{0}\left[\right.$. Then $f_{1} f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{1} f_{2}\right)=0$.
Suppose f_{1} is right convergent in x_{0} and $\lim _{x_{0}+} f_{1}=0$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and there exists r such that $0<r$ and f_{2} is bounded on $] x_{0}, x_{0}+r\left[\right.$. Then $f_{1} f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1} f_{2}\right)=0$.
(71) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0},
(iii) $\lim _{x_{0}-} f_{1}=\lim _{x_{0}-} f_{2}$,
(iv) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$,
(v) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ $] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$ but $\left.\operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}[\subseteq$ $\left.\operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}[$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}[$ or $\left.\operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}[$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}[\subseteq$ $\left.\operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}[$.
Then f is left convergent in x_{0} and $\lim _{x_{0}-} f=\lim _{x_{0}-} f_{1}$.
(72) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0},
(iii) $\lim _{x_{0}-} f_{1}=\lim _{x_{0}-} f_{2}$,
(iv) there exists r such that $0<r$ and $] x_{0}-r, x_{0}\left[\subseteq\left(\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}\right) \cap\right.$ dom f and for every g such that $g \in] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is left convergent in x_{0} and $\lim _{x_{0}-} f=\lim _{x_{0}-} f_{1}$.
(73) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0},
(iii) $\lim _{x_{0}+} f_{1}=\lim _{x_{0}+} f_{2}$,
(iv) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$,
(v) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ $] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$ but dom $\left.f_{1} \cap\right] x_{0}, x_{0}+r[\subseteq$
$\left.\operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r[$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r[$ or $\left.\operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r[$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r[\subseteq$ $\left.\operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r[$.
Then f is right convergent in x_{0} and $\lim _{x_{0}+} f=\lim _{x_{0}+} f_{1}$.
(74) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0},
(iii) $\lim _{x_{0}+} f_{1}=\lim _{x_{0}+} f_{2}$,
(iv) there exists r such that $0<r$ and $] x_{0}, x_{0}+r\left[\subseteq\left(\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}\right) \cap\right.$ dom f and for every g such that $g \in] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is right convergent in x_{0} and $\lim _{x_{0}+} f=\lim _{x_{0}+} f_{1}$.
(75) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0},
(iii) there exists r such that $0<r$ but dom $\left.f_{1} \cap\right] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{2} \cap\right] x_{0}-$ $r, x_{0}\left[\right.$ and for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$ or dom $\left.f_{2} \cap\right] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}[$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{x_{0}-} f_{1} \leq \lim _{x_{0}-} f_{2}$.
(76) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0},
(iii) there exists r such that $0<r$ but $\left.\operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{2} \cap\right.$ $] x_{0}, x_{0}+r\left[\right.$ and for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r[$ holds $f_{1}(g) \leq f_{2}(g)$ or $\left.\operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r[$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{x_{0}+} f_{1} \leq \lim _{x_{0}+} f_{2}$.
(77) If f is left divergent to $+\infty$ in x_{0} or f is left divergent to $-\infty$ in x_{0} but for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is left convergent in x_{0} and $\lim _{x_{0}-\frac{1}{f}}=0$.
One can prove the following propositions:
(78) If f is right divergent to $+\infty$ in x_{0} or f is right divergent to $-\infty$ in x_{0} but for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is right convergent in x_{0} and $\lim _{x_{0}+\frac{1}{f}}=0$.
(79) If f is left convergent in x_{0} and $\lim _{x_{0}-} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}[$ holds $0<f(g)$, then $\frac{1}{f}$ is left divergent to $+\infty$ in x_{0}.
(80) If f is left convergent in x_{0} and $\lim _{x_{0}-} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}[$ holds $f(g)<0$, then $\frac{1}{f}$ is left divergent to $-\infty$ in x_{0}.
(81) If f is right convergent in x_{0} and $\lim _{x_{0}+} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r[$ holds $0<f(g)$, then $\frac{1}{f}$ is right divergent to $+\infty$ in x_{0}.
(82) If f is right convergent in x_{0} and $\lim _{x_{0}+} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r[$ holds $f(g)<0$, then $\frac{1}{f}$ is right divergent to $-\infty$ in x_{0}.
(83) Suppose that
(i) f is left convergent in x_{0},
(ii) $\lim _{x_{0}-} f=0$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$,
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ $] x_{0}-r, x_{0}[$ holds $0 \leq f(g)$.
Then $\frac{1}{f}$ is left divergent to $+\infty$ in x_{0}.
(84) Suppose that
(i) f is left convergent in x_{0},
(ii) $\lim _{x_{0}-} f=0$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$,
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ $] x_{0}-r, x_{0}[$ holds $f(g) \leq 0$. Then $\frac{1}{f}$ is left divergent to $-\infty$ in x_{0}.
(85) Suppose that
(i) f is right convergent in x_{0},
(ii) $\lim _{x_{0}+} f=0$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$,
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ $] x_{0}, x_{0}+r[$ holds $0 \leq f(g)$.
Then $\frac{1}{f}$ is right divergent to $+\infty$ in x_{0}.
(86) Suppose that
(i) f is right convergent in x_{0},
(ii) $\lim _{x_{0}+} f=0$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$,
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ $] x_{0}, x_{0}+r[$ holds $f(g) \leq 0$.
Then $\frac{1}{f}$ is right divergent to $-\infty$ in x_{0}.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[13] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received August 20, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

